mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-05 10:47:26 +00:00
1065 lines
27 KiB
C
1065 lines
27 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:47:08 EDT 2021 */
|
||
|
|
||
|
#include "rdft/codelet-rdft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cb_20 -include rdft/scalar/hc2cb.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 246 FP additions, 148 FP multiplications,
|
||
|
* (or, 136 additions, 38 multiplications, 110 fused multiply/add),
|
||
|
* 91 stack variables, 4 constants, and 80 memory accesses
|
||
|
*/
|
||
|
#include "rdft/scalar/hc2cb.h"
|
||
|
|
||
|
static void hc2cb_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
||
|
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
||
|
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
||
|
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) {
|
||
|
E T7, T4e, T4z, TE, T1t, T2W, T3z, T2l, T13, T3G, T3H, T1i, T2g, T4H, T4G;
|
||
|
E T2d, T1B, T4u, T4r, T1A, T2s, T3l, T2t, T3s, T2m, T2n, T2o, T1u, T1v, T1w;
|
||
|
E TC, T29, T3C, T3E, T4l, T4n, TL, TN, T3b, T3d, T4C, T4E;
|
||
|
{
|
||
|
E T3, T2U, T1p, T3x, T6, T3y, T1s, T2V;
|
||
|
{
|
||
|
E T1, T2, T1n, T1o;
|
||
|
T1 = Rp[0];
|
||
|
T2 = Rm[WS(rs, 9)];
|
||
|
T3 = T1 + T2;
|
||
|
T2U = T1 - T2;
|
||
|
T1n = Ip[0];
|
||
|
T1o = Im[WS(rs, 9)];
|
||
|
T1p = T1n - T1o;
|
||
|
T3x = T1n + T1o;
|
||
|
}
|
||
|
{
|
||
|
E T4, T5, T1q, T1r;
|
||
|
T4 = Rp[WS(rs, 5)];
|
||
|
T5 = Rm[WS(rs, 4)];
|
||
|
T6 = T4 + T5;
|
||
|
T3y = T4 - T5;
|
||
|
T1q = Ip[WS(rs, 5)];
|
||
|
T1r = Im[WS(rs, 4)];
|
||
|
T1s = T1q - T1r;
|
||
|
T2V = T1q + T1r;
|
||
|
}
|
||
|
T7 = T3 + T6;
|
||
|
T4e = T2U - T2V;
|
||
|
T4z = T3y + T3x;
|
||
|
TE = T3 - T6;
|
||
|
T1t = T1p - T1s;
|
||
|
T2W = T2U + T2V;
|
||
|
T3z = T3x - T3y;
|
||
|
T2l = T1p + T1s;
|
||
|
}
|
||
|
{
|
||
|
E Te, T4f, T4p, TF, T1a, T2Z, T3o, T2b, TA, T4j, T4t, TJ, T12, T39, T3k;
|
||
|
E T2f, Tl, T4g, T4q, TG, T1h, T32, T3r, T2c, Tt, T4i, T4s, TI, TV, T36;
|
||
|
E T3h, T2e;
|
||
|
{
|
||
|
E Ta, T2X, T16, T3m, Td, T3n, T19, T2Y;
|
||
|
{
|
||
|
E T8, T9, T14, T15;
|
||
|
T8 = Rp[WS(rs, 4)];
|
||
|
T9 = Rm[WS(rs, 5)];
|
||
|
Ta = T8 + T9;
|
||
|
T2X = T8 - T9;
|
||
|
T14 = Ip[WS(rs, 4)];
|
||
|
T15 = Im[WS(rs, 5)];
|
||
|
T16 = T14 - T15;
|
||
|
T3m = T14 + T15;
|
||
|
}
|
||
|
{
|
||
|
E Tb, Tc, T17, T18;
|
||
|
Tb = Rp[WS(rs, 9)];
|
||
|
Tc = Rm[0];
|
||
|
Td = Tb + Tc;
|
||
|
T3n = Tb - Tc;
|
||
|
T17 = Ip[WS(rs, 9)];
|
||
|
T18 = Im[0];
|
||
|
T19 = T17 - T18;
|
||
|
T2Y = T17 + T18;
|
||
|
}
|
||
|
Te = Ta + Td;
|
||
|
T4f = T2X - T2Y;
|
||
|
T4p = T3n + T3m;
|
||
|
TF = Ta - Td;
|
||
|
T1a = T16 - T19;
|
||
|
T2Z = T2X + T2Y;
|
||
|
T3o = T3m - T3n;
|
||
|
T2b = T16 + T19;
|
||
|
}
|
||
|
{
|
||
|
E Tw, T37, TY, T3j, Tz, T3i, T11, T38;
|
||
|
{
|
||
|
E Tu, Tv, TW, TX;
|
||
|
Tu = Rm[WS(rs, 7)];
|
||
|
Tv = Rp[WS(rs, 2)];
|
||
|
Tw = Tu + Tv;
|
||
|
T37 = Tu - Tv;
|
||
|
TW = Ip[WS(rs, 2)];
|
||
|
TX = Im[WS(rs, 7)];
|
||
|
TY = TW - TX;
|
||
|
T3j = TW + TX;
|
||
|
}
|
||
|
{
|
||
|
E Tx, Ty, TZ, T10;
|
||
|
Tx = Rm[WS(rs, 2)];
|
||
|
Ty = Rp[WS(rs, 7)];
|
||
|
Tz = Tx + Ty;
|
||
|
T3i = Tx - Ty;
|
||
|
TZ = Ip[WS(rs, 7)];
|
||
|
T10 = Im[WS(rs, 2)];
|
||
|
T11 = TZ - T10;
|
||
|
T38 = TZ + T10;
|
||
|
}
|
||
|
TA = Tw + Tz;
|
||
|
T4j = T37 + T38;
|
||
|
T4t = T3i - T3j;
|
||
|
TJ = Tw - Tz;
|
||
|
T12 = TY - T11;
|
||
|
T39 = T37 - T38;
|
||
|
T3k = T3i + T3j;
|
||
|
T2f = TY + T11;
|
||
|
}
|
||
|
{
|
||
|
E Th, T30, T1d, T3q, Tk, T3p, T1g, T31;
|
||
|
{
|
||
|
E Tf, Tg, T1b, T1c;
|
||
|
Tf = Rm[WS(rs, 3)];
|
||
|
Tg = Rp[WS(rs, 6)];
|
||
|
Th = Tf + Tg;
|
||
|
T30 = Tf - Tg;
|
||
|
T1b = Ip[WS(rs, 6)];
|
||
|
T1c = Im[WS(rs, 3)];
|
||
|
T1d = T1b - T1c;
|
||
|
T3q = T1b + T1c;
|
||
|
}
|
||
|
{
|
||
|
E Ti, Tj, T1e, T1f;
|
||
|
Ti = Rp[WS(rs, 1)];
|
||
|
Tj = Rm[WS(rs, 8)];
|
||
|
Tk = Ti + Tj;
|
||
|
T3p = Ti - Tj;
|
||
|
T1e = Ip[WS(rs, 1)];
|
||
|
T1f = Im[WS(rs, 8)];
|
||
|
T1g = T1e - T1f;
|
||
|
T31 = T1e + T1f;
|
||
|
}
|
||
|
Tl = Th + Tk;
|
||
|
T4g = T30 - T31;
|
||
|
T4q = T3p - T3q;
|
||
|
TG = Th - Tk;
|
||
|
T1h = T1d - T1g;
|
||
|
T32 = T30 + T31;
|
||
|
T3r = T3p + T3q;
|
||
|
T2c = T1d + T1g;
|
||
|
}
|
||
|
{
|
||
|
E Tp, T34, TR, T3f, Ts, T3g, TU, T35;
|
||
|
{
|
||
|
E Tn, To, TP, TQ;
|
||
|
Tn = Rp[WS(rs, 8)];
|
||
|
To = Rm[WS(rs, 1)];
|
||
|
Tp = Tn + To;
|
||
|
T34 = Tn - To;
|
||
|
TP = Ip[WS(rs, 8)];
|
||
|
TQ = Im[WS(rs, 1)];
|
||
|
TR = TP - TQ;
|
||
|
T3f = TP + TQ;
|
||
|
}
|
||
|
{
|
||
|
E Tq, Tr, TS, TT;
|
||
|
Tq = Rm[WS(rs, 6)];
|
||
|
Tr = Rp[WS(rs, 3)];
|
||
|
Ts = Tq + Tr;
|
||
|
T3g = Tq - Tr;
|
||
|
TS = Ip[WS(rs, 3)];
|
||
|
TT = Im[WS(rs, 6)];
|
||
|
TU = TS - TT;
|
||
|
T35 = TS + TT;
|
||
|
}
|
||
|
Tt = Tp + Ts;
|
||
|
T4i = T34 + T35;
|
||
|
T4s = T3g + T3f;
|
||
|
TI = Tp - Ts;
|
||
|
TV = TR - TU;
|
||
|
T36 = T34 - T35;
|
||
|
T3h = T3f - T3g;
|
||
|
T2e = TR + TU;
|
||
|
}
|
||
|
T13 = TV - T12;
|
||
|
T3G = T36 - T39;
|
||
|
T3H = T2Z - T32;
|
||
|
T1i = T1a - T1h;
|
||
|
T2g = T2e - T2f;
|
||
|
T4H = T4i - T4j;
|
||
|
T4G = T4f - T4g;
|
||
|
T2d = T2b - T2c;
|
||
|
T1B = TF - TG;
|
||
|
T4u = T4s - T4t;
|
||
|
T4r = T4p - T4q;
|
||
|
T1A = TI - TJ;
|
||
|
T2s = Te - Tl;
|
||
|
T3l = T3h + T3k;
|
||
|
T2t = Tt - TA;
|
||
|
T3s = T3o + T3r;
|
||
|
T2m = T2b + T2c;
|
||
|
T2n = T2e + T2f;
|
||
|
T2o = T2m + T2n;
|
||
|
T1u = T1a + T1h;
|
||
|
T1v = TV + T12;
|
||
|
T1w = T1u + T1v;
|
||
|
{
|
||
|
E Tm, TB, TH, TK;
|
||
|
Tm = Te + Tl;
|
||
|
TB = Tt + TA;
|
||
|
TC = Tm + TB;
|
||
|
T29 = Tm - TB;
|
||
|
{
|
||
|
E T3A, T3B, T4h, T4k;
|
||
|
T3A = T3o - T3r;
|
||
|
T3B = T3h - T3k;
|
||
|
T3C = T3A + T3B;
|
||
|
T3E = T3A - T3B;
|
||
|
T4h = T4f + T4g;
|
||
|
T4k = T4i + T4j;
|
||
|
T4l = T4h + T4k;
|
||
|
T4n = T4h - T4k;
|
||
|
}
|
||
|
TH = TF + TG;
|
||
|
TK = TI + TJ;
|
||
|
TL = TH + TK;
|
||
|
TN = TH - TK;
|
||
|
{
|
||
|
E T33, T3a, T4A, T4B;
|
||
|
T33 = T2Z + T32;
|
||
|
T3a = T36 + T39;
|
||
|
T3b = T33 + T3a;
|
||
|
T3d = T33 - T3a;
|
||
|
T4A = T4p + T4q;
|
||
|
T4B = T4s + T4t;
|
||
|
T4C = T4A + T4B;
|
||
|
T4E = T4A - T4B;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
Rp[0] = T7 + TC;
|
||
|
Rm[0] = T2l + T2o;
|
||
|
{
|
||
|
E T25, T21, T23, T24, T26, T22;
|
||
|
T25 = T1t + T1w;
|
||
|
T22 = TE + TL;
|
||
|
T21 = W[18];
|
||
|
T23 = T21 * T22;
|
||
|
T24 = W[19];
|
||
|
T26 = T24 * T22;
|
||
|
Rp[WS(rs, 5)] = FNMS(T24, T25, T23);
|
||
|
Rm[WS(rs, 5)] = FMA(T21, T25, T26);
|
||
|
}
|
||
|
{
|
||
|
E T58, T5b, T59, T5c, T57, T5a;
|
||
|
T58 = T4e + T4l;
|
||
|
T5b = T4z + T4C;
|
||
|
T57 = W[8];
|
||
|
T59 = T57 * T58;
|
||
|
T5c = T57 * T5b;
|
||
|
T5a = W[9];
|
||
|
Ip[WS(rs, 2)] = FNMS(T5a, T5b, T59);
|
||
|
Im[WS(rs, 2)] = FMA(T5a, T58, T5c);
|
||
|
}
|
||
|
{
|
||
|
E T48, T4b, T49, T4c, T47, T4a;
|
||
|
T48 = T2W + T3b;
|
||
|
T4b = T3z + T3C;
|
||
|
T47 = W[28];
|
||
|
T49 = T47 * T48;
|
||
|
T4c = T47 * T4b;
|
||
|
T4a = W[29];
|
||
|
Ip[WS(rs, 7)] = FNMS(T4a, T4b, T49);
|
||
|
Im[WS(rs, 7)] = FMA(T4a, T48, T4c);
|
||
|
}
|
||
|
{
|
||
|
E T3u, T42, T3M, T3U, T3J, T45, T3P, T3Z;
|
||
|
{
|
||
|
E T3t, T3T, T3e, T3S, T3c;
|
||
|
T3t = FNMS(KP618033988, T3s, T3l);
|
||
|
T3T = FMA(KP618033988, T3l, T3s);
|
||
|
T3c = FNMS(KP250000000, T3b, T2W);
|
||
|
T3e = FNMS(KP559016994, T3d, T3c);
|
||
|
T3S = FMA(KP559016994, T3d, T3c);
|
||
|
T3u = FNMS(KP951056516, T3t, T3e);
|
||
|
T42 = FMA(KP951056516, T3T, T3S);
|
||
|
T3M = FMA(KP951056516, T3t, T3e);
|
||
|
T3U = FNMS(KP951056516, T3T, T3S);
|
||
|
}
|
||
|
{
|
||
|
E T3I, T3Y, T3F, T3X, T3D;
|
||
|
T3I = FNMS(KP618033988, T3H, T3G);
|
||
|
T3Y = FMA(KP618033988, T3G, T3H);
|
||
|
T3D = FNMS(KP250000000, T3C, T3z);
|
||
|
T3F = FNMS(KP559016994, T3E, T3D);
|
||
|
T3X = FMA(KP559016994, T3E, T3D);
|
||
|
T3J = FMA(KP951056516, T3I, T3F);
|
||
|
T45 = FNMS(KP951056516, T3Y, T3X);
|
||
|
T3P = FNMS(KP951056516, T3I, T3F);
|
||
|
T3Z = FMA(KP951056516, T3Y, T3X);
|
||
|
}
|
||
|
{
|
||
|
E T3v, T3K, T2T, T3w;
|
||
|
T2T = W[4];
|
||
|
T3v = T2T * T3u;
|
||
|
T3K = T2T * T3J;
|
||
|
T3w = W[5];
|
||
|
Ip[WS(rs, 1)] = FNMS(T3w, T3J, T3v);
|
||
|
Im[WS(rs, 1)] = FMA(T3w, T3u, T3K);
|
||
|
}
|
||
|
{
|
||
|
E T43, T46, T41, T44;
|
||
|
T41 = W[36];
|
||
|
T43 = T41 * T42;
|
||
|
T46 = T41 * T45;
|
||
|
T44 = W[37];
|
||
|
Ip[WS(rs, 9)] = FNMS(T44, T45, T43);
|
||
|
Im[WS(rs, 9)] = FMA(T44, T42, T46);
|
||
|
}
|
||
|
{
|
||
|
E T3N, T3Q, T3L, T3O;
|
||
|
T3L = W[12];
|
||
|
T3N = T3L * T3M;
|
||
|
T3Q = T3L * T3P;
|
||
|
T3O = W[13];
|
||
|
Ip[WS(rs, 3)] = FNMS(T3O, T3P, T3N);
|
||
|
Im[WS(rs, 3)] = FMA(T3O, T3M, T3Q);
|
||
|
}
|
||
|
{
|
||
|
E T3V, T40, T3R, T3W;
|
||
|
T3R = W[20];
|
||
|
T3V = T3R * T3U;
|
||
|
T40 = T3R * T3Z;
|
||
|
T3W = W[21];
|
||
|
Ip[WS(rs, 5)] = FNMS(T3W, T3Z, T3V);
|
||
|
Im[WS(rs, 5)] = FMA(T3W, T3U, T40);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T4w, T52, T4M, T4U, T4J, T55, T4P, T4Z;
|
||
|
{
|
||
|
E T4v, T4T, T4o, T4S, T4m;
|
||
|
T4v = FMA(KP618033988, T4u, T4r);
|
||
|
T4T = FNMS(KP618033988, T4r, T4u);
|
||
|
T4m = FNMS(KP250000000, T4l, T4e);
|
||
|
T4o = FMA(KP559016994, T4n, T4m);
|
||
|
T4S = FNMS(KP559016994, T4n, T4m);
|
||
|
T4w = FNMS(KP951056516, T4v, T4o);
|
||
|
T52 = FMA(KP951056516, T4T, T4S);
|
||
|
T4M = FMA(KP951056516, T4v, T4o);
|
||
|
T4U = FNMS(KP951056516, T4T, T4S);
|
||
|
}
|
||
|
{
|
||
|
E T4I, T4Y, T4F, T4X, T4D;
|
||
|
T4I = FMA(KP618033988, T4H, T4G);
|
||
|
T4Y = FNMS(KP618033988, T4G, T4H);
|
||
|
T4D = FNMS(KP250000000, T4C, T4z);
|
||
|
T4F = FMA(KP559016994, T4E, T4D);
|
||
|
T4X = FNMS(KP559016994, T4E, T4D);
|
||
|
T4J = FMA(KP951056516, T4I, T4F);
|
||
|
T55 = FNMS(KP951056516, T4Y, T4X);
|
||
|
T4P = FNMS(KP951056516, T4I, T4F);
|
||
|
T4Z = FMA(KP951056516, T4Y, T4X);
|
||
|
}
|
||
|
{
|
||
|
E T4x, T4K, T4d, T4y;
|
||
|
T4d = W[0];
|
||
|
T4x = T4d * T4w;
|
||
|
T4K = T4d * T4J;
|
||
|
T4y = W[1];
|
||
|
Ip[0] = FNMS(T4y, T4J, T4x);
|
||
|
Im[0] = FMA(T4y, T4w, T4K);
|
||
|
}
|
||
|
{
|
||
|
E T53, T56, T51, T54;
|
||
|
T51 = W[32];
|
||
|
T53 = T51 * T52;
|
||
|
T56 = T51 * T55;
|
||
|
T54 = W[33];
|
||
|
Ip[WS(rs, 8)] = FNMS(T54, T55, T53);
|
||
|
Im[WS(rs, 8)] = FMA(T54, T52, T56);
|
||
|
}
|
||
|
{
|
||
|
E T4N, T4Q, T4L, T4O;
|
||
|
T4L = W[16];
|
||
|
T4N = T4L * T4M;
|
||
|
T4Q = T4L * T4P;
|
||
|
T4O = W[17];
|
||
|
Ip[WS(rs, 4)] = FNMS(T4O, T4P, T4N);
|
||
|
Im[WS(rs, 4)] = FMA(T4O, T4M, T4Q);
|
||
|
}
|
||
|
{
|
||
|
E T4V, T50, T4R, T4W;
|
||
|
T4R = W[24];
|
||
|
T4V = T4R * T4U;
|
||
|
T50 = T4R * T4Z;
|
||
|
T4W = W[25];
|
||
|
Ip[WS(rs, 6)] = FNMS(T4W, T4Z, T4V);
|
||
|
Im[WS(rs, 6)] = FMA(T4W, T4U, T50);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T2u, T2K, T2r, T2J, T2i, T2O, T2y, T2G, T2p, T2q;
|
||
|
T2u = FMA(KP618033988, T2t, T2s);
|
||
|
T2K = FNMS(KP618033988, T2s, T2t);
|
||
|
T2p = FNMS(KP250000000, T2o, T2l);
|
||
|
T2q = T2m - T2n;
|
||
|
T2r = FMA(KP559016994, T2q, T2p);
|
||
|
T2J = FNMS(KP559016994, T2q, T2p);
|
||
|
{
|
||
|
E T2h, T2F, T2a, T2E, T28;
|
||
|
T2h = FMA(KP618033988, T2g, T2d);
|
||
|
T2F = FNMS(KP618033988, T2d, T2g);
|
||
|
T28 = FNMS(KP250000000, TC, T7);
|
||
|
T2a = FMA(KP559016994, T29, T28);
|
||
|
T2E = FNMS(KP559016994, T29, T28);
|
||
|
T2i = FMA(KP951056516, T2h, T2a);
|
||
|
T2O = FMA(KP951056516, T2F, T2E);
|
||
|
T2y = FNMS(KP951056516, T2h, T2a);
|
||
|
T2G = FNMS(KP951056516, T2F, T2E);
|
||
|
}
|
||
|
{
|
||
|
E T2v, T2k, T2w, T27, T2j;
|
||
|
T2v = FNMS(KP951056516, T2u, T2r);
|
||
|
T2k = W[7];
|
||
|
T2w = T2k * T2i;
|
||
|
T27 = W[6];
|
||
|
T2j = T27 * T2i;
|
||
|
Rp[WS(rs, 2)] = FNMS(T2k, T2v, T2j);
|
||
|
Rm[WS(rs, 2)] = FMA(T27, T2v, T2w);
|
||
|
}
|
||
|
{
|
||
|
E T2R, T2Q, T2S, T2N, T2P;
|
||
|
T2R = FNMS(KP951056516, T2K, T2J);
|
||
|
T2Q = W[23];
|
||
|
T2S = T2Q * T2O;
|
||
|
T2N = W[22];
|
||
|
T2P = T2N * T2O;
|
||
|
Rp[WS(rs, 6)] = FNMS(T2Q, T2R, T2P);
|
||
|
Rm[WS(rs, 6)] = FMA(T2N, T2R, T2S);
|
||
|
}
|
||
|
{
|
||
|
E T2B, T2A, T2C, T2x, T2z;
|
||
|
T2B = FMA(KP951056516, T2u, T2r);
|
||
|
T2A = W[31];
|
||
|
T2C = T2A * T2y;
|
||
|
T2x = W[30];
|
||
|
T2z = T2x * T2y;
|
||
|
Rp[WS(rs, 8)] = FNMS(T2A, T2B, T2z);
|
||
|
Rm[WS(rs, 8)] = FMA(T2x, T2B, T2C);
|
||
|
}
|
||
|
{
|
||
|
E T2L, T2I, T2M, T2D, T2H;
|
||
|
T2L = FMA(KP951056516, T2K, T2J);
|
||
|
T2I = W[15];
|
||
|
T2M = T2I * T2G;
|
||
|
T2D = W[14];
|
||
|
T2H = T2D * T2G;
|
||
|
Rp[WS(rs, 4)] = FNMS(T2I, T2L, T2H);
|
||
|
Rm[WS(rs, 4)] = FMA(T2D, T2L, T2M);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1C, T1S, T1z, T1R, T1k, T1W, T1G, T1O, T1x, T1y;
|
||
|
T1C = FNMS(KP618033988, T1B, T1A);
|
||
|
T1S = FMA(KP618033988, T1A, T1B);
|
||
|
T1x = FNMS(KP250000000, T1w, T1t);
|
||
|
T1y = T1u - T1v;
|
||
|
T1z = FNMS(KP559016994, T1y, T1x);
|
||
|
T1R = FMA(KP559016994, T1y, T1x);
|
||
|
{
|
||
|
E T1j, T1N, TO, T1M, TM;
|
||
|
T1j = FNMS(KP618033988, T1i, T13);
|
||
|
T1N = FMA(KP618033988, T13, T1i);
|
||
|
TM = FNMS(KP250000000, TL, TE);
|
||
|
TO = FNMS(KP559016994, TN, TM);
|
||
|
T1M = FMA(KP559016994, TN, TM);
|
||
|
T1k = FMA(KP951056516, T1j, TO);
|
||
|
T1W = FMA(KP951056516, T1N, T1M);
|
||
|
T1G = FNMS(KP951056516, T1j, TO);
|
||
|
T1O = FNMS(KP951056516, T1N, T1M);
|
||
|
}
|
||
|
{
|
||
|
E T1D, T1m, T1E, TD, T1l;
|
||
|
T1D = FNMS(KP951056516, T1C, T1z);
|
||
|
T1m = W[3];
|
||
|
T1E = T1m * T1k;
|
||
|
TD = W[2];
|
||
|
T1l = TD * T1k;
|
||
|
Rp[WS(rs, 1)] = FNMS(T1m, T1D, T1l);
|
||
|
Rm[WS(rs, 1)] = FMA(TD, T1D, T1E);
|
||
|
}
|
||
|
{
|
||
|
E T1Z, T1Y, T20, T1V, T1X;
|
||
|
T1Z = FNMS(KP951056516, T1S, T1R);
|
||
|
T1Y = W[27];
|
||
|
T20 = T1Y * T1W;
|
||
|
T1V = W[26];
|
||
|
T1X = T1V * T1W;
|
||
|
Rp[WS(rs, 7)] = FNMS(T1Y, T1Z, T1X);
|
||
|
Rm[WS(rs, 7)] = FMA(T1V, T1Z, T20);
|
||
|
}
|
||
|
{
|
||
|
E T1J, T1I, T1K, T1F, T1H;
|
||
|
T1J = FMA(KP951056516, T1C, T1z);
|
||
|
T1I = W[35];
|
||
|
T1K = T1I * T1G;
|
||
|
T1F = W[34];
|
||
|
T1H = T1F * T1G;
|
||
|
Rp[WS(rs, 9)] = FNMS(T1I, T1J, T1H);
|
||
|
Rm[WS(rs, 9)] = FMA(T1F, T1J, T1K);
|
||
|
}
|
||
|
{
|
||
|
E T1T, T1Q, T1U, T1L, T1P;
|
||
|
T1T = FMA(KP951056516, T1S, T1R);
|
||
|
T1Q = W[11];
|
||
|
T1U = T1Q * T1O;
|
||
|
T1L = W[10];
|
||
|
T1P = T1L * T1O;
|
||
|
Rp[WS(rs, 3)] = FNMS(T1Q, T1T, T1P);
|
||
|
Rm[WS(rs, 3)] = FMA(T1L, T1T, T1U);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 1, 20 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const hc2c_desc desc = { 20, "hc2cb_20", twinstr, &GENUS, { 136, 38, 110, 0 } };
|
||
|
|
||
|
void X(codelet_hc2cb_20) (planner *p) {
|
||
|
X(khc2c_register) (p, hc2cb_20, &desc, HC2C_VIA_RDFT);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cb_20 -include rdft/scalar/hc2cb.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 246 FP additions, 124 FP multiplications,
|
||
|
* (or, 184 additions, 62 multiplications, 62 fused multiply/add),
|
||
|
* 97 stack variables, 4 constants, and 80 memory accesses
|
||
|
*/
|
||
|
#include "rdft/scalar/hc2cb.h"
|
||
|
|
||
|
static void hc2cb_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
||
|
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
||
|
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
||
|
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) {
|
||
|
E T7, T3T, T49, TE, T1v, T2T, T3g, T2d, T13, T3n, T3o, T1i, T26, T4e, T4d;
|
||
|
E T23, T1n, T42, T3Z, T1m, T2h, T2I, T2i, T2P, T30, T37, T38, Tm, TB, TC;
|
||
|
E T46, T47, T4a, T2a, T2b, T2e, T1w, T1x, T1y, T3O, T3R, T3U, T3h, T3i, T3j;
|
||
|
E TH, TK, TL;
|
||
|
{
|
||
|
E T3, T2R, T1r, T3e, T6, T3f, T1u, T2S;
|
||
|
{
|
||
|
E T1, T2, T1p, T1q;
|
||
|
T1 = Rp[0];
|
||
|
T2 = Rm[WS(rs, 9)];
|
||
|
T3 = T1 + T2;
|
||
|
T2R = T1 - T2;
|
||
|
T1p = Ip[0];
|
||
|
T1q = Im[WS(rs, 9)];
|
||
|
T1r = T1p - T1q;
|
||
|
T3e = T1p + T1q;
|
||
|
}
|
||
|
{
|
||
|
E T4, T5, T1s, T1t;
|
||
|
T4 = Rp[WS(rs, 5)];
|
||
|
T5 = Rm[WS(rs, 4)];
|
||
|
T6 = T4 + T5;
|
||
|
T3f = T4 - T5;
|
||
|
T1s = Ip[WS(rs, 5)];
|
||
|
T1t = Im[WS(rs, 4)];
|
||
|
T1u = T1s - T1t;
|
||
|
T2S = T1s + T1t;
|
||
|
}
|
||
|
T7 = T3 + T6;
|
||
|
T3T = T2R - T2S;
|
||
|
T49 = T3f + T3e;
|
||
|
TE = T3 - T6;
|
||
|
T1v = T1r - T1u;
|
||
|
T2T = T2R + T2S;
|
||
|
T3g = T3e - T3f;
|
||
|
T2d = T1r + T1u;
|
||
|
}
|
||
|
{
|
||
|
E Te, T3M, T3X, TF, TV, T2E, T2W, T21, TA, T3Q, T41, TJ, T1h, T2O, T36;
|
||
|
E T25, Tl, T3N, T3Y, TG, T12, T2H, T2Z, T22, Tt, T3P, T40, TI, T1a, T2L;
|
||
|
E T33, T24;
|
||
|
{
|
||
|
E Ta, T2U, TR, T2C, Td, T2D, TU, T2V;
|
||
|
{
|
||
|
E T8, T9, TP, TQ;
|
||
|
T8 = Rp[WS(rs, 4)];
|
||
|
T9 = Rm[WS(rs, 5)];
|
||
|
Ta = T8 + T9;
|
||
|
T2U = T8 - T9;
|
||
|
TP = Ip[WS(rs, 4)];
|
||
|
TQ = Im[WS(rs, 5)];
|
||
|
TR = TP - TQ;
|
||
|
T2C = TP + TQ;
|
||
|
}
|
||
|
{
|
||
|
E Tb, Tc, TS, TT;
|
||
|
Tb = Rp[WS(rs, 9)];
|
||
|
Tc = Rm[0];
|
||
|
Td = Tb + Tc;
|
||
|
T2D = Tb - Tc;
|
||
|
TS = Ip[WS(rs, 9)];
|
||
|
TT = Im[0];
|
||
|
TU = TS - TT;
|
||
|
T2V = TS + TT;
|
||
|
}
|
||
|
Te = Ta + Td;
|
||
|
T3M = T2U - T2V;
|
||
|
T3X = T2D + T2C;
|
||
|
TF = Ta - Td;
|
||
|
TV = TR - TU;
|
||
|
T2E = T2C - T2D;
|
||
|
T2W = T2U + T2V;
|
||
|
T21 = TR + TU;
|
||
|
}
|
||
|
{
|
||
|
E Tw, T34, T1d, T2N, Tz, T2M, T1g, T35;
|
||
|
{
|
||
|
E Tu, Tv, T1b, T1c;
|
||
|
Tu = Rm[WS(rs, 7)];
|
||
|
Tv = Rp[WS(rs, 2)];
|
||
|
Tw = Tu + Tv;
|
||
|
T34 = Tu - Tv;
|
||
|
T1b = Ip[WS(rs, 2)];
|
||
|
T1c = Im[WS(rs, 7)];
|
||
|
T1d = T1b - T1c;
|
||
|
T2N = T1b + T1c;
|
||
|
}
|
||
|
{
|
||
|
E Tx, Ty, T1e, T1f;
|
||
|
Tx = Rm[WS(rs, 2)];
|
||
|
Ty = Rp[WS(rs, 7)];
|
||
|
Tz = Tx + Ty;
|
||
|
T2M = Tx - Ty;
|
||
|
T1e = Ip[WS(rs, 7)];
|
||
|
T1f = Im[WS(rs, 2)];
|
||
|
T1g = T1e - T1f;
|
||
|
T35 = T1e + T1f;
|
||
|
}
|
||
|
TA = Tw + Tz;
|
||
|
T3Q = T34 + T35;
|
||
|
T41 = T2M - T2N;
|
||
|
TJ = Tw - Tz;
|
||
|
T1h = T1d - T1g;
|
||
|
T2O = T2M + T2N;
|
||
|
T36 = T34 - T35;
|
||
|
T25 = T1d + T1g;
|
||
|
}
|
||
|
{
|
||
|
E Th, T2X, TY, T2G, Tk, T2F, T11, T2Y;
|
||
|
{
|
||
|
E Tf, Tg, TW, TX;
|
||
|
Tf = Rm[WS(rs, 3)];
|
||
|
Tg = Rp[WS(rs, 6)];
|
||
|
Th = Tf + Tg;
|
||
|
T2X = Tf - Tg;
|
||
|
TW = Ip[WS(rs, 6)];
|
||
|
TX = Im[WS(rs, 3)];
|
||
|
TY = TW - TX;
|
||
|
T2G = TW + TX;
|
||
|
}
|
||
|
{
|
||
|
E Ti, Tj, TZ, T10;
|
||
|
Ti = Rp[WS(rs, 1)];
|
||
|
Tj = Rm[WS(rs, 8)];
|
||
|
Tk = Ti + Tj;
|
||
|
T2F = Ti - Tj;
|
||
|
TZ = Ip[WS(rs, 1)];
|
||
|
T10 = Im[WS(rs, 8)];
|
||
|
T11 = TZ - T10;
|
||
|
T2Y = TZ + T10;
|
||
|
}
|
||
|
Tl = Th + Tk;
|
||
|
T3N = T2X - T2Y;
|
||
|
T3Y = T2F - T2G;
|
||
|
TG = Th - Tk;
|
||
|
T12 = TY - T11;
|
||
|
T2H = T2F + T2G;
|
||
|
T2Z = T2X + T2Y;
|
||
|
T22 = TY + T11;
|
||
|
}
|
||
|
{
|
||
|
E Tp, T31, T16, T2J, Ts, T2K, T19, T32;
|
||
|
{
|
||
|
E Tn, To, T14, T15;
|
||
|
Tn = Rp[WS(rs, 8)];
|
||
|
To = Rm[WS(rs, 1)];
|
||
|
Tp = Tn + To;
|
||
|
T31 = Tn - To;
|
||
|
T14 = Ip[WS(rs, 8)];
|
||
|
T15 = Im[WS(rs, 1)];
|
||
|
T16 = T14 - T15;
|
||
|
T2J = T14 + T15;
|
||
|
}
|
||
|
{
|
||
|
E Tq, Tr, T17, T18;
|
||
|
Tq = Rm[WS(rs, 6)];
|
||
|
Tr = Rp[WS(rs, 3)];
|
||
|
Ts = Tq + Tr;
|
||
|
T2K = Tq - Tr;
|
||
|
T17 = Ip[WS(rs, 3)];
|
||
|
T18 = Im[WS(rs, 6)];
|
||
|
T19 = T17 - T18;
|
||
|
T32 = T17 + T18;
|
||
|
}
|
||
|
Tt = Tp + Ts;
|
||
|
T3P = T31 + T32;
|
||
|
T40 = T2K + T2J;
|
||
|
TI = Tp - Ts;
|
||
|
T1a = T16 - T19;
|
||
|
T2L = T2J - T2K;
|
||
|
T33 = T31 - T32;
|
||
|
T24 = T16 + T19;
|
||
|
}
|
||
|
T13 = TV - T12;
|
||
|
T3n = T2W - T2Z;
|
||
|
T3o = T33 - T36;
|
||
|
T1i = T1a - T1h;
|
||
|
T26 = T24 - T25;
|
||
|
T4e = T3P - T3Q;
|
||
|
T4d = T3M - T3N;
|
||
|
T23 = T21 - T22;
|
||
|
T1n = TI - TJ;
|
||
|
T42 = T40 - T41;
|
||
|
T3Z = T3X - T3Y;
|
||
|
T1m = TF - TG;
|
||
|
T2h = Te - Tl;
|
||
|
T2I = T2E + T2H;
|
||
|
T2i = Tt - TA;
|
||
|
T2P = T2L + T2O;
|
||
|
T30 = T2W + T2Z;
|
||
|
T37 = T33 + T36;
|
||
|
T38 = T30 + T37;
|
||
|
Tm = Te + Tl;
|
||
|
TB = Tt + TA;
|
||
|
TC = Tm + TB;
|
||
|
T46 = T3X + T3Y;
|
||
|
T47 = T40 + T41;
|
||
|
T4a = T46 + T47;
|
||
|
T2a = T21 + T22;
|
||
|
T2b = T24 + T25;
|
||
|
T2e = T2a + T2b;
|
||
|
T1w = TV + T12;
|
||
|
T1x = T1a + T1h;
|
||
|
T1y = T1w + T1x;
|
||
|
T3O = T3M + T3N;
|
||
|
T3R = T3P + T3Q;
|
||
|
T3U = T3O + T3R;
|
||
|
T3h = T2E - T2H;
|
||
|
T3i = T2L - T2O;
|
||
|
T3j = T3h + T3i;
|
||
|
TH = TF + TG;
|
||
|
TK = TI + TJ;
|
||
|
TL = TH + TK;
|
||
|
}
|
||
|
Rp[0] = T7 + TC;
|
||
|
Rm[0] = T2d + T2e;
|
||
|
{
|
||
|
E T1U, T1W, T1T, T1V;
|
||
|
T1U = TE + TL;
|
||
|
T1W = T1v + T1y;
|
||
|
T1T = W[18];
|
||
|
T1V = W[19];
|
||
|
Rp[WS(rs, 5)] = FNMS(T1V, T1W, T1T * T1U);
|
||
|
Rm[WS(rs, 5)] = FMA(T1V, T1U, T1T * T1W);
|
||
|
}
|
||
|
{
|
||
|
E T4y, T4A, T4x, T4z;
|
||
|
T4y = T3T + T3U;
|
||
|
T4A = T49 + T4a;
|
||
|
T4x = W[8];
|
||
|
T4z = W[9];
|
||
|
Ip[WS(rs, 2)] = FNMS(T4z, T4A, T4x * T4y);
|
||
|
Im[WS(rs, 2)] = FMA(T4x, T4A, T4z * T4y);
|
||
|
}
|
||
|
{
|
||
|
E T3I, T3K, T3H, T3J;
|
||
|
T3I = T2T + T38;
|
||
|
T3K = T3g + T3j;
|
||
|
T3H = W[28];
|
||
|
T3J = W[29];
|
||
|
Ip[WS(rs, 7)] = FNMS(T3J, T3K, T3H * T3I);
|
||
|
Im[WS(rs, 7)] = FMA(T3H, T3K, T3J * T3I);
|
||
|
}
|
||
|
{
|
||
|
E T27, T2j, T2v, T2r, T2g, T2u, T20, T2q;
|
||
|
T27 = FMA(KP951056516, T23, KP587785252 * T26);
|
||
|
T2j = FMA(KP951056516, T2h, KP587785252 * T2i);
|
||
|
T2v = FNMS(KP951056516, T2i, KP587785252 * T2h);
|
||
|
T2r = FNMS(KP951056516, T26, KP587785252 * T23);
|
||
|
{
|
||
|
E T2c, T2f, T1Y, T1Z;
|
||
|
T2c = KP559016994 * (T2a - T2b);
|
||
|
T2f = FNMS(KP250000000, T2e, T2d);
|
||
|
T2g = T2c + T2f;
|
||
|
T2u = T2f - T2c;
|
||
|
T1Y = KP559016994 * (Tm - TB);
|
||
|
T1Z = FNMS(KP250000000, TC, T7);
|
||
|
T20 = T1Y + T1Z;
|
||
|
T2q = T1Z - T1Y;
|
||
|
}
|
||
|
{
|
||
|
E T28, T2k, T1X, T29;
|
||
|
T28 = T20 + T27;
|
||
|
T2k = T2g - T2j;
|
||
|
T1X = W[6];
|
||
|
T29 = W[7];
|
||
|
Rp[WS(rs, 2)] = FNMS(T29, T2k, T1X * T28);
|
||
|
Rm[WS(rs, 2)] = FMA(T29, T28, T1X * T2k);
|
||
|
}
|
||
|
{
|
||
|
E T2y, T2A, T2x, T2z;
|
||
|
T2y = T2q - T2r;
|
||
|
T2A = T2v + T2u;
|
||
|
T2x = W[22];
|
||
|
T2z = W[23];
|
||
|
Rp[WS(rs, 6)] = FNMS(T2z, T2A, T2x * T2y);
|
||
|
Rm[WS(rs, 6)] = FMA(T2z, T2y, T2x * T2A);
|
||
|
}
|
||
|
{
|
||
|
E T2m, T2o, T2l, T2n;
|
||
|
T2m = T20 - T27;
|
||
|
T2o = T2j + T2g;
|
||
|
T2l = W[30];
|
||
|
T2n = W[31];
|
||
|
Rp[WS(rs, 8)] = FNMS(T2n, T2o, T2l * T2m);
|
||
|
Rm[WS(rs, 8)] = FMA(T2n, T2m, T2l * T2o);
|
||
|
}
|
||
|
{
|
||
|
E T2s, T2w, T2p, T2t;
|
||
|
T2s = T2q + T2r;
|
||
|
T2w = T2u - T2v;
|
||
|
T2p = W[14];
|
||
|
T2t = W[15];
|
||
|
Rp[WS(rs, 4)] = FNMS(T2t, T2w, T2p * T2s);
|
||
|
Rm[WS(rs, 4)] = FMA(T2t, T2s, T2p * T2w);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T43, T4f, T4r, T4m, T4c, T4q, T3W, T4n;
|
||
|
T43 = FMA(KP951056516, T3Z, KP587785252 * T42);
|
||
|
T4f = FMA(KP951056516, T4d, KP587785252 * T4e);
|
||
|
T4r = FNMS(KP951056516, T4e, KP587785252 * T4d);
|
||
|
T4m = FNMS(KP951056516, T42, KP587785252 * T3Z);
|
||
|
{
|
||
|
E T48, T4b, T3S, T3V;
|
||
|
T48 = KP559016994 * (T46 - T47);
|
||
|
T4b = FNMS(KP250000000, T4a, T49);
|
||
|
T4c = T48 + T4b;
|
||
|
T4q = T4b - T48;
|
||
|
T3S = KP559016994 * (T3O - T3R);
|
||
|
T3V = FNMS(KP250000000, T3U, T3T);
|
||
|
T3W = T3S + T3V;
|
||
|
T4n = T3V - T3S;
|
||
|
}
|
||
|
{
|
||
|
E T44, T4g, T3L, T45;
|
||
|
T44 = T3W - T43;
|
||
|
T4g = T4c + T4f;
|
||
|
T3L = W[0];
|
||
|
T45 = W[1];
|
||
|
Ip[0] = FNMS(T45, T4g, T3L * T44);
|
||
|
Im[0] = FMA(T3L, T4g, T45 * T44);
|
||
|
}
|
||
|
{
|
||
|
E T4u, T4w, T4t, T4v;
|
||
|
T4u = T4n - T4m;
|
||
|
T4w = T4q + T4r;
|
||
|
T4t = W[32];
|
||
|
T4v = W[33];
|
||
|
Ip[WS(rs, 8)] = FNMS(T4v, T4w, T4t * T4u);
|
||
|
Im[WS(rs, 8)] = FMA(T4t, T4w, T4v * T4u);
|
||
|
}
|
||
|
{
|
||
|
E T4i, T4k, T4h, T4j;
|
||
|
T4i = T43 + T3W;
|
||
|
T4k = T4c - T4f;
|
||
|
T4h = W[16];
|
||
|
T4j = W[17];
|
||
|
Ip[WS(rs, 4)] = FNMS(T4j, T4k, T4h * T4i);
|
||
|
Im[WS(rs, 4)] = FMA(T4h, T4k, T4j * T4i);
|
||
|
}
|
||
|
{
|
||
|
E T4o, T4s, T4l, T4p;
|
||
|
T4o = T4m + T4n;
|
||
|
T4s = T4q - T4r;
|
||
|
T4l = W[24];
|
||
|
T4p = W[25];
|
||
|
Ip[WS(rs, 6)] = FNMS(T4p, T4s, T4l * T4o);
|
||
|
Im[WS(rs, 6)] = FMA(T4l, T4s, T4p * T4o);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1j, T1o, T1M, T1J, T1B, T1N, TO, T1I;
|
||
|
T1j = FNMS(KP951056516, T1i, KP587785252 * T13);
|
||
|
T1o = FNMS(KP951056516, T1n, KP587785252 * T1m);
|
||
|
T1M = FMA(KP951056516, T1m, KP587785252 * T1n);
|
||
|
T1J = FMA(KP951056516, T13, KP587785252 * T1i);
|
||
|
{
|
||
|
E T1z, T1A, TM, TN;
|
||
|
T1z = FNMS(KP250000000, T1y, T1v);
|
||
|
T1A = KP559016994 * (T1w - T1x);
|
||
|
T1B = T1z - T1A;
|
||
|
T1N = T1A + T1z;
|
||
|
TM = FNMS(KP250000000, TL, TE);
|
||
|
TN = KP559016994 * (TH - TK);
|
||
|
TO = TM - TN;
|
||
|
T1I = TN + TM;
|
||
|
}
|
||
|
{
|
||
|
E T1k, T1C, TD, T1l;
|
||
|
T1k = TO - T1j;
|
||
|
T1C = T1o + T1B;
|
||
|
TD = W[2];
|
||
|
T1l = W[3];
|
||
|
Rp[WS(rs, 1)] = FNMS(T1l, T1C, TD * T1k);
|
||
|
Rm[WS(rs, 1)] = FMA(T1l, T1k, TD * T1C);
|
||
|
}
|
||
|
{
|
||
|
E T1Q, T1S, T1P, T1R;
|
||
|
T1Q = T1I + T1J;
|
||
|
T1S = T1N - T1M;
|
||
|
T1P = W[26];
|
||
|
T1R = W[27];
|
||
|
Rp[WS(rs, 7)] = FNMS(T1R, T1S, T1P * T1Q);
|
||
|
Rm[WS(rs, 7)] = FMA(T1R, T1Q, T1P * T1S);
|
||
|
}
|
||
|
{
|
||
|
E T1E, T1G, T1D, T1F;
|
||
|
T1E = TO + T1j;
|
||
|
T1G = T1B - T1o;
|
||
|
T1D = W[34];
|
||
|
T1F = W[35];
|
||
|
Rp[WS(rs, 9)] = FNMS(T1F, T1G, T1D * T1E);
|
||
|
Rm[WS(rs, 9)] = FMA(T1F, T1E, T1D * T1G);
|
||
|
}
|
||
|
{
|
||
|
E T1K, T1O, T1H, T1L;
|
||
|
T1K = T1I - T1J;
|
||
|
T1O = T1M + T1N;
|
||
|
T1H = W[10];
|
||
|
T1L = W[11];
|
||
|
Rp[WS(rs, 3)] = FNMS(T1L, T1O, T1H * T1K);
|
||
|
Rm[WS(rs, 3)] = FMA(T1L, T1K, T1H * T1O);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T2Q, T3p, T3B, T3x, T3m, T3A, T3b, T3w;
|
||
|
T2Q = FNMS(KP951056516, T2P, KP587785252 * T2I);
|
||
|
T3p = FNMS(KP951056516, T3o, KP587785252 * T3n);
|
||
|
T3B = FMA(KP951056516, T3n, KP587785252 * T3o);
|
||
|
T3x = FMA(KP951056516, T2I, KP587785252 * T2P);
|
||
|
{
|
||
|
E T3k, T3l, T39, T3a;
|
||
|
T3k = FNMS(KP250000000, T3j, T3g);
|
||
|
T3l = KP559016994 * (T3h - T3i);
|
||
|
T3m = T3k - T3l;
|
||
|
T3A = T3l + T3k;
|
||
|
T39 = FNMS(KP250000000, T38, T2T);
|
||
|
T3a = KP559016994 * (T30 - T37);
|
||
|
T3b = T39 - T3a;
|
||
|
T3w = T3a + T39;
|
||
|
}
|
||
|
{
|
||
|
E T3c, T3q, T2B, T3d;
|
||
|
T3c = T2Q + T3b;
|
||
|
T3q = T3m - T3p;
|
||
|
T2B = W[4];
|
||
|
T3d = W[5];
|
||
|
Ip[WS(rs, 1)] = FNMS(T3d, T3q, T2B * T3c);
|
||
|
Im[WS(rs, 1)] = FMA(T2B, T3q, T3d * T3c);
|
||
|
}
|
||
|
{
|
||
|
E T3E, T3G, T3D, T3F;
|
||
|
T3E = T3x + T3w;
|
||
|
T3G = T3A - T3B;
|
||
|
T3D = W[36];
|
||
|
T3F = W[37];
|
||
|
Ip[WS(rs, 9)] = FNMS(T3F, T3G, T3D * T3E);
|
||
|
Im[WS(rs, 9)] = FMA(T3D, T3G, T3F * T3E);
|
||
|
}
|
||
|
{
|
||
|
E T3s, T3u, T3r, T3t;
|
||
|
T3s = T3b - T2Q;
|
||
|
T3u = T3m + T3p;
|
||
|
T3r = W[12];
|
||
|
T3t = W[13];
|
||
|
Ip[WS(rs, 3)] = FNMS(T3t, T3u, T3r * T3s);
|
||
|
Im[WS(rs, 3)] = FMA(T3r, T3u, T3t * T3s);
|
||
|
}
|
||
|
{
|
||
|
E T3y, T3C, T3v, T3z;
|
||
|
T3y = T3w - T3x;
|
||
|
T3C = T3A + T3B;
|
||
|
T3v = W[20];
|
||
|
T3z = W[21];
|
||
|
Ip[WS(rs, 5)] = FNMS(T3z, T3C, T3v * T3y);
|
||
|
Im[WS(rs, 5)] = FMA(T3v, T3C, T3z * T3y);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 1, 20 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const hc2c_desc desc = { 20, "hc2cb_20", twinstr, &GENUS, { 184, 62, 62, 0 } };
|
||
|
|
||
|
void X(codelet_hc2cb_20) (planner *p) {
|
||
|
X(khc2c_register) (p, hc2cb_20, &desc, HC2C_VIA_RDFT);
|
||
|
}
|
||
|
#endif
|