mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-02 02:52:40 +00:00
427 lines
15 KiB
C
427 lines
15 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:44:24 EDT 2021 */
|
||
|
|
||
|
#include "dft/codelet-dft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 11 -name n1_11 -include dft/scalar/n.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 140 FP additions, 110 FP multiplications,
|
||
|
* (or, 30 additions, 0 multiplications, 110 fused multiply/add),
|
||
|
* 62 stack variables, 10 constants, and 44 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/n.h"
|
||
|
|
||
|
static void n1_11(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DK(KP989821441, +0.989821441880932732376092037776718787376519372);
|
||
|
DK(KP959492973, +0.959492973614497389890368057066327699062454848);
|
||
|
DK(KP918985947, +0.918985947228994779780736114132655398124909697);
|
||
|
DK(KP830830026, +0.830830026003772851058548298459246407048009821);
|
||
|
DK(KP876768831, +0.876768831002589333891339807079336796764054852);
|
||
|
DK(KP778434453, +0.778434453334651800608337670740821884709317477);
|
||
|
DK(KP715370323, +0.715370323453429719112414662767260662417897278);
|
||
|
DK(KP521108558, +0.521108558113202722944698153526659300680427422);
|
||
|
DK(KP634356270, +0.634356270682424498893150776899916060542806975);
|
||
|
DK(KP342584725, +0.342584725681637509502641509861112333758894680);
|
||
|
{
|
||
|
INT i;
|
||
|
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(44, is), MAKE_VOLATILE_STRIDE(44, os)) {
|
||
|
E T1, T1f, T4, T1u, Tg, T1q, T7, T1t, Ta, T1s, Td, T1r, Ti, TP, T26;
|
||
|
E TG, T1X, T1O, T1w, TY, T1F, T17, To, T1i, TA, T1k, Tr, T1h, Tu, T1j;
|
||
|
E Tx, T1g, TC, TU, T21, TL, T1S, T1J, T1m, T13, T1A, T1c;
|
||
|
T1 = ri[0];
|
||
|
T1f = ii[0];
|
||
|
{
|
||
|
E T5, T6, Tp, Tq;
|
||
|
{
|
||
|
E T2, T3, Te, Tf;
|
||
|
T2 = ri[WS(is, 1)];
|
||
|
T3 = ri[WS(is, 10)];
|
||
|
T4 = T2 + T3;
|
||
|
T1u = T3 - T2;
|
||
|
Te = ri[WS(is, 5)];
|
||
|
Tf = ri[WS(is, 6)];
|
||
|
Tg = Te + Tf;
|
||
|
T1q = Tf - Te;
|
||
|
}
|
||
|
T5 = ri[WS(is, 2)];
|
||
|
T6 = ri[WS(is, 9)];
|
||
|
T7 = T5 + T6;
|
||
|
T1t = T6 - T5;
|
||
|
{
|
||
|
E T8, T9, Tb, Tc;
|
||
|
T8 = ri[WS(is, 3)];
|
||
|
T9 = ri[WS(is, 8)];
|
||
|
Ta = T8 + T9;
|
||
|
T1s = T9 - T8;
|
||
|
Tb = ri[WS(is, 4)];
|
||
|
Tc = ri[WS(is, 7)];
|
||
|
Td = Tb + Tc;
|
||
|
T1r = Tc - Tb;
|
||
|
}
|
||
|
{
|
||
|
E Th, TO, T25, TF, T1W;
|
||
|
Th = FNMS(KP342584725, Ta, T7);
|
||
|
Ti = FNMS(KP634356270, Th, Td);
|
||
|
TO = FNMS(KP342584725, T4, Ta);
|
||
|
TP = FNMS(KP634356270, TO, Tg);
|
||
|
T25 = FMA(KP521108558, T1q, T1u);
|
||
|
T26 = FMA(KP715370323, T25, T1r);
|
||
|
TF = FNMS(KP342584725, Td, T4);
|
||
|
TG = FNMS(KP634356270, TF, T7);
|
||
|
T1W = FMA(KP521108558, T1s, T1q);
|
||
|
T1X = FNMS(KP715370323, T1W, T1t);
|
||
|
}
|
||
|
{
|
||
|
E T1N, T1v, TX, T1E, T16;
|
||
|
T1N = FNMS(KP521108558, T1t, T1r);
|
||
|
T1O = FMA(KP715370323, T1N, T1q);
|
||
|
T1v = FNMS(KP521108558, T1u, T1t);
|
||
|
T1w = FNMS(KP715370323, T1v, T1s);
|
||
|
TX = FNMS(KP342584725, T7, Tg);
|
||
|
TY = FNMS(KP634356270, TX, T4);
|
||
|
T1E = FMA(KP521108558, T1r, T1s);
|
||
|
T1F = FMA(KP715370323, T1E, T1u);
|
||
|
T16 = FNMS(KP342584725, Tg, Td);
|
||
|
T17 = FNMS(KP634356270, T16, Ta);
|
||
|
}
|
||
|
{
|
||
|
E Tm, Tn, Ty, Tz;
|
||
|
Tm = ii[WS(is, 3)];
|
||
|
Tn = ii[WS(is, 8)];
|
||
|
To = Tm - Tn;
|
||
|
T1i = Tm + Tn;
|
||
|
Ty = ii[WS(is, 5)];
|
||
|
Tz = ii[WS(is, 6)];
|
||
|
TA = Ty - Tz;
|
||
|
T1k = Ty + Tz;
|
||
|
}
|
||
|
Tp = ii[WS(is, 2)];
|
||
|
Tq = ii[WS(is, 9)];
|
||
|
Tr = Tp - Tq;
|
||
|
T1h = Tp + Tq;
|
||
|
{
|
||
|
E Ts, Tt, Tv, Tw;
|
||
|
Ts = ii[WS(is, 4)];
|
||
|
Tt = ii[WS(is, 7)];
|
||
|
Tu = Ts - Tt;
|
||
|
T1j = Ts + Tt;
|
||
|
Tv = ii[WS(is, 1)];
|
||
|
Tw = ii[WS(is, 10)];
|
||
|
Tx = Tv - Tw;
|
||
|
T1g = Tv + Tw;
|
||
|
}
|
||
|
{
|
||
|
E TB, TT, T20, TK, T1R;
|
||
|
TB = FMA(KP521108558, TA, Tx);
|
||
|
TC = FMA(KP715370323, TB, Tu);
|
||
|
TT = FNMS(KP521108558, Tr, Tu);
|
||
|
TU = FMA(KP715370323, TT, TA);
|
||
|
T20 = FNMS(KP342584725, T1i, T1h);
|
||
|
T21 = FNMS(KP634356270, T20, T1j);
|
||
|
TK = FMA(KP521108558, To, TA);
|
||
|
TL = FNMS(KP715370323, TK, Tr);
|
||
|
T1R = FNMS(KP342584725, T1j, T1g);
|
||
|
T1S = FNMS(KP634356270, T1R, T1h);
|
||
|
}
|
||
|
{
|
||
|
E T1I, T1l, T12, T1z, T1b;
|
||
|
T1I = FNMS(KP342584725, T1g, T1i);
|
||
|
T1J = FNMS(KP634356270, T1I, T1k);
|
||
|
T1l = FNMS(KP342584725, T1k, T1j);
|
||
|
T1m = FNMS(KP634356270, T1l, T1i);
|
||
|
T12 = FMA(KP521108558, Tu, To);
|
||
|
T13 = FMA(KP715370323, T12, Tx);
|
||
|
T1z = FNMS(KP342584725, T1h, T1k);
|
||
|
T1A = FNMS(KP634356270, T1z, T1g);
|
||
|
T1b = FNMS(KP521108558, Tx, Tr);
|
||
|
T1c = FNMS(KP715370323, T1b, To);
|
||
|
}
|
||
|
}
|
||
|
ro[0] = T1 + T4 + T7 + Ta + Td + Tg;
|
||
|
io[0] = T1f + T1g + T1h + T1i + T1j + T1k;
|
||
|
{
|
||
|
E Tk, TE, Tj, TD, Tl;
|
||
|
Tj = FNMS(KP778434453, Ti, T4);
|
||
|
Tk = FNMS(KP876768831, Tj, Tg);
|
||
|
TD = FMA(KP830830026, TC, Tr);
|
||
|
TE = FMA(KP918985947, TD, To);
|
||
|
Tl = FNMS(KP959492973, Tk, T1);
|
||
|
ro[WS(os, 10)] = FNMS(KP989821441, TE, Tl);
|
||
|
ro[WS(os, 1)] = FMA(KP989821441, TE, Tl);
|
||
|
}
|
||
|
{
|
||
|
E T23, T28, T22, T27, T24;
|
||
|
T22 = FNMS(KP778434453, T21, T1g);
|
||
|
T23 = FNMS(KP876768831, T22, T1k);
|
||
|
T27 = FMA(KP830830026, T26, T1t);
|
||
|
T28 = FMA(KP918985947, T27, T1s);
|
||
|
T24 = FNMS(KP959492973, T23, T1f);
|
||
|
io[WS(os, 1)] = FMA(KP989821441, T28, T24);
|
||
|
io[WS(os, 10)] = FNMS(KP989821441, T28, T24);
|
||
|
}
|
||
|
{
|
||
|
E T1U, T1Z, T1T, T1Y, T1V;
|
||
|
T1T = FNMS(KP778434453, T1S, T1k);
|
||
|
T1U = FNMS(KP876768831, T1T, T1i);
|
||
|
T1Y = FMA(KP830830026, T1X, T1u);
|
||
|
T1Z = FNMS(KP918985947, T1Y, T1r);
|
||
|
T1V = FNMS(KP959492973, T1U, T1f);
|
||
|
io[WS(os, 2)] = FNMS(KP989821441, T1Z, T1V);
|
||
|
io[WS(os, 9)] = FMA(KP989821441, T1Z, T1V);
|
||
|
}
|
||
|
{
|
||
|
E TI, TN, TH, TM, TJ;
|
||
|
TH = FNMS(KP778434453, TG, Tg);
|
||
|
TI = FNMS(KP876768831, TH, Ta);
|
||
|
TM = FMA(KP830830026, TL, Tx);
|
||
|
TN = FNMS(KP918985947, TM, Tu);
|
||
|
TJ = FNMS(KP959492973, TI, T1);
|
||
|
ro[WS(os, 2)] = FNMS(KP989821441, TN, TJ);
|
||
|
ro[WS(os, 9)] = FMA(KP989821441, TN, TJ);
|
||
|
}
|
||
|
{
|
||
|
E TR, TW, TQ, TV, TS;
|
||
|
TQ = FNMS(KP778434453, TP, Td);
|
||
|
TR = FNMS(KP876768831, TQ, T7);
|
||
|
TV = FNMS(KP830830026, TU, To);
|
||
|
TW = FNMS(KP918985947, TV, Tx);
|
||
|
TS = FNMS(KP959492973, TR, T1);
|
||
|
ro[WS(os, 8)] = FNMS(KP989821441, TW, TS);
|
||
|
ro[WS(os, 3)] = FMA(KP989821441, TW, TS);
|
||
|
}
|
||
|
{
|
||
|
E T1L, T1Q, T1K, T1P, T1M;
|
||
|
T1K = FNMS(KP778434453, T1J, T1j);
|
||
|
T1L = FNMS(KP876768831, T1K, T1h);
|
||
|
T1P = FNMS(KP830830026, T1O, T1s);
|
||
|
T1Q = FNMS(KP918985947, T1P, T1u);
|
||
|
T1M = FNMS(KP959492973, T1L, T1f);
|
||
|
io[WS(os, 3)] = FMA(KP989821441, T1Q, T1M);
|
||
|
io[WS(os, 8)] = FNMS(KP989821441, T1Q, T1M);
|
||
|
}
|
||
|
{
|
||
|
E T10, T15, TZ, T14, T11;
|
||
|
TZ = FNMS(KP778434453, TY, Ta);
|
||
|
T10 = FNMS(KP876768831, TZ, Td);
|
||
|
T14 = FNMS(KP830830026, T13, TA);
|
||
|
T15 = FMA(KP918985947, T14, Tr);
|
||
|
T11 = FNMS(KP959492973, T10, T1);
|
||
|
ro[WS(os, 4)] = FNMS(KP989821441, T15, T11);
|
||
|
ro[WS(os, 7)] = FMA(KP989821441, T15, T11);
|
||
|
}
|
||
|
{
|
||
|
E T1C, T1H, T1B, T1G, T1D;
|
||
|
T1B = FNMS(KP778434453, T1A, T1i);
|
||
|
T1C = FNMS(KP876768831, T1B, T1j);
|
||
|
T1G = FNMS(KP830830026, T1F, T1q);
|
||
|
T1H = FMA(KP918985947, T1G, T1t);
|
||
|
T1D = FNMS(KP959492973, T1C, T1f);
|
||
|
io[WS(os, 4)] = FNMS(KP989821441, T1H, T1D);
|
||
|
io[WS(os, 7)] = FMA(KP989821441, T1H, T1D);
|
||
|
}
|
||
|
{
|
||
|
E T1o, T1y, T1n, T1x, T1p;
|
||
|
T1n = FNMS(KP778434453, T1m, T1h);
|
||
|
T1o = FNMS(KP876768831, T1n, T1g);
|
||
|
T1x = FNMS(KP830830026, T1w, T1r);
|
||
|
T1y = FNMS(KP918985947, T1x, T1q);
|
||
|
T1p = FNMS(KP959492973, T1o, T1f);
|
||
|
io[WS(os, 5)] = FMA(KP989821441, T1y, T1p);
|
||
|
io[WS(os, 6)] = FNMS(KP989821441, T1y, T1p);
|
||
|
}
|
||
|
{
|
||
|
E T19, T1e, T18, T1d, T1a;
|
||
|
T18 = FNMS(KP778434453, T17, T7);
|
||
|
T19 = FNMS(KP876768831, T18, T4);
|
||
|
T1d = FNMS(KP830830026, T1c, Tu);
|
||
|
T1e = FNMS(KP918985947, T1d, TA);
|
||
|
T1a = FNMS(KP959492973, T19, T1);
|
||
|
ro[WS(os, 6)] = FNMS(KP989821441, T1e, T1a);
|
||
|
ro[WS(os, 5)] = FMA(KP989821441, T1e, T1a);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const kdft_desc desc = { 11, "n1_11", { 30, 0, 110, 0 }, &GENUS, 0, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_n1_11) (planner *p) { X(kdft_register) (p, n1_11, &desc);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 11 -name n1_11 -include dft/scalar/n.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 140 FP additions, 100 FP multiplications,
|
||
|
* (or, 60 additions, 20 multiplications, 80 fused multiply/add),
|
||
|
* 41 stack variables, 10 constants, and 44 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/n.h"
|
||
|
|
||
|
static void n1_11(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DK(KP654860733, +0.654860733945285064056925072466293553183791199);
|
||
|
DK(KP142314838, +0.142314838273285140443792668616369668791051361);
|
||
|
DK(KP959492973, +0.959492973614497389890368057066327699062454848);
|
||
|
DK(KP415415013, +0.415415013001886425529274149229623203524004910);
|
||
|
DK(KP841253532, +0.841253532831181168861811648919367717513292498);
|
||
|
DK(KP989821441, +0.989821441880932732376092037776718787376519372);
|
||
|
DK(KP909631995, +0.909631995354518371411715383079028460060241051);
|
||
|
DK(KP281732556, +0.281732556841429697711417915346616899035777899);
|
||
|
DK(KP540640817, +0.540640817455597582107635954318691695431770608);
|
||
|
DK(KP755749574, +0.755749574354258283774035843972344420179717445);
|
||
|
{
|
||
|
INT i;
|
||
|
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(44, is), MAKE_VOLATILE_STRIDE(44, os)) {
|
||
|
E T1, TM, T4, TG, Tk, TR, Tw, TN, T7, TK, Ta, TH, Tn, TQ, Td;
|
||
|
E TJ, Tq, TO, Tt, TP, Tg, TI;
|
||
|
{
|
||
|
E T2, T3, Ti, Tj;
|
||
|
T1 = ri[0];
|
||
|
TM = ii[0];
|
||
|
T2 = ri[WS(is, 1)];
|
||
|
T3 = ri[WS(is, 10)];
|
||
|
T4 = T2 + T3;
|
||
|
TG = T3 - T2;
|
||
|
Ti = ii[WS(is, 1)];
|
||
|
Tj = ii[WS(is, 10)];
|
||
|
Tk = Ti - Tj;
|
||
|
TR = Ti + Tj;
|
||
|
{
|
||
|
E Tu, Tv, T5, T6;
|
||
|
Tu = ii[WS(is, 2)];
|
||
|
Tv = ii[WS(is, 9)];
|
||
|
Tw = Tu - Tv;
|
||
|
TN = Tu + Tv;
|
||
|
T5 = ri[WS(is, 2)];
|
||
|
T6 = ri[WS(is, 9)];
|
||
|
T7 = T5 + T6;
|
||
|
TK = T6 - T5;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T8, T9, To, Tp;
|
||
|
T8 = ri[WS(is, 3)];
|
||
|
T9 = ri[WS(is, 8)];
|
||
|
Ta = T8 + T9;
|
||
|
TH = T9 - T8;
|
||
|
{
|
||
|
E Tl, Tm, Tb, Tc;
|
||
|
Tl = ii[WS(is, 3)];
|
||
|
Tm = ii[WS(is, 8)];
|
||
|
Tn = Tl - Tm;
|
||
|
TQ = Tl + Tm;
|
||
|
Tb = ri[WS(is, 4)];
|
||
|
Tc = ri[WS(is, 7)];
|
||
|
Td = Tb + Tc;
|
||
|
TJ = Tc - Tb;
|
||
|
}
|
||
|
To = ii[WS(is, 4)];
|
||
|
Tp = ii[WS(is, 7)];
|
||
|
Tq = To - Tp;
|
||
|
TO = To + Tp;
|
||
|
{
|
||
|
E Tr, Ts, Te, Tf;
|
||
|
Tr = ii[WS(is, 5)];
|
||
|
Ts = ii[WS(is, 6)];
|
||
|
Tt = Tr - Ts;
|
||
|
TP = Tr + Ts;
|
||
|
Te = ri[WS(is, 5)];
|
||
|
Tf = ri[WS(is, 6)];
|
||
|
Tg = Te + Tf;
|
||
|
TI = Tf - Te;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Tx, Th, TZ, T10;
|
||
|
ro[0] = T1 + T4 + T7 + Ta + Td + Tg;
|
||
|
io[0] = TM + TR + TN + TQ + TO + TP;
|
||
|
Tx = FMA(KP755749574, Tk, KP540640817 * Tn) + FNMS(KP909631995, Tt, KP281732556 * Tq) - (KP989821441 * Tw);
|
||
|
Th = FMA(KP841253532, Ta, T1) + FNMS(KP959492973, Td, KP415415013 * Tg) + FNMA(KP142314838, T7, KP654860733 * T4);
|
||
|
ro[WS(os, 7)] = Th - Tx;
|
||
|
ro[WS(os, 4)] = Th + Tx;
|
||
|
TZ = FMA(KP755749574, TG, KP540640817 * TH) + FNMS(KP909631995, TI, KP281732556 * TJ) - (KP989821441 * TK);
|
||
|
T10 = FMA(KP841253532, TQ, TM) + FNMS(KP959492973, TO, KP415415013 * TP) + FNMA(KP142314838, TN, KP654860733 * TR);
|
||
|
io[WS(os, 4)] = TZ + T10;
|
||
|
io[WS(os, 7)] = T10 - TZ;
|
||
|
{
|
||
|
E TX, TY, Tz, Ty;
|
||
|
TX = FMA(KP909631995, TG, KP755749574 * TK) + FNMA(KP540640817, TI, KP989821441 * TJ) - (KP281732556 * TH);
|
||
|
TY = FMA(KP415415013, TR, TM) + FNMS(KP142314838, TO, KP841253532 * TP) + FNMA(KP959492973, TQ, KP654860733 * TN);
|
||
|
io[WS(os, 2)] = TX + TY;
|
||
|
io[WS(os, 9)] = TY - TX;
|
||
|
Tz = FMA(KP909631995, Tk, KP755749574 * Tw) + FNMA(KP540640817, Tt, KP989821441 * Tq) - (KP281732556 * Tn);
|
||
|
Ty = FMA(KP415415013, T4, T1) + FNMS(KP142314838, Td, KP841253532 * Tg) + FNMA(KP959492973, Ta, KP654860733 * T7);
|
||
|
ro[WS(os, 9)] = Ty - Tz;
|
||
|
ro[WS(os, 2)] = Ty + Tz;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E TB, TA, TT, TU;
|
||
|
TB = FMA(KP540640817, Tk, KP909631995 * Tw) + FMA(KP989821441, Tn, KP755749574 * Tq) + (KP281732556 * Tt);
|
||
|
TA = FMA(KP841253532, T4, T1) + FNMS(KP959492973, Tg, KP415415013 * T7) + FNMA(KP654860733, Td, KP142314838 * Ta);
|
||
|
ro[WS(os, 10)] = TA - TB;
|
||
|
ro[WS(os, 1)] = TA + TB;
|
||
|
{
|
||
|
E TV, TW, TD, TC;
|
||
|
TV = FMA(KP540640817, TG, KP909631995 * TK) + FMA(KP989821441, TH, KP755749574 * TJ) + (KP281732556 * TI);
|
||
|
TW = FMA(KP841253532, TR, TM) + FNMS(KP959492973, TP, KP415415013 * TN) + FNMA(KP654860733, TO, KP142314838 * TQ);
|
||
|
io[WS(os, 1)] = TV + TW;
|
||
|
io[WS(os, 10)] = TW - TV;
|
||
|
TD = FMA(KP989821441, Tk, KP540640817 * Tq) + FNMS(KP909631995, Tn, KP755749574 * Tt) - (KP281732556 * Tw);
|
||
|
TC = FMA(KP415415013, Ta, T1) + FNMS(KP654860733, Tg, KP841253532 * Td) + FNMA(KP959492973, T7, KP142314838 * T4);
|
||
|
ro[WS(os, 8)] = TC - TD;
|
||
|
ro[WS(os, 3)] = TC + TD;
|
||
|
}
|
||
|
TT = FMA(KP989821441, TG, KP540640817 * TJ) + FNMS(KP909631995, TH, KP755749574 * TI) - (KP281732556 * TK);
|
||
|
TU = FMA(KP415415013, TQ, TM) + FNMS(KP654860733, TP, KP841253532 * TO) + FNMA(KP959492973, TN, KP142314838 * TR);
|
||
|
io[WS(os, 3)] = TT + TU;
|
||
|
io[WS(os, 8)] = TU - TT;
|
||
|
{
|
||
|
E TL, TS, TF, TE;
|
||
|
TL = FMA(KP281732556, TG, KP755749574 * TH) + FNMS(KP909631995, TJ, KP989821441 * TI) - (KP540640817 * TK);
|
||
|
TS = FMA(KP841253532, TN, TM) + FNMS(KP142314838, TP, KP415415013 * TO) + FNMA(KP654860733, TQ, KP959492973 * TR);
|
||
|
io[WS(os, 5)] = TL + TS;
|
||
|
io[WS(os, 6)] = TS - TL;
|
||
|
TF = FMA(KP281732556, Tk, KP755749574 * Tn) + FNMS(KP909631995, Tq, KP989821441 * Tt) - (KP540640817 * Tw);
|
||
|
TE = FMA(KP841253532, T7, T1) + FNMS(KP142314838, Tg, KP415415013 * Td) + FNMA(KP654860733, Ta, KP959492973 * T4);
|
||
|
ro[WS(os, 6)] = TE - TF;
|
||
|
ro[WS(os, 5)] = TE + TF;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const kdft_desc desc = { 11, "n1_11", { 60, 20, 80, 0 }, &GENUS, 0, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_n1_11) (planner *p) { X(kdft_register) (p, n1_11, &desc);
|
||
|
}
|
||
|
|
||
|
#endif
|