furnace/extern/fftw/rdft/hc2hc-direct.c

280 lines
7.8 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "rdft/hc2hc.h"
typedef struct {
hc2hc_solver super;
const hc2hc_desc *desc;
khc2hc k;
int bufferedp;
} S;
typedef struct {
plan_hc2hc super;
khc2hc k;
plan *cld0, *cldm; /* children for 0th and middle butterflies */
INT r, m, v;
INT ms, vs, mb, me;
stride rs, brs;
twid *td;
const S *slv;
} P;
/*************************************************************
Nonbuffered code
*************************************************************/
static void apply(const plan *ego_, R *IO)
{
const P *ego = (const P *) ego_;
plan_rdft *cld0 = (plan_rdft *) ego->cld0;
plan_rdft *cldm = (plan_rdft *) ego->cldm;
INT i, m = ego->m, v = ego->v;
INT mb = ego->mb, me = ego->me;
INT ms = ego->ms, vs = ego->vs;
for (i = 0; i < v; ++i, IO += vs) {
cld0->apply((plan *) cld0, IO, IO);
ego->k(IO + ms * mb, IO + (m - mb) * ms,
ego->td->W, ego->rs, mb, me, ms);
cldm->apply((plan *) cldm, IO + (m/2) * ms, IO + (m/2) * ms);
}
}
/*************************************************************
Buffered code
*************************************************************/
/* should not be 2^k to avoid associativity conflicts */
static INT compute_batchsize(INT radix)
{
/* round up to multiple of 4 */
radix += 3;
radix &= -4;
return (radix + 2);
}
static void dobatch(const P *ego, R *IOp, R *IOm,
INT mb, INT me, R *bufp)
{
INT b = WS(ego->brs, 1);
INT rs = WS(ego->rs, 1);
INT r = ego->r;
INT ms = ego->ms;
R *bufm = bufp + b - 1;
X(cpy2d_ci)(IOp + mb * ms, bufp, r, rs, b, me - mb, ms, 1, 1);
X(cpy2d_ci)(IOm - mb * ms, bufm, r, rs, b, me - mb, -ms, -1, 1);
ego->k(bufp, bufm, ego->td->W, ego->brs, mb, me, 1);
X(cpy2d_co)(bufp, IOp + mb * ms, r, b, rs, me - mb, 1, ms, 1);
X(cpy2d_co)(bufm, IOm - mb * ms, r, b, rs, me - mb, -1, -ms, 1);
}
static void apply_buf(const plan *ego_, R *IO)
{
const P *ego = (const P *) ego_;
plan_rdft *cld0 = (plan_rdft *) ego->cld0;
plan_rdft *cldm = (plan_rdft *) ego->cldm;
INT i, j, m = ego->m, v = ego->v, r = ego->r;
INT mb = ego->mb, me = ego->me, ms = ego->ms;
INT batchsz = compute_batchsize(r);
R *buf;
size_t bufsz = r * batchsz * 2 * sizeof(R);
BUF_ALLOC(R *, buf, bufsz);
for (i = 0; i < v; ++i, IO += ego->vs) {
R *IOp = IO;
R *IOm = IO + m * ms;
cld0->apply((plan *) cld0, IO, IO);
for (j = mb; j + batchsz < me; j += batchsz)
dobatch(ego, IOp, IOm, j, j + batchsz, buf);
dobatch(ego, IOp, IOm, j, me, buf);
cldm->apply((plan *) cldm, IO + ms * (m/2), IO + ms * (m/2));
}
BUF_FREE(buf, bufsz);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cld0, wakefulness);
X(plan_awake)(ego->cldm, wakefulness);
X(twiddle_awake)(wakefulness, &ego->td, ego->slv->desc->tw,
ego->r * ego->m, ego->r, (ego->m - 1) / 2);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cld0);
X(plan_destroy_internal)(ego->cldm);
X(stride_destroy)(ego->rs);
X(stride_destroy)(ego->brs);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
const S *slv = ego->slv;
const hc2hc_desc *e = slv->desc;
INT batchsz = compute_batchsize(ego->r);
if (slv->bufferedp)
p->print(p, "(hc2hc-directbuf/%D-%D/%D%v \"%s\"%(%p%)%(%p%))",
batchsz, ego->r, X(twiddle_length)(ego->r, e->tw),
ego->v, e->nam, ego->cld0, ego->cldm);
else
p->print(p, "(hc2hc-direct-%D/%D%v \"%s\"%(%p%)%(%p%))",
ego->r, X(twiddle_length)(ego->r, e->tw), ego->v, e->nam,
ego->cld0, ego->cldm);
}
static int applicable0(const S *ego, rdft_kind kind, INT r)
{
const hc2hc_desc *e = ego->desc;
return (1
&& r == e->radix
&& kind == e->genus->kind
);
}
static int applicable(const S *ego, rdft_kind kind, INT r, INT m, INT v,
const planner *plnr)
{
if (!applicable0(ego, kind, r))
return 0;
if (NO_UGLYP(plnr) && X(ct_uglyp)((ego->bufferedp? (INT)512 : (INT)16),
v, m * r, r))
return 0;
return 1;
}
#define CLDMP(m, mstart, mcount) (2 * ((mstart) + (mcount)) == (m) + 2)
#define CLD0P(mstart) ((mstart) == 0)
static plan *mkcldw(const hc2hc_solver *ego_,
rdft_kind kind, INT r, INT m, INT ms, INT v, INT vs,
INT mstart, INT mcount,
R *IO, planner *plnr)
{
const S *ego = (const S *) ego_;
P *pln;
const hc2hc_desc *e = ego->desc;
plan *cld0 = 0, *cldm = 0;
INT imid = (m / 2) * ms;
INT rs = m * ms;
static const plan_adt padt = {
0, awake, print, destroy
};
if (!applicable(ego, kind, r, m, v, plnr))
return (plan *)0;
cld0 = X(mkplan_d)(
plnr,
X(mkproblem_rdft_1_d)((CLD0P(mstart) ?
X(mktensor_1d)(r, rs, rs) : X(mktensor_0d)()),
X(mktensor_0d)(),
TAINT(IO, vs), TAINT(IO, vs),
kind));
if (!cld0) goto nada;
cldm = X(mkplan_d)(
plnr,
X(mkproblem_rdft_1_d)((CLDMP(m, mstart, mcount) ?
X(mktensor_1d)(r, rs, rs) : X(mktensor_0d)()),
X(mktensor_0d)(),
TAINT(IO + imid, vs), TAINT(IO + imid, vs),
kind == R2HC ? R2HCII : HC2RIII));
if (!cldm) goto nada;
pln = MKPLAN_HC2HC(P, &padt, ego->bufferedp ? apply_buf : apply);
pln->k = ego->k;
pln->td = 0;
pln->r = r; pln->rs = X(mkstride)(r, rs);
pln->m = m; pln->ms = ms;
pln->v = v; pln->vs = vs;
pln->slv = ego;
pln->brs = X(mkstride)(r, 2 * compute_batchsize(r));
pln->cld0 = cld0;
pln->cldm = cldm;
pln->mb = mstart + CLD0P(mstart);
pln->me = mstart + mcount - CLDMP(m, mstart, mcount);
X(ops_zero)(&pln->super.super.ops);
X(ops_madd2)(v * ((pln->me - pln->mb) / e->genus->vl),
&e->ops, &pln->super.super.ops);
X(ops_madd2)(v, &cld0->ops, &pln->super.super.ops);
X(ops_madd2)(v, &cldm->ops, &pln->super.super.ops);
if (ego->bufferedp)
pln->super.super.ops.other += 4 * r * (pln->me - pln->mb) * v;
pln->super.super.could_prune_now_p =
(!ego->bufferedp && r >= 5 && r < 64 && m >= r);
return &(pln->super.super);
nada:
X(plan_destroy_internal)(cld0);
X(plan_destroy_internal)(cldm);
return 0;
}
static void regone(planner *plnr, khc2hc codelet, const hc2hc_desc *desc,
int bufferedp)
{
S *slv = (S *)X(mksolver_hc2hc)(sizeof(S), desc->radix, mkcldw);
slv->k = codelet;
slv->desc = desc;
slv->bufferedp = bufferedp;
REGISTER_SOLVER(plnr, &(slv->super.super));
if (X(mksolver_hc2hc_hook)) {
slv = (S *)X(mksolver_hc2hc_hook)(sizeof(S), desc->radix, mkcldw);
slv->k = codelet;
slv->desc = desc;
slv->bufferedp = bufferedp;
REGISTER_SOLVER(plnr, &(slv->super.super));
}
}
void X(regsolver_hc2hc_direct)(planner *plnr, khc2hc codelet,
const hc2hc_desc *desc)
{
regone(plnr, codelet, desc, /* bufferedp */0);
regone(plnr, codelet, desc, /* bufferedp */1);
}