furnace/extern/fftw/dft/indirect-transpose.c

235 lines
7.2 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* solvers/plans for vectors of DFTs corresponding to the columns
of a matrix: first transpose the matrix so that the DFTs are
contiguous, then do DFTs with transposed output. In particular,
we restrict ourselves to the case of a square transpose (or a
sequence thereof). */
#include "dft/dft.h"
typedef solver S;
typedef struct {
plan_dft super;
INT vl, ivs, ovs;
plan *cldtrans, *cld, *cldrest;
} P;
/* initial transpose is out-of-place from input to output */
static void apply_op(const plan *ego_, R *ri, R *ii, R *ro, R *io)
{
const P *ego = (const P *) ego_;
INT vl = ego->vl, ivs = ego->ivs, ovs = ego->ovs, i;
for (i = 0; i < vl; ++i) {
{
plan_dft *cldtrans = (plan_dft *) ego->cldtrans;
cldtrans->apply(ego->cldtrans, ri, ii, ro, io);
}
{
plan_dft *cld = (plan_dft *) ego->cld;
cld->apply(ego->cld, ro, io, ro, io);
}
ri += ivs; ii += ivs;
ro += ovs; io += ovs;
}
{
plan_dft *cldrest = (plan_dft *) ego->cldrest;
cldrest->apply(ego->cldrest, ri, ii, ro, io);
}
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cldrest);
X(plan_destroy_internal)(ego->cld);
X(plan_destroy_internal)(ego->cldtrans);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cldtrans, wakefulness);
X(plan_awake)(ego->cld, wakefulness);
X(plan_awake)(ego->cldrest, wakefulness);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(indirect-transpose%v%(%p%)%(%p%)%(%p%))",
ego->vl, ego->cldtrans, ego->cld, ego->cldrest);
}
static int pickdim(const tensor *vs, const tensor *s, int *pdim0, int *pdim1)
{
int dim0, dim1;
*pdim0 = *pdim1 = -1;
for (dim0 = 0; dim0 < vs->rnk; ++dim0)
for (dim1 = 0; dim1 < s->rnk; ++dim1)
if (vs->dims[dim0].n * X(iabs)(vs->dims[dim0].is) <= X(iabs)(s->dims[dim1].is)
&& vs->dims[dim0].n >= s->dims[dim1].n
&& (*pdim0 == -1
|| (X(iabs)(vs->dims[dim0].is) <= X(iabs)(vs->dims[*pdim0].is)
&& X(iabs)(s->dims[dim1].is) >= X(iabs)(s->dims[*pdim1].is)))) {
*pdim0 = dim0;
*pdim1 = dim1;
}
return (*pdim0 != -1 && *pdim1 != -1);
}
static int applicable0(const solver *ego_, const problem *p_,
const planner *plnr,
int *pdim0, int *pdim1)
{
const problem_dft *p = (const problem_dft *) p_;
UNUSED(ego_); UNUSED(plnr);
return (1
&& FINITE_RNK(p->vecsz->rnk) && FINITE_RNK(p->sz->rnk)
/* FIXME: can/should we relax this constraint? */
&& X(tensor_inplace_strides2)(p->vecsz, p->sz)
&& pickdim(p->vecsz, p->sz, pdim0, pdim1)
/* output should not *already* include the transpose
(in which case we duplicate the regular indirect.c) */
&& (p->sz->dims[*pdim1].os != p->vecsz->dims[*pdim0].is)
);
}
static int applicable(const solver *ego_, const problem *p_,
const planner *plnr,
int *pdim0, int *pdim1)
{
if (!applicable0(ego_, p_, plnr, pdim0, pdim1)) return 0;
{
const problem_dft *p = (const problem_dft *) p_;
INT u = p->ri == p->ii + 1 || p->ii == p->ri + 1 ? (INT)2 : (INT)1;
/* UGLY if does not result in contiguous transforms or
transforms of contiguous vectors (since the latter at
least have efficient transpositions) */
if (NO_UGLYP(plnr)
&& p->vecsz->dims[*pdim0].is != u
&& !(p->vecsz->rnk == 2
&& p->vecsz->dims[1-*pdim0].is == u
&& p->vecsz->dims[*pdim0].is
== u * p->vecsz->dims[1-*pdim0].n))
return 0;
if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0;
}
return 1;
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const problem_dft *p = (const problem_dft *) p_;
P *pln;
plan *cld = 0, *cldtrans = 0, *cldrest = 0;
int pdim0, pdim1;
tensor *ts, *tv;
INT vl, ivs, ovs;
R *rit, *iit, *rot, *iot;
static const plan_adt padt = {
X(dft_solve), awake, print, destroy
};
if (!applicable(ego_, p_, plnr, &pdim0, &pdim1))
return (plan *) 0;
vl = p->vecsz->dims[pdim0].n / p->sz->dims[pdim1].n;
A(vl >= 1);
ivs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].is;
ovs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].os;
rit = TAINT(p->ri, vl == 1 ? 0 : ivs);
iit = TAINT(p->ii, vl == 1 ? 0 : ivs);
rot = TAINT(p->ro, vl == 1 ? 0 : ovs);
iot = TAINT(p->io, vl == 1 ? 0 : ovs);
ts = X(tensor_copy_inplace)(p->sz, INPLACE_IS);
ts->dims[pdim1].os = p->vecsz->dims[pdim0].is;
tv = X(tensor_copy_inplace)(p->vecsz, INPLACE_IS);
tv->dims[pdim0].os = p->sz->dims[pdim1].is;
tv->dims[pdim0].n = p->sz->dims[pdim1].n;
cldtrans = X(mkplan_d)(plnr,
X(mkproblem_dft_d)(X(mktensor_0d)(),
X(tensor_append)(tv, ts),
rit, iit,
rot, iot));
X(tensor_destroy2)(ts, tv);
if (!cldtrans) goto nada;
ts = X(tensor_copy)(p->sz);
ts->dims[pdim1].is = p->vecsz->dims[pdim0].is;
tv = X(tensor_copy)(p->vecsz);
tv->dims[pdim0].is = p->sz->dims[pdim1].is;
tv->dims[pdim0].n = p->sz->dims[pdim1].n;
cld = X(mkplan_d)(plnr, X(mkproblem_dft_d)(ts, tv,
rot, iot,
rot, iot));
if (!cld) goto nada;
tv = X(tensor_copy)(p->vecsz);
tv->dims[pdim0].n -= vl * p->sz->dims[pdim1].n;
cldrest = X(mkplan_d)(plnr, X(mkproblem_dft_d)(X(tensor_copy)(p->sz), tv,
p->ri + ivs * vl,
p->ii + ivs * vl,
p->ro + ovs * vl,
p->io + ovs * vl));
if (!cldrest) goto nada;
pln = MKPLAN_DFT(P, &padt, apply_op);
pln->cldtrans = cldtrans;
pln->cld = cld;
pln->cldrest = cldrest;
pln->vl = vl;
pln->ivs = ivs;
pln->ovs = ovs;
X(ops_cpy)(&cldrest->ops, &pln->super.super.ops);
X(ops_madd2)(vl, &cld->ops, &pln->super.super.ops);
X(ops_madd2)(vl, &cldtrans->ops, &pln->super.super.ops);
return &(pln->super.super);
nada:
X(plan_destroy_internal)(cldrest);
X(plan_destroy_internal)(cld);
X(plan_destroy_internal)(cldtrans);
return (plan *)0;
}
static solver *mksolver(void)
{
static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
return slv;
}
void X(dft_indirect_transpose_register)(planner *p)
{
REGISTER_SOLVER(p, mksolver());
}