mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-05 10:47:26 +00:00
362 lines
12 KiB
C
362 lines
12 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:46:10 EDT 2021 */
|
||
|
|
||
|
#include "rdft/codelet-rdft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 13 -name r2cf_13 -include rdft/scalar/r2cf.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 76 FP additions, 51 FP multiplications,
|
||
|
* (or, 31 additions, 6 multiplications, 45 fused multiply/add),
|
||
|
* 58 stack variables, 23 constants, and 26 memory accesses
|
||
|
*/
|
||
|
#include "rdft/scalar/r2cf.h"
|
||
|
|
||
|
static void r2cf_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DK(KP300462606, +0.300462606288665774426601772289207995520941381);
|
||
|
DK(KP516520780, +0.516520780623489722840901288569017135705033622);
|
||
|
DK(KP859542535, +0.859542535098774820163672132761689612766401925);
|
||
|
DK(KP581704778, +0.581704778510515730456870384989698884939833902);
|
||
|
DK(KP514918778, +0.514918778086315755491789696138117261566051239);
|
||
|
DK(KP769338817, +0.769338817572980603471413688209101117038278899);
|
||
|
DK(KP686558370, +0.686558370781754340655719594850823015421401653);
|
||
|
DK(KP226109445, +0.226109445035782405468510155372505010481906348);
|
||
|
DK(KP251768516, +0.251768516431883313623436926934233488546674281);
|
||
|
DK(KP503537032, +0.503537032863766627246873853868466977093348562);
|
||
|
DK(KP301479260, +0.301479260047709873958013540496673347309208464);
|
||
|
DK(KP083333333, +0.083333333333333333333333333333333333333333333);
|
||
|
DK(KP904176221, +0.904176221990848204433795481776887926501523162);
|
||
|
DK(KP575140729, +0.575140729474003121368385547455453388461001608);
|
||
|
DK(KP522026385, +0.522026385161275033714027226654165028300441940);
|
||
|
DK(KP957805992, +0.957805992594665126462521754605754580515587217);
|
||
|
DK(KP600477271, +0.600477271932665282925769253334763009352012849);
|
||
|
DK(KP853480001, +0.853480001859823990758994934970528322872359049);
|
||
|
DK(KP612264650, +0.612264650376756543746494474777125408779395514);
|
||
|
DK(KP038632954, +0.038632954644348171955506895830342264440241080);
|
||
|
DK(KP302775637, +0.302775637731994646559610633735247973125648287);
|
||
|
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
{
|
||
|
INT i;
|
||
|
for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) {
|
||
|
E TN, TA, TD, TO, TR, TS, TZ, T12, Tu, Tx, Tj, Tw, TW, T13;
|
||
|
TN = R0[0];
|
||
|
{
|
||
|
E T3, TP, Th, TB, Tp, Te, TC, Tm, T6, Tr, T9, Ts, Ta, TQ, T1;
|
||
|
E T2;
|
||
|
T1 = R0[WS(rs, 4)];
|
||
|
T2 = R1[WS(rs, 2)];
|
||
|
T3 = T1 - T2;
|
||
|
TP = T1 + T2;
|
||
|
{
|
||
|
E Tn, Tf, Tg, To;
|
||
|
Tn = R0[WS(rs, 6)];
|
||
|
Tf = R0[WS(rs, 5)];
|
||
|
Tg = R0[WS(rs, 2)];
|
||
|
To = Tf + Tg;
|
||
|
Th = Tf - Tg;
|
||
|
TB = Tn + To;
|
||
|
Tp = FMS(KP500000000, To, Tn);
|
||
|
}
|
||
|
{
|
||
|
E Tk, Tc, Td, Tl;
|
||
|
Tk = R1[0];
|
||
|
Tc = R1[WS(rs, 4)];
|
||
|
Td = R1[WS(rs, 1)];
|
||
|
Tl = Td + Tc;
|
||
|
Te = Tc - Td;
|
||
|
TC = Tk + Tl;
|
||
|
Tm = FNMS(KP500000000, Tl, Tk);
|
||
|
}
|
||
|
{
|
||
|
E T4, T5, T7, T8;
|
||
|
T4 = R1[WS(rs, 5)];
|
||
|
T5 = R0[WS(rs, 3)];
|
||
|
T6 = T4 - T5;
|
||
|
Tr = T4 + T5;
|
||
|
T7 = R1[WS(rs, 3)];
|
||
|
T8 = R0[WS(rs, 1)];
|
||
|
T9 = T7 - T8;
|
||
|
Ts = T7 + T8;
|
||
|
}
|
||
|
Ta = T6 + T9;
|
||
|
TQ = Tr + Ts;
|
||
|
TA = T3 + Ta;
|
||
|
TD = TB - TC;
|
||
|
TO = TC + TB;
|
||
|
TR = TP + TQ;
|
||
|
TS = TO + TR;
|
||
|
{
|
||
|
E TX, TY, Tq, Tt;
|
||
|
TX = Tm - Tp;
|
||
|
TY = FNMS(KP500000000, TQ, TP);
|
||
|
TZ = TX + TY;
|
||
|
T12 = TX - TY;
|
||
|
Tq = Tm + Tp;
|
||
|
Tt = Tr - Ts;
|
||
|
Tu = FMA(KP866025403, Tt, Tq);
|
||
|
Tx = FNMS(KP866025403, Tt, Tq);
|
||
|
}
|
||
|
{
|
||
|
E Tb, Ti, TU, TV;
|
||
|
Tb = FNMS(KP500000000, Ta, T3);
|
||
|
Ti = Te + Th;
|
||
|
Tj = FMA(KP866025403, Ti, Tb);
|
||
|
Tw = FNMS(KP866025403, Ti, Tb);
|
||
|
TU = Th - Te;
|
||
|
TV = T6 - T9;
|
||
|
TW = TU + TV;
|
||
|
T13 = TU - TV;
|
||
|
}
|
||
|
}
|
||
|
Cr[0] = TN + TS;
|
||
|
{
|
||
|
E TE, TI, Tz, TK, TH, TM, TJ, TL;
|
||
|
TE = FMA(KP302775637, TD, TA);
|
||
|
TI = FNMS(KP302775637, TA, TD);
|
||
|
{
|
||
|
E Tv, Ty, TF, TG;
|
||
|
Tv = FMA(KP038632954, Tu, Tj);
|
||
|
Ty = FMA(KP612264650, Tx, Tw);
|
||
|
Tz = FNMS(KP853480001, Ty, Tv);
|
||
|
TK = FMA(KP853480001, Ty, Tv);
|
||
|
TF = FNMS(KP038632954, Tj, Tu);
|
||
|
TG = FNMS(KP612264650, Tw, Tx);
|
||
|
TH = FNMS(KP853480001, TG, TF);
|
||
|
TM = FMA(KP853480001, TG, TF);
|
||
|
}
|
||
|
Ci[WS(csi, 1)] = KP600477271 * (FMA(KP957805992, TE, Tz));
|
||
|
Ci[WS(csi, 5)] = -(KP600477271 * (FNMS(KP957805992, TI, TH)));
|
||
|
TJ = FMA(KP522026385, TH, TI);
|
||
|
Ci[WS(csi, 2)] = KP575140729 * (FNMS(KP904176221, TK, TJ));
|
||
|
Ci[WS(csi, 6)] = KP575140729 * (FMA(KP904176221, TK, TJ));
|
||
|
TL = FNMS(KP522026385, Tz, TE);
|
||
|
Ci[WS(csi, 3)] = KP575140729 * (FNMS(KP904176221, TM, TL));
|
||
|
Ci[WS(csi, 4)] = -(KP575140729 * (FMA(KP904176221, TM, TL)));
|
||
|
}
|
||
|
{
|
||
|
E T11, T17, T1c, T1e, T16, T18, TT, T10, T19, T1d;
|
||
|
TT = FNMS(KP083333333, TS, TN);
|
||
|
T10 = FMA(KP301479260, TZ, TW);
|
||
|
T11 = FMA(KP503537032, T10, TT);
|
||
|
T17 = FNMS(KP251768516, T10, TT);
|
||
|
{
|
||
|
E T1a, T1b, T14, T15;
|
||
|
T1a = FNMS(KP226109445, TW, TZ);
|
||
|
T1b = FMA(KP686558370, T12, T13);
|
||
|
T1c = FNMS(KP769338817, T1b, T1a);
|
||
|
T1e = FMA(KP769338817, T1b, T1a);
|
||
|
T14 = FNMS(KP514918778, T13, T12);
|
||
|
T15 = TO - TR;
|
||
|
T16 = FMA(KP581704778, T15, T14);
|
||
|
T18 = FNMS(KP859542535, T14, T15);
|
||
|
}
|
||
|
Cr[WS(csr, 5)] = FNMS(KP516520780, T16, T11);
|
||
|
Cr[WS(csr, 1)] = FMA(KP516520780, T16, T11);
|
||
|
T19 = FMA(KP300462606, T18, T17);
|
||
|
Cr[WS(csr, 4)] = FNMS(KP503537032, T1c, T19);
|
||
|
Cr[WS(csr, 3)] = FMA(KP503537032, T1c, T19);
|
||
|
T1d = FNMS(KP300462606, T18, T17);
|
||
|
Cr[WS(csr, 6)] = FNMS(KP503537032, T1e, T1d);
|
||
|
Cr[WS(csr, 2)] = FMA(KP503537032, T1e, T1d);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const kr2c_desc desc = { 13, "r2cf_13", { 31, 6, 45, 0 }, &GENUS };
|
||
|
|
||
|
void X(codelet_r2cf_13) (planner *p) { X(kr2c_register) (p, r2cf_13, &desc);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 13 -name r2cf_13 -include rdft/scalar/r2cf.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 76 FP additions, 34 FP multiplications,
|
||
|
* (or, 57 additions, 15 multiplications, 19 fused multiply/add),
|
||
|
* 55 stack variables, 20 constants, and 26 memory accesses
|
||
|
*/
|
||
|
#include "rdft/scalar/r2cf.h"
|
||
|
|
||
|
static void r2cf_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DK(KP083333333, +0.083333333333333333333333333333333333333333333);
|
||
|
DK(KP075902986, +0.075902986037193865983102897245103540356428373);
|
||
|
DK(KP251768516, +0.251768516431883313623436926934233488546674281);
|
||
|
DK(KP503537032, +0.503537032863766627246873853868466977093348562);
|
||
|
DK(KP113854479, +0.113854479055790798974654345867655310534642560);
|
||
|
DK(KP265966249, +0.265966249214837287587521063842185948798330267);
|
||
|
DK(KP387390585, +0.387390585467617292130675966426762851778775217);
|
||
|
DK(KP300462606, +0.300462606288665774426601772289207995520941381);
|
||
|
DK(KP132983124, +0.132983124607418643793760531921092974399165133);
|
||
|
DK(KP258260390, +0.258260390311744861420450644284508567852516811);
|
||
|
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
|
||
|
DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
|
||
|
DK(KP300238635, +0.300238635966332641462884626667381504676006424);
|
||
|
DK(KP011599105, +0.011599105605768290721655456654083252189827041);
|
||
|
DK(KP156891391, +0.156891391051584611046832726756003269660212636);
|
||
|
DK(KP256247671, +0.256247671582936600958684654061725059144125175);
|
||
|
DK(KP174138601, +0.174138601152135905005660794929264742616964676);
|
||
|
DK(KP575140729, +0.575140729474003121368385547455453388461001608);
|
||
|
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
{
|
||
|
INT i;
|
||
|
for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) {
|
||
|
E T13, Tb, Tm, TW, TX, T14, TU, T10, Tz, TB, Tu, TC, TR, T11;
|
||
|
T13 = R0[0];
|
||
|
{
|
||
|
E Te, TO, Ta, Tv, To, T5, Tw, Tp, Th, Tr, Tk, Ts, Tl, TP, Tc;
|
||
|
E Td;
|
||
|
Tc = R0[WS(rs, 4)];
|
||
|
Td = R1[WS(rs, 2)];
|
||
|
Te = Tc - Td;
|
||
|
TO = Tc + Td;
|
||
|
{
|
||
|
E T6, T7, T8, T9;
|
||
|
T6 = R1[0];
|
||
|
T7 = R1[WS(rs, 1)];
|
||
|
T8 = R1[WS(rs, 4)];
|
||
|
T9 = T7 + T8;
|
||
|
Ta = T6 + T9;
|
||
|
Tv = T7 - T8;
|
||
|
To = FNMS(KP500000000, T9, T6);
|
||
|
}
|
||
|
{
|
||
|
E T1, T2, T3, T4;
|
||
|
T1 = R0[WS(rs, 6)];
|
||
|
T2 = R0[WS(rs, 5)];
|
||
|
T3 = R0[WS(rs, 2)];
|
||
|
T4 = T2 + T3;
|
||
|
T5 = T1 + T4;
|
||
|
Tw = T2 - T3;
|
||
|
Tp = FNMS(KP500000000, T4, T1);
|
||
|
}
|
||
|
{
|
||
|
E Tf, Tg, Ti, Tj;
|
||
|
Tf = R1[WS(rs, 5)];
|
||
|
Tg = R0[WS(rs, 3)];
|
||
|
Th = Tf - Tg;
|
||
|
Tr = Tf + Tg;
|
||
|
Ti = R1[WS(rs, 3)];
|
||
|
Tj = R0[WS(rs, 1)];
|
||
|
Tk = Ti - Tj;
|
||
|
Ts = Ti + Tj;
|
||
|
}
|
||
|
Tl = Th + Tk;
|
||
|
TP = Tr + Ts;
|
||
|
Tb = T5 - Ta;
|
||
|
Tm = Te + Tl;
|
||
|
TW = Ta + T5;
|
||
|
TX = TO + TP;
|
||
|
T14 = TW + TX;
|
||
|
{
|
||
|
E TS, TT, Tx, Ty;
|
||
|
TS = Tv + Tw;
|
||
|
TT = Th - Tk;
|
||
|
TU = TS - TT;
|
||
|
T10 = TS + TT;
|
||
|
Tx = KP866025403 * (Tv - Tw);
|
||
|
Ty = FNMS(KP500000000, Tl, Te);
|
||
|
Tz = Tx + Ty;
|
||
|
TB = Ty - Tx;
|
||
|
}
|
||
|
{
|
||
|
E Tq, Tt, TN, TQ;
|
||
|
Tq = To - Tp;
|
||
|
Tt = KP866025403 * (Tr - Ts);
|
||
|
Tu = Tq - Tt;
|
||
|
TC = Tq + Tt;
|
||
|
TN = To + Tp;
|
||
|
TQ = FNMS(KP500000000, TP, TO);
|
||
|
TR = TN - TQ;
|
||
|
T11 = TN + TQ;
|
||
|
}
|
||
|
}
|
||
|
Cr[0] = T13 + T14;
|
||
|
{
|
||
|
E Tn, TG, TE, TF, TJ, TM, TK, TL;
|
||
|
Tn = FNMS(KP174138601, Tm, KP575140729 * Tb);
|
||
|
TG = FMA(KP174138601, Tb, KP575140729 * Tm);
|
||
|
{
|
||
|
E TA, TD, TH, TI;
|
||
|
TA = FNMS(KP156891391, Tz, KP256247671 * Tu);
|
||
|
TD = FNMS(KP300238635, TC, KP011599105 * TB);
|
||
|
TE = TA + TD;
|
||
|
TF = KP1_732050807 * (TD - TA);
|
||
|
TH = FMA(KP300238635, TB, KP011599105 * TC);
|
||
|
TI = FMA(KP256247671, Tz, KP156891391 * Tu);
|
||
|
TJ = TH - TI;
|
||
|
TM = KP1_732050807 * (TI + TH);
|
||
|
}
|
||
|
Ci[WS(csi, 5)] = FMA(KP2_000000000, TE, Tn);
|
||
|
Ci[WS(csi, 1)] = FMA(KP2_000000000, TJ, TG);
|
||
|
TK = TG - TJ;
|
||
|
Ci[WS(csi, 4)] = TF - TK;
|
||
|
Ci[WS(csi, 3)] = TF + TK;
|
||
|
TL = Tn - TE;
|
||
|
Ci[WS(csi, 2)] = TL - TM;
|
||
|
Ci[WS(csi, 6)] = TL + TM;
|
||
|
}
|
||
|
{
|
||
|
E TZ, T1b, T19, T1e, T16, T1a, TV, TY, T1c, T1d;
|
||
|
TV = FNMS(KP132983124, TU, KP258260390 * TR);
|
||
|
TY = KP300462606 * (TW - TX);
|
||
|
TZ = FMA(KP2_000000000, TV, TY);
|
||
|
T1b = TY - TV;
|
||
|
{
|
||
|
E T17, T18, T12, T15;
|
||
|
T17 = FMA(KP387390585, TU, KP265966249 * TR);
|
||
|
T18 = FNMS(KP503537032, T11, KP113854479 * T10);
|
||
|
T19 = T17 - T18;
|
||
|
T1e = T17 + T18;
|
||
|
T12 = FMA(KP251768516, T10, KP075902986 * T11);
|
||
|
T15 = FNMS(KP083333333, T14, T13);
|
||
|
T16 = FMA(KP2_000000000, T12, T15);
|
||
|
T1a = T15 - T12;
|
||
|
}
|
||
|
Cr[WS(csr, 1)] = TZ + T16;
|
||
|
Cr[WS(csr, 5)] = T16 - TZ;
|
||
|
T1c = T1a - T1b;
|
||
|
Cr[WS(csr, 2)] = T19 + T1c;
|
||
|
Cr[WS(csr, 6)] = T1c - T19;
|
||
|
T1d = T1b + T1a;
|
||
|
Cr[WS(csr, 3)] = T1d - T1e;
|
||
|
Cr[WS(csr, 4)] = T1e + T1d;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const kr2c_desc desc = { 13, "r2cf_13", { 57, 15, 19, 0 }, &GENUS };
|
||
|
|
||
|
void X(codelet_r2cf_13) (planner *p) { X(kr2c_register) (p, r2cf_13, &desc);
|
||
|
}
|
||
|
|
||
|
#endif
|