furnace/extern/fftw/mpi/mpi-bench.c

845 lines
23 KiB
C
Raw Normal View History

/**************************************************************************/
/* NOTE to users: this is the FFTW-MPI self-test and benchmark program.
It is probably NOT a good place to learn FFTW usage, since it has a
lot of added complexity in order to exercise and test the full API,
etcetera. We suggest reading the manual. */
/**************************************************************************/
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "fftw3-mpi.h"
#include "tests/fftw-bench.h"
#if defined(BENCHFFT_SINGLE)
# define BENCH_MPI_TYPE MPI_FLOAT
#elif defined(BENCHFFT_LDOUBLE)
# define BENCH_MPI_TYPE MPI_LONG_DOUBLE
#elif defined(BENCHFFT_QUAD)
# error MPI quad-precision type is unknown
#else
# define BENCH_MPI_TYPE MPI_DOUBLE
#endif
#if SIZEOF_PTRDIFF_T == SIZEOF_INT
# define FFTW_MPI_PTRDIFF_T MPI_INT
#elif SIZEOF_PTRDIFF_T == SIZEOF_LONG
# define FFTW_MPI_PTRDIFF_T MPI_LONG
#elif SIZEOF_PTRDIFF_T == SIZEOF_LONG_LONG
# define FFTW_MPI_PTRDIFF_T MPI_LONG_LONG
#else
# error MPI type for ptrdiff_t is unknown
# define FFTW_MPI_PTRDIFF_T MPI_LONG
#endif
static const char *mkversion(void) { return FFTW(version); }
static const char *mkcc(void) { return FFTW(cc); }
static const char *mkcodelet_optim(void) { return FFTW(codelet_optim); }
static const char *mknproc(void) {
static char buf[32];
int ncpus;
MPI_Comm_size(MPI_COMM_WORLD, &ncpus);
#ifdef HAVE_SNPRINTF
snprintf(buf, 32, "%d", ncpus);
#else
sprintf(buf, "%d", ncpus);
#endif
return buf;
}
BEGIN_BENCH_DOC
BENCH_DOC("name", "fftw3_mpi")
BENCH_DOCF("version", mkversion)
BENCH_DOCF("cc", mkcc)
BENCH_DOCF("codelet-optim", mkcodelet_optim)
BENCH_DOCF("nproc", mknproc)
END_BENCH_DOC
static int n_pes = 1, my_pe = 0;
/* global variables describing the shape of the data and its distribution */
static int rnk;
static ptrdiff_t vn, iNtot, oNtot;
static ptrdiff_t *local_ni=0, *local_starti=0;
static ptrdiff_t *local_no=0, *local_starto=0;
static ptrdiff_t *all_local_ni=0, *all_local_starti=0; /* n_pes x rnk arrays */
static ptrdiff_t *all_local_no=0, *all_local_starto=0; /* n_pes x rnk arrays */
static ptrdiff_t *istrides = 0, *ostrides = 0;
static ptrdiff_t *total_ni=0, *total_no=0;
static int *isend_cnt = 0, *isend_off = 0; /* for MPI_Scatterv */
static int *orecv_cnt = 0, *orecv_off = 0; /* for MPI_Gatherv */
static bench_real *local_in = 0, *local_out = 0;
static bench_real *all_local_in = 0, *all_local_out = 0;
static int all_local_in_alloc = 0, all_local_out_alloc = 0;
static FFTW(plan) plan_scramble_in = 0, plan_unscramble_out = 0;
static void alloc_rnk(int rnk_) {
rnk = rnk_;
bench_free(local_ni);
if (rnk == 0)
local_ni = 0;
else
local_ni = (ptrdiff_t *) bench_malloc(sizeof(ptrdiff_t) * rnk
* (8 + n_pes * 4));
local_starti = local_ni + rnk;
local_no = local_ni + 2 * rnk;
local_starto = local_ni + 3 * rnk;
istrides = local_ni + 4 * rnk;
ostrides = local_ni + 5 * rnk;
total_ni = local_ni + 6 * rnk;
total_no = local_ni + 7 * rnk;
all_local_ni = local_ni + 8 * rnk;
all_local_starti = local_ni + (8 + n_pes) * rnk;
all_local_no = local_ni + (8 + 2 * n_pes) * rnk;
all_local_starto = local_ni + (8 + 3 * n_pes) * rnk;
}
static void setup_gather_scatter(void)
{
int i, j;
ptrdiff_t off;
MPI_Gather(local_ni, rnk, FFTW_MPI_PTRDIFF_T,
all_local_ni, rnk, FFTW_MPI_PTRDIFF_T,
0, MPI_COMM_WORLD);
MPI_Bcast(all_local_ni, rnk*n_pes, FFTW_MPI_PTRDIFF_T, 0, MPI_COMM_WORLD);
MPI_Gather(local_starti, rnk, FFTW_MPI_PTRDIFF_T,
all_local_starti, rnk, FFTW_MPI_PTRDIFF_T,
0, MPI_COMM_WORLD);
MPI_Bcast(all_local_starti, rnk*n_pes, FFTW_MPI_PTRDIFF_T, 0, MPI_COMM_WORLD);
MPI_Gather(local_no, rnk, FFTW_MPI_PTRDIFF_T,
all_local_no, rnk, FFTW_MPI_PTRDIFF_T,
0, MPI_COMM_WORLD);
MPI_Bcast(all_local_no, rnk*n_pes, FFTW_MPI_PTRDIFF_T, 0, MPI_COMM_WORLD);
MPI_Gather(local_starto, rnk, FFTW_MPI_PTRDIFF_T,
all_local_starto, rnk, FFTW_MPI_PTRDIFF_T,
0, MPI_COMM_WORLD);
MPI_Bcast(all_local_starto, rnk*n_pes, FFTW_MPI_PTRDIFF_T, 0, MPI_COMM_WORLD);
off = 0;
for (i = 0; i < n_pes; ++i) {
ptrdiff_t N = vn;
for (j = 0; j < rnk; ++j)
N *= all_local_ni[i * rnk + j];
isend_cnt[i] = N;
isend_off[i] = off;
off += N;
}
iNtot = off;
all_local_in_alloc = 1;
istrides[rnk - 1] = vn;
for (j = rnk - 2; j >= 0; --j)
istrides[j] = total_ni[j + 1] * istrides[j + 1];
off = 0;
for (i = 0; i < n_pes; ++i) {
ptrdiff_t N = vn;
for (j = 0; j < rnk; ++j)
N *= all_local_no[i * rnk + j];
orecv_cnt[i] = N;
orecv_off[i] = off;
off += N;
}
oNtot = off;
all_local_out_alloc = 1;
ostrides[rnk - 1] = vn;
for (j = rnk - 2; j >= 0; --j)
ostrides[j] = total_no[j + 1] * ostrides[j + 1];
}
static void copy_block_out(const bench_real *in,
int rnk, ptrdiff_t *n, ptrdiff_t *start,
ptrdiff_t is, ptrdiff_t *os, ptrdiff_t vn,
bench_real *out)
{
ptrdiff_t i;
if (rnk == 0) {
for (i = 0; i < vn; ++i)
out[i] = in[i];
}
else if (rnk == 1) { /* this case is just an optimization */
ptrdiff_t j;
out += start[0] * os[0];
for (j = 0; j < n[0]; ++j) {
for (i = 0; i < vn; ++i)
out[i] = in[i];
in += is;
out += os[0];
}
}
else {
/* we should do n[0] for locality, but this way is simpler to code */
for (i = 0; i < n[rnk - 1]; ++i)
copy_block_out(in + i * is,
rnk - 1, n, start, is * n[rnk - 1], os, vn,
out + (start[rnk - 1] + i) * os[rnk - 1]);
}
}
static void copy_block_in(bench_real *in,
int rnk, ptrdiff_t *n, ptrdiff_t *start,
ptrdiff_t is, ptrdiff_t *os, ptrdiff_t vn,
const bench_real *out)
{
ptrdiff_t i;
if (rnk == 0) {
for (i = 0; i < vn; ++i)
in[i] = out[i];
}
else if (rnk == 1) { /* this case is just an optimization */
ptrdiff_t j;
out += start[0] * os[0];
for (j = 0; j < n[0]; ++j) {
for (i = 0; i < vn; ++i)
in[i] = out[i];
in += is;
out += os[0];
}
}
else {
/* we should do n[0] for locality, but this way is simpler to code */
for (i = 0; i < n[rnk - 1]; ++i)
copy_block_in(in + i * is,
rnk - 1, n, start, is * n[rnk - 1], os, vn,
out + (start[rnk - 1] + i) * os[rnk - 1]);
}
}
static void do_scatter_in(bench_real *in)
{
bench_real *ali;
int i;
if (all_local_in_alloc) {
bench_free(all_local_in);
all_local_in = (bench_real*) bench_malloc(iNtot*sizeof(bench_real));
all_local_in_alloc = 0;
}
ali = all_local_in;
for (i = 0; i < n_pes; ++i) {
copy_block_in(ali,
rnk, all_local_ni + i * rnk,
all_local_starti + i * rnk,
vn, istrides, vn,
in);
ali += isend_cnt[i];
}
MPI_Scatterv(all_local_in, isend_cnt, isend_off, BENCH_MPI_TYPE,
local_in, isend_cnt[my_pe], BENCH_MPI_TYPE,
0, MPI_COMM_WORLD);
}
static void do_gather_out(bench_real *out)
{
bench_real *alo;
int i;
if (all_local_out_alloc) {
bench_free(all_local_out);
all_local_out = (bench_real*) bench_malloc(oNtot*sizeof(bench_real));
all_local_out_alloc = 0;
}
MPI_Gatherv(local_out, orecv_cnt[my_pe], BENCH_MPI_TYPE,
all_local_out, orecv_cnt, orecv_off, BENCH_MPI_TYPE,
0, MPI_COMM_WORLD);
MPI_Bcast(all_local_out, oNtot, BENCH_MPI_TYPE, 0, MPI_COMM_WORLD);
alo = all_local_out;
for (i = 0; i < n_pes; ++i) {
copy_block_out(alo,
rnk, all_local_no + i * rnk,
all_local_starto + i * rnk,
vn, ostrides, vn,
out);
alo += orecv_cnt[i];
}
}
static void alloc_local(ptrdiff_t nreal, int inplace)
{
bench_free(local_in);
if (local_out != local_in) bench_free(local_out);
local_in = local_out = 0;
if (nreal > 0) {
ptrdiff_t i;
local_in = (bench_real*) bench_malloc(nreal * sizeof(bench_real));
if (inplace)
local_out = local_in;
else
local_out = (bench_real*) bench_malloc(nreal * sizeof(bench_real));
for (i = 0; i < nreal; ++i) local_in[i] = local_out[i] = 0.0;
}
}
void after_problem_rcopy_from(bench_problem *p, bench_real *ri)
{
UNUSED(p);
do_scatter_in(ri);
if (plan_scramble_in) FFTW(execute)(plan_scramble_in);
}
void after_problem_rcopy_to(bench_problem *p, bench_real *ro)
{
UNUSED(p);
if (plan_unscramble_out) FFTW(execute)(plan_unscramble_out);
do_gather_out(ro);
}
void after_problem_ccopy_from(bench_problem *p, bench_real *ri, bench_real *ii)
{
UNUSED(ii);
after_problem_rcopy_from(p, ri);
}
void after_problem_ccopy_to(bench_problem *p, bench_real *ro, bench_real *io)
{
UNUSED(io);
after_problem_rcopy_to(p, ro);
}
void after_problem_hccopy_from(bench_problem *p, bench_real *ri, bench_real *ii)
{
UNUSED(ii);
after_problem_rcopy_from(p, ri);
}
void after_problem_hccopy_to(bench_problem *p, bench_real *ro, bench_real *io)
{
UNUSED(io);
after_problem_rcopy_to(p, ro);
}
static FFTW(plan) mkplan_transpose_local(ptrdiff_t nx, ptrdiff_t ny,
ptrdiff_t vn,
bench_real *in, bench_real *out)
{
FFTW(iodim64) hdims[3];
FFTW(r2r_kind) k[3];
FFTW(plan) pln;
hdims[0].n = nx;
hdims[0].is = ny * vn;
hdims[0].os = vn;
hdims[1].n = ny;
hdims[1].is = vn;
hdims[1].os = nx * vn;
hdims[2].n = vn;
hdims[2].is = 1;
hdims[2].os = 1;
k[0] = k[1] = k[2] = FFTW_R2HC;
pln = FFTW(plan_guru64_r2r)(0, 0, 3, hdims, in, out, k, FFTW_ESTIMATE);
BENCH_ASSERT(pln != 0);
return pln;
}
static int tensor_rowmajor_transposedp(bench_tensor *t)
{
bench_iodim *d;
int i;
BENCH_ASSERT(BENCH_FINITE_RNK(t->rnk));
if (t->rnk < 2)
return 0;
d = t->dims;
if (d[0].is != d[1].is * d[1].n
|| d[0].os != d[1].is
|| d[1].os != d[0].os * d[0].n)
return 0;
if (t->rnk > 2 && d[1].is != d[2].is * d[2].n)
return 0;
for (i = 2; i + 1 < t->rnk; ++i) {
d = t->dims + i;
if (d[0].is != d[1].is * d[1].n
|| d[0].os != d[1].os * d[1].n)
return 0;
}
if (t->rnk > 2 && t->dims[t->rnk-1].is != t->dims[t->rnk-1].os)
return 0;
return 1;
}
static int tensor_contiguousp(bench_tensor *t, int s)
{
return (t->dims[t->rnk-1].is == s
&& ((tensor_rowmajorp(t) &&
t->dims[t->rnk-1].is == t->dims[t->rnk-1].os)
|| tensor_rowmajor_transposedp(t)));
}
static FFTW(plan) mkplan_complex(bench_problem *p, unsigned flags)
{
FFTW(plan) pln = 0;
int i;
ptrdiff_t ntot;
vn = p->vecsz->rnk == 1 ? p->vecsz->dims[0].n : 1;
if (p->sz->rnk < 1
|| p->split
|| !tensor_contiguousp(p->sz, vn)
|| tensor_rowmajor_transposedp(p->sz)
|| p->vecsz->rnk > 1
|| (p->vecsz->rnk == 1 && (p->vecsz->dims[0].is != 1
|| p->vecsz->dims[0].os != 1)))
return 0;
alloc_rnk(p->sz->rnk);
for (i = 0; i < rnk; ++i) {
total_ni[i] = total_no[i] = p->sz->dims[i].n;
local_ni[i] = local_no[i] = total_ni[i];
local_starti[i] = local_starto[i] = 0;
}
if (rnk > 1) {
ptrdiff_t n, start, nT, startT;
ntot = FFTW(mpi_local_size_many_transposed)
(p->sz->rnk, total_ni, vn,
FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK,
MPI_COMM_WORLD,
&n, &start, &nT, &startT);
if (flags & FFTW_MPI_TRANSPOSED_IN) {
local_ni[1] = nT;
local_starti[1] = startT;
}
else {
local_ni[0] = n;
local_starti[0] = start;
}
if (flags & FFTW_MPI_TRANSPOSED_OUT) {
local_no[1] = nT;
local_starto[1] = startT;
}
else {
local_no[0] = n;
local_starto[0] = start;
}
}
else if (rnk == 1) {
ntot = FFTW(mpi_local_size_many_1d)
(total_ni[0], vn, MPI_COMM_WORLD, p->sign, flags,
local_ni, local_starti, local_no, local_starto);
}
alloc_local(ntot * 2, p->in == p->out);
pln = FFTW(mpi_plan_many_dft)(p->sz->rnk, total_ni, vn,
FFTW_MPI_DEFAULT_BLOCK,
FFTW_MPI_DEFAULT_BLOCK,
(FFTW(complex) *) local_in,
(FFTW(complex) *) local_out,
MPI_COMM_WORLD, p->sign, flags);
vn *= 2;
if (rnk > 1) {
ptrdiff_t nrest = 1;
for (i = 2; i < rnk; ++i) nrest *= p->sz->dims[i].n;
if (flags & FFTW_MPI_TRANSPOSED_IN)
plan_scramble_in = mkplan_transpose_local(
p->sz->dims[0].n, local_ni[1], vn * nrest,
local_in, local_in);
if (flags & FFTW_MPI_TRANSPOSED_OUT)
plan_unscramble_out = mkplan_transpose_local(
local_no[1], p->sz->dims[0].n, vn * nrest,
local_out, local_out);
}
return pln;
}
static int tensor_real_contiguousp(bench_tensor *t, int sign, int s)
{
return (t->dims[t->rnk-1].is == s
&& ((tensor_real_rowmajorp(t, sign, 1) &&
t->dims[t->rnk-1].is == t->dims[t->rnk-1].os)));
}
static FFTW(plan) mkplan_real(bench_problem *p, unsigned flags)
{
FFTW(plan) pln = 0;
int i;
ptrdiff_t ntot;
vn = p->vecsz->rnk == 1 ? p->vecsz->dims[0].n : 1;
if (p->sz->rnk < 2
|| p->split
|| !tensor_real_contiguousp(p->sz, p->sign, vn)
|| tensor_rowmajor_transposedp(p->sz)
|| p->vecsz->rnk > 1
|| (p->vecsz->rnk == 1 && (p->vecsz->dims[0].is != 1
|| p->vecsz->dims[0].os != 1)))
return 0;
alloc_rnk(p->sz->rnk);
for (i = 0; i < rnk; ++i) {
total_ni[i] = total_no[i] = p->sz->dims[i].n;
local_ni[i] = local_no[i] = total_ni[i];
local_starti[i] = local_starto[i] = 0;
}
local_ni[rnk-1] = local_no[rnk-1] = total_ni[rnk-1] = total_no[rnk-1]
= p->sz->dims[rnk-1].n / 2 + 1;
{
ptrdiff_t n, start, nT, startT;
ntot = FFTW(mpi_local_size_many_transposed)
(p->sz->rnk, total_ni, vn,
FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK,
MPI_COMM_WORLD,
&n, &start, &nT, &startT);
if (flags & FFTW_MPI_TRANSPOSED_IN) {
local_ni[1] = nT;
local_starti[1] = startT;
}
else {
local_ni[0] = n;
local_starti[0] = start;
}
if (flags & FFTW_MPI_TRANSPOSED_OUT) {
local_no[1] = nT;
local_starto[1] = startT;
}
else {
local_no[0] = n;
local_starto[0] = start;
}
}
alloc_local(ntot * 2, p->in == p->out);
total_ni[rnk - 1] = p->sz->dims[rnk - 1].n;
if (p->sign < 0)
pln = FFTW(mpi_plan_many_dft_r2c)(p->sz->rnk, total_ni, vn,
FFTW_MPI_DEFAULT_BLOCK,
FFTW_MPI_DEFAULT_BLOCK,
local_in,
(FFTW(complex) *) local_out,
MPI_COMM_WORLD, flags);
else
pln = FFTW(mpi_plan_many_dft_c2r)(p->sz->rnk, total_ni, vn,
FFTW_MPI_DEFAULT_BLOCK,
FFTW_MPI_DEFAULT_BLOCK,
(FFTW(complex) *) local_in,
local_out,
MPI_COMM_WORLD, flags);
total_ni[rnk - 1] = p->sz->dims[rnk - 1].n / 2 + 1;
vn *= 2;
{
ptrdiff_t nrest = 1;
for (i = 2; i < rnk; ++i) nrest *= total_ni[i];
if (flags & FFTW_MPI_TRANSPOSED_IN)
plan_scramble_in = mkplan_transpose_local(
total_ni[0], local_ni[1], vn * nrest,
local_in, local_in);
if (flags & FFTW_MPI_TRANSPOSED_OUT)
plan_unscramble_out = mkplan_transpose_local(
local_no[1], total_ni[0], vn * nrest,
local_out, local_out);
}
return pln;
}
static FFTW(plan) mkplan_transpose(bench_problem *p, unsigned flags)
{
ptrdiff_t ntot, nx, ny;
int ix=0, iy=1, i;
const bench_iodim *d = p->vecsz->dims;
FFTW(plan) pln;
if (p->vecsz->rnk == 3) {
for (i = 0; i < 3; ++i)
if (d[i].is == 1 && d[i].os == 1) {
vn = d[i].n;
ix = (i + 1) % 3;
iy = (i + 2) % 3;
break;
}
if (i == 3) return 0;
}
else {
vn = 1;
ix = 0;
iy = 1;
}
if (d[ix].is == d[iy].n * vn && d[ix].os == vn
&& d[iy].os == d[ix].n * vn && d[iy].is == vn) {
nx = d[ix].n;
ny = d[iy].n;
}
else if (d[iy].is == d[ix].n * vn && d[iy].os == vn
&& d[ix].os == d[iy].n * vn && d[ix].is == vn) {
nx = d[iy].n;
ny = d[ix].n;
}
else
return 0;
alloc_rnk(2);
ntot = vn * FFTW(mpi_local_size_2d_transposed)(nx, ny, MPI_COMM_WORLD,
&local_ni[0],
&local_starti[0],
&local_no[0],
&local_starto[0]);
local_ni[1] = ny;
local_starti[1] = 0;
local_no[1] = nx;
local_starto[1] = 0;
total_ni[0] = nx; total_ni[1] = ny;
total_no[1] = nx; total_no[0] = ny;
alloc_local(ntot, p->in == p->out);
pln = FFTW(mpi_plan_many_transpose)(nx, ny, vn,
FFTW_MPI_DEFAULT_BLOCK,
FFTW_MPI_DEFAULT_BLOCK,
local_in, local_out,
MPI_COMM_WORLD, flags);
if (flags & FFTW_MPI_TRANSPOSED_IN)
plan_scramble_in = mkplan_transpose_local(local_ni[0], ny, vn,
local_in, local_in);
if (flags & FFTW_MPI_TRANSPOSED_OUT)
plan_unscramble_out = mkplan_transpose_local
(nx, local_no[0], vn, local_out, local_out);
#if 0
if (pln && vn == 1) {
int i, j;
bench_real *ri = (bench_real *) p->in;
bench_real *ro = (bench_real *) p->out;
if (!ri || !ro) return pln;
setup_gather_scatter();
for (i = 0; i < nx * ny; ++i)
ri[i] = i;
after_problem_rcopy_from(p, ri);
FFTW(execute)(pln);
after_problem_rcopy_to(p, ro);
if (my_pe == 0) {
for (i = 0; i < nx; ++i) {
for (j = 0; j < ny; ++j)
printf(" %3g", ro[j * nx + i]);
printf("\n");
}
}
}
#endif
return pln;
}
static FFTW(plan) mkplan_r2r(bench_problem *p, unsigned flags)
{
FFTW(plan) pln = 0;
int i;
ptrdiff_t ntot;
FFTW(r2r_kind) *k;
if ((p->sz->rnk == 0 || (p->sz->rnk == 1 && p->sz->dims[0].n == 1))
&& p->vecsz->rnk >= 2 && p->vecsz->rnk <= 3)
return mkplan_transpose(p, flags);
vn = p->vecsz->rnk == 1 ? p->vecsz->dims[0].n : 1;
if (p->sz->rnk < 1
|| p->split
|| !tensor_contiguousp(p->sz, vn)
|| tensor_rowmajor_transposedp(p->sz)
|| p->vecsz->rnk > 1
|| (p->vecsz->rnk == 1 && (p->vecsz->dims[0].is != 1
|| p->vecsz->dims[0].os != 1)))
return 0;
alloc_rnk(p->sz->rnk);
for (i = 0; i < rnk; ++i) {
total_ni[i] = total_no[i] = p->sz->dims[i].n;
local_ni[i] = local_no[i] = total_ni[i];
local_starti[i] = local_starto[i] = 0;
}
if (rnk > 1) {
ptrdiff_t n, start, nT, startT;
ntot = FFTW(mpi_local_size_many_transposed)
(p->sz->rnk, total_ni, vn,
FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK,
MPI_COMM_WORLD,
&n, &start, &nT, &startT);
if (flags & FFTW_MPI_TRANSPOSED_IN) {
local_ni[1] = nT;
local_starti[1] = startT;
}
else {
local_ni[0] = n;
local_starti[0] = start;
}
if (flags & FFTW_MPI_TRANSPOSED_OUT) {
local_no[1] = nT;
local_starto[1] = startT;
}
else {
local_no[0] = n;
local_starto[0] = start;
}
}
else if (rnk == 1) {
ntot = FFTW(mpi_local_size_many_1d)
(total_ni[0], vn, MPI_COMM_WORLD, p->sign, flags,
local_ni, local_starti, local_no, local_starto);
}
alloc_local(ntot, p->in == p->out);
k = (FFTW(r2r_kind) *) bench_malloc(sizeof(FFTW(r2r_kind)) * p->sz->rnk);
for (i = 0; i < p->sz->rnk; ++i)
switch (p->k[i]) {
case R2R_R2HC: k[i] = FFTW_R2HC; break;
case R2R_HC2R: k[i] = FFTW_HC2R; break;
case R2R_DHT: k[i] = FFTW_DHT; break;
case R2R_REDFT00: k[i] = FFTW_REDFT00; break;
case R2R_REDFT01: k[i] = FFTW_REDFT01; break;
case R2R_REDFT10: k[i] = FFTW_REDFT10; break;
case R2R_REDFT11: k[i] = FFTW_REDFT11; break;
case R2R_RODFT00: k[i] = FFTW_RODFT00; break;
case R2R_RODFT01: k[i] = FFTW_RODFT01; break;
case R2R_RODFT10: k[i] = FFTW_RODFT10; break;
case R2R_RODFT11: k[i] = FFTW_RODFT11; break;
default: BENCH_ASSERT(0);
}
pln = FFTW(mpi_plan_many_r2r)(p->sz->rnk, total_ni, vn,
FFTW_MPI_DEFAULT_BLOCK,
FFTW_MPI_DEFAULT_BLOCK,
local_in, local_out,
MPI_COMM_WORLD, k, flags);
bench_free(k);
if (rnk > 1) {
ptrdiff_t nrest = 1;
for (i = 2; i < rnk; ++i) nrest *= p->sz->dims[i].n;
if (flags & FFTW_MPI_TRANSPOSED_IN)
plan_scramble_in = mkplan_transpose_local(
p->sz->dims[0].n, local_ni[1], vn * nrest,
local_in, local_in);
if (flags & FFTW_MPI_TRANSPOSED_OUT)
plan_unscramble_out = mkplan_transpose_local(
local_no[1], p->sz->dims[0].n, vn * nrest,
local_out, local_out);
}
return pln;
}
FFTW(plan) mkplan(bench_problem *p, unsigned flags)
{
FFTW(plan) pln = 0;
FFTW(destroy_plan)(plan_scramble_in); plan_scramble_in = 0;
FFTW(destroy_plan)(plan_unscramble_out); plan_unscramble_out = 0;
if (p->scrambled_in) {
if (p->sz->rnk == 1 && p->sz->dims[0].n != 1)
flags |= FFTW_MPI_SCRAMBLED_IN;
else
flags |= FFTW_MPI_TRANSPOSED_IN;
}
if (p->scrambled_out) {
if (p->sz->rnk == 1 && p->sz->dims[0].n != 1)
flags |= FFTW_MPI_SCRAMBLED_OUT;
else
flags |= FFTW_MPI_TRANSPOSED_OUT;
}
switch (p->kind) {
case PROBLEM_COMPLEX:
pln =mkplan_complex(p, flags);
break;
case PROBLEM_REAL:
pln = mkplan_real(p, flags);
break;
case PROBLEM_R2R:
pln = mkplan_r2r(p, flags);
break;
default: BENCH_ASSERT(0);
}
if (pln) setup_gather_scatter();
return pln;
}
void main_init(int *argc, char ***argv)
{
#ifdef HAVE_SMP
# if MPI_VERSION >= 2 /* for MPI_Init_thread */
int provided;
MPI_Init_thread(argc, argv, MPI_THREAD_FUNNELED, &provided);
threads_ok = provided >= MPI_THREAD_FUNNELED;
# else
MPI_Init(argc, argv);
threads_ok = 0;
# endif
#else
MPI_Init(argc, argv);
#endif
MPI_Comm_rank(MPI_COMM_WORLD, &my_pe);
MPI_Comm_size(MPI_COMM_WORLD, &n_pes);
if (my_pe != 0) verbose = -999;
no_speed_allocation = 1; /* so we can benchmark transforms > memory */
always_pad_real = 1; /* out-of-place real transforms are padded */
isend_cnt = (int *) bench_malloc(sizeof(int) * n_pes);
isend_off = (int *) bench_malloc(sizeof(int) * n_pes);
orecv_cnt = (int *) bench_malloc(sizeof(int) * n_pes);
orecv_off = (int *) bench_malloc(sizeof(int) * n_pes);
/* init_threads must be called before any other FFTW function,
including mpi_init, because it has to register the threads hooks
before the planner is initalized */
#ifdef HAVE_SMP
if (threads_ok) { BENCH_ASSERT(FFTW(init_threads)()); }
#endif
FFTW(mpi_init)();
}
void initial_cleanup(void)
{
alloc_rnk(0);
alloc_local(0, 0);
bench_free(all_local_in); all_local_in = 0;
bench_free(all_local_out); all_local_out = 0;
bench_free(isend_off); isend_off = 0;
bench_free(isend_cnt); isend_cnt = 0;
bench_free(orecv_off); orecv_off = 0;
bench_free(orecv_cnt); orecv_cnt = 0;
FFTW(destroy_plan)(plan_scramble_in); plan_scramble_in = 0;
FFTW(destroy_plan)(plan_unscramble_out); plan_unscramble_out = 0;
}
void final_cleanup(void)
{
MPI_Finalize();
}
void bench_exit(int status)
{
MPI_Abort(MPI_COMM_WORLD, status);
}
double bench_cost_postprocess(double cost)
{
double cost_max;
MPI_Allreduce(&cost, &cost_max, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);
return cost_max;
}
int import_wisdom(FILE *f)
{
int success = 1, sall;
if (my_pe == 0) success = FFTW(import_wisdom_from_file)(f);
FFTW(mpi_broadcast_wisdom)(MPI_COMM_WORLD);
MPI_Allreduce(&success, &sall, 1, MPI_INT, MPI_LAND, MPI_COMM_WORLD);
return sall;
}
void export_wisdom(FILE *f)
{
FFTW(mpi_gather_wisdom)(MPI_COMM_WORLD);
if (my_pe == 0) FFTW(export_wisdom_to_file)(f);
}