mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-04 18:27:25 +00:00
148 lines
4.7 KiB
OCaml
148 lines
4.7 KiB
OCaml
|
(*
|
||
|
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*)
|
||
|
|
||
|
(* abstraction layer for complex operations *)
|
||
|
open Littlesimp
|
||
|
open Expr
|
||
|
|
||
|
(* type of complex expressions *)
|
||
|
type expr = CE of Expr.expr * Expr.expr
|
||
|
|
||
|
let two = CE (makeNum Number.two, makeNum Number.zero)
|
||
|
let one = CE (makeNum Number.one, makeNum Number.zero)
|
||
|
let i = CE (makeNum Number.zero, makeNum Number.one)
|
||
|
let zero = CE (makeNum Number.zero, makeNum Number.zero)
|
||
|
let make (r, i) = CE (r, i)
|
||
|
|
||
|
let uminus (CE (a, b)) = CE (makeUminus a, makeUminus b)
|
||
|
|
||
|
let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)),
|
||
|
makeNum Number.zero)
|
||
|
|
||
|
let inverse_int_sqrt n =
|
||
|
CE (makeNum (Number.div Number.one (Number.sqrt (Number.of_int n))),
|
||
|
makeNum Number.zero)
|
||
|
let int_sqrt n =
|
||
|
CE (makeNum (Number.sqrt (Number.of_int n)),
|
||
|
makeNum Number.zero)
|
||
|
|
||
|
let nan x = CE (NaN x, makeNum Number.zero)
|
||
|
|
||
|
let half = inverse_int 2
|
||
|
|
||
|
let times3x3 (CE (a, b)) (CE (c, d)) =
|
||
|
CE (makePlus [makeTimes (c, makePlus [a; makeUminus (b)]);
|
||
|
makeTimes (b, makePlus [c; makeUminus (d)])],
|
||
|
makePlus [makeTimes (a, makePlus [c; d]);
|
||
|
makeUminus(makeTimes (c, makePlus [a; makeUminus (b)]))])
|
||
|
|
||
|
let times (CE (a, b)) (CE (c, d)) =
|
||
|
if not !Magic.threemult then
|
||
|
CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))],
|
||
|
makePlus [makeTimes (a, d); makeTimes (b, c)])
|
||
|
else if is_constant c && is_constant d then
|
||
|
times3x3 (CE (a, b)) (CE (c, d))
|
||
|
else (* hope a and b are constant expressions *)
|
||
|
times3x3 (CE (c, d)) (CE (a, b))
|
||
|
|
||
|
let ctimes (CE (a, _)) (CE (c, _)) =
|
||
|
CE (CTimes (a, c), makeNum Number.zero)
|
||
|
|
||
|
let ctimesj (CE (a, _)) (CE (c, _)) =
|
||
|
CE (CTimesJ (a, c), makeNum Number.zero)
|
||
|
|
||
|
(* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *)
|
||
|
let exp n i =
|
||
|
let (c, s) = Number.cexp n i
|
||
|
in CE (makeNum c, makeNum s)
|
||
|
|
||
|
(* various trig functions evaluated at (2*pi*i/n * m) *)
|
||
|
let sec n m =
|
||
|
let (c, s) = Number.cexp n m
|
||
|
in CE (makeNum (Number.div Number.one c), makeNum Number.zero)
|
||
|
let csc n m =
|
||
|
let (c, s) = Number.cexp n m
|
||
|
in CE (makeNum (Number.div Number.one s), makeNum Number.zero)
|
||
|
let tan n m =
|
||
|
let (c, s) = Number.cexp n m
|
||
|
in CE (makeNum (Number.div s c), makeNum Number.zero)
|
||
|
let cot n m =
|
||
|
let (c, s) = Number.cexp n m
|
||
|
in CE (makeNum (Number.div c s), makeNum Number.zero)
|
||
|
|
||
|
(* complex sum *)
|
||
|
let plus a =
|
||
|
let rec unzip_complex = function
|
||
|
[] -> ([], [])
|
||
|
| ((CE (a, b)) :: s) ->
|
||
|
let (r,i) = unzip_complex s
|
||
|
in
|
||
|
(a::r), (b::i) in
|
||
|
let (c, d) = unzip_complex a in
|
||
|
CE (makePlus c, makePlus d)
|
||
|
|
||
|
(* extract real/imaginary *)
|
||
|
let real (CE (a, b)) = CE (a, makeNum Number.zero)
|
||
|
let imag (CE (a, b)) = CE (b, makeNum Number.zero)
|
||
|
let iimag (CE (a, b)) = CE (makeNum Number.zero, b)
|
||
|
let conj (CE (a, b)) = CE (a, makeUminus b)
|
||
|
|
||
|
|
||
|
(* abstraction of sum_{i=0}^{n-1} *)
|
||
|
let sigma a b f = plus (List.map f (Util.interval a b))
|
||
|
|
||
|
(* store and assignment operations *)
|
||
|
let store_real v (CE (a, b)) = Expr.Store (v, a)
|
||
|
let store_imag v (CE (a, b)) = Expr.Store (v, b)
|
||
|
let store (vr, vi) x = (store_real vr x, store_imag vi x)
|
||
|
|
||
|
let assign_real v (CE (a, b)) = Expr.Assign (v, a)
|
||
|
let assign_imag v (CE (a, b)) = Expr.Assign (v, b)
|
||
|
let assign (vr, vi) x = (assign_real vr x, assign_imag vi x)
|
||
|
|
||
|
|
||
|
(************************
|
||
|
shortcuts
|
||
|
************************)
|
||
|
let (@*) = times
|
||
|
let (@+) a b = plus [a; b]
|
||
|
let (@-) a b = plus [a; uminus b]
|
||
|
|
||
|
(* type of complex signals *)
|
||
|
type signal = int -> expr
|
||
|
|
||
|
(* make a finite signal infinite *)
|
||
|
let infinite n signal i = if ((0 <= i) && (i < n)) then signal i else zero
|
||
|
|
||
|
let hermitian n a =
|
||
|
Util.array n (fun i ->
|
||
|
if (i = 0) then real (a 0)
|
||
|
else if (i < n - i) then (a i)
|
||
|
else if (i > n - i) then conj (a (n - i))
|
||
|
else real (a i))
|
||
|
|
||
|
let antihermitian n a =
|
||
|
Util.array n (fun i ->
|
||
|
if (i = 0) then iimag (a 0)
|
||
|
else if (i < n - i) then (a i)
|
||
|
else if (i > n - i) then uminus (conj (a (n - i)))
|
||
|
else iimag (a i))
|