furnace/extern/fftw/libbench2/verify-dft.c

178 lines
5.2 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "verify.h"
/* copy A into B, using output stride of A and input stride of B */
typedef struct {
dotens2_closure k;
R *ra; R *ia;
R *rb; R *ib;
int scalea, scaleb;
} cpy_closure;
static void cpy0(dotens2_closure *k_,
int indxa, int ondxa, int indxb, int ondxb)
{
cpy_closure *k = (cpy_closure *)k_;
k->rb[indxb * k->scaleb] = k->ra[ondxa * k->scalea];
k->ib[indxb * k->scaleb] = k->ia[ondxa * k->scalea];
UNUSED(indxa); UNUSED(ondxb);
}
static void cpy(R *ra, R *ia, const bench_tensor *sza, int scalea,
R *rb, R *ib, const bench_tensor *szb, int scaleb)
{
cpy_closure k;
k.k.apply = cpy0;
k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
k.scalea = scalea; k.scaleb = scaleb;
bench_dotens2(sza, szb, &k.k);
}
typedef struct {
dofft_closure k;
bench_problem *p;
} dofft_dft_closure;
static void dft_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
{
dofft_dft_closure *k = (dofft_dft_closure *)k_;
bench_problem *p = k->p;
bench_tensor *totalsz, *pckdsz;
bench_tensor *totalsz_swap, *pckdsz_swap;
bench_real *ri, *ii, *ro, *io;
int totalscale;
totalsz = tensor_append(p->vecsz, p->sz);
pckdsz = verify_pack(totalsz, 2);
ri = (bench_real *) p->in;
ro = (bench_real *) p->out;
totalsz_swap = tensor_copy_swapio(totalsz);
pckdsz_swap = tensor_copy_swapio(pckdsz);
/* confusion: the stride is the distance between complex elements
when using interleaved format, but it is the distance between
real elements when using split format */
if (p->split) {
ii = p->ini ? (bench_real *) p->ini : ri + p->iphyssz;
io = p->outi ? (bench_real *) p->outi : ro + p->ophyssz;
totalscale = 1;
} else {
ii = p->ini ? (bench_real *) p->ini : ri + 1;
io = p->outi ? (bench_real *) p->outi : ro + 1;
totalscale = 2;
}
cpy(&c_re(in[0]), &c_im(in[0]), pckdsz, 1,
ri, ii, totalsz, totalscale);
after_problem_ccopy_from(p, ri, ii);
doit(1, p);
after_problem_ccopy_to(p, ro, io);
if (k->k.recopy_input)
cpy(ri, ii, totalsz_swap, totalscale,
&c_re(in[0]), &c_im(in[0]), pckdsz_swap, 1);
cpy(ro, io, totalsz, totalscale,
&c_re(out[0]), &c_im(out[0]), pckdsz, 1);
tensor_destroy(totalsz);
tensor_destroy(pckdsz);
tensor_destroy(totalsz_swap);
tensor_destroy(pckdsz_swap);
}
void verify_dft(bench_problem *p, int rounds, double tol, errors *e)
{
C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
int n, vecn, N;
dofft_dft_closure k;
BENCH_ASSERT(p->kind == PROBLEM_COMPLEX);
k.k.apply = dft_apply;
k.k.recopy_input = 0;
k.p = p;
if (rounds == 0)
rounds = 20; /* default value */
n = tensor_sz(p->sz);
vecn = tensor_sz(p->vecsz);
N = n * vecn;
inA = (C *) bench_malloc(N * sizeof(C));
inB = (C *) bench_malloc(N * sizeof(C));
inC = (C *) bench_malloc(N * sizeof(C));
outA = (C *) bench_malloc(N * sizeof(C));
outB = (C *) bench_malloc(N * sizeof(C));
outC = (C *) bench_malloc(N * sizeof(C));
tmp = (C *) bench_malloc(N * sizeof(C));
e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC,
tmp, rounds, tol);
e->l = linear(&k.k, 0, N, inA, inB, inC, outA, outB, outC,
tmp, rounds, tol);
e->s = 0.0;
e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign,
inA, inB, outA, outB,
tmp, rounds, tol, TIME_SHIFT));
e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign,
inA, inB, outA, outB,
tmp, rounds, tol, FREQ_SHIFT));
if (!p->in_place && !p->destroy_input)
preserves_input(&k.k, 0, N, inA, inB, outB, rounds);
bench_free(tmp);
bench_free(outC);
bench_free(outB);
bench_free(outA);
bench_free(inC);
bench_free(inB);
bench_free(inA);
}
void accuracy_dft(bench_problem *p, int rounds, int impulse_rounds,
double t[6])
{
dofft_dft_closure k;
int n;
C *a, *b;
BENCH_ASSERT(p->kind == PROBLEM_COMPLEX);
BENCH_ASSERT(p->sz->rnk == 1);
BENCH_ASSERT(p->vecsz->rnk == 0);
k.k.apply = dft_apply;
k.k.recopy_input = 0;
k.p = p;
n = tensor_sz(p->sz);
a = (C *) bench_malloc(n * sizeof(C));
b = (C *) bench_malloc(n * sizeof(C));
accuracy_test(&k.k, 0, p->sign, n, a, b, rounds, impulse_rounds, t);
bench_free(b);
bench_free(a);
}