furnace/extern/fftw/rdft/rank-geq2.c

208 lines
5.7 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* plans for RDFT of rank >= 2 (multidimensional) */
/* FIXME: this solver cannot strictly be applied to multidimensional
DHTs, since the latter are not separable...up to rnk-1 additional
post-processing passes may be required. See also:
R. N. Bracewell, O. Buneman, H. Hao, and J. Villasenor, "Fast
two-dimensional Hartley transform," Proc. IEEE 74, 1282-1283 (1986).
H. Hao and R. N. Bracewell, "A three-dimensional DFT algorithm
using the fast Hartley transform," Proc. IEEE 75(2), 264-266 (1987).
*/
#include "rdft/rdft.h"
typedef struct {
solver super;
int spltrnk;
const int *buddies;
size_t nbuddies;
} S;
typedef struct {
plan_rdft super;
plan *cld1, *cld2;
const S *solver;
} P;
/* Compute multi-dimensional RDFT by applying the two cld plans
(lower-rnk RDFTs). */
static void apply(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_rdft *cld1, *cld2;
cld1 = (plan_rdft *) ego->cld1;
cld1->apply(ego->cld1, I, O);
cld2 = (plan_rdft *) ego->cld2;
cld2->apply(ego->cld2, O, O);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cld1, wakefulness);
X(plan_awake)(ego->cld2, wakefulness);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cld2);
X(plan_destroy_internal)(ego->cld1);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
const S *s = ego->solver;
p->print(p, "(rdft-rank>=2/%d%(%p%)%(%p%))",
s->spltrnk, ego->cld1, ego->cld2);
}
static int picksplit(const S *ego, const tensor *sz, int *rp)
{
A(sz->rnk > 1); /* cannot split rnk <= 1 */
if (!X(pickdim)(ego->spltrnk, ego->buddies, ego->nbuddies, sz, 1, rp))
return 0;
*rp += 1; /* convert from dim. index to rank */
if (*rp >= sz->rnk) /* split must reduce rank */
return 0;
return 1;
}
static int applicable0(const solver *ego_, const problem *p_, int *rp)
{
const problem_rdft *p = (const problem_rdft *) p_;
const S *ego = (const S *)ego_;
return (1
&& FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk)
&& p->sz->rnk >= 2
&& picksplit(ego, p->sz, rp)
);
}
/* TODO: revise this. */
static int applicable(const solver *ego_, const problem *p_,
const planner *plnr, int *rp)
{
const S *ego = (const S *)ego_;
if (!applicable0(ego_, p_, rp)) return 0;
if (NO_RANK_SPLITSP(plnr) && (ego->spltrnk != ego->buddies[0]))
return 0;
if (NO_UGLYP(plnr)) {
/* Heuristic: if the vector stride is greater than the transform
sz, don't use (prefer to do the vector loop first with a
vrank-geq1 plan). */
const problem_rdft *p = (const problem_rdft *) p_;
if (p->vecsz->rnk > 0 &&
X(tensor_min_stride)(p->vecsz) > X(tensor_max_index)(p->sz))
return 0;
}
return 1;
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const S *ego = (const S *) ego_;
const problem_rdft *p;
P *pln;
plan *cld1 = 0, *cld2 = 0;
tensor *sz1, *sz2, *vecszi, *sz2i;
int spltrnk;
static const plan_adt padt = {
X(rdft_solve), awake, print, destroy
};
if (!applicable(ego_, p_, plnr, &spltrnk))
return (plan *) 0;
p = (const problem_rdft *) p_;
X(tensor_split)(p->sz, &sz1, spltrnk, &sz2);
vecszi = X(tensor_copy_inplace)(p->vecsz, INPLACE_OS);
sz2i = X(tensor_copy_inplace)(sz2, INPLACE_OS);
cld1 = X(mkplan_d)(plnr,
X(mkproblem_rdft_d)(X(tensor_copy)(sz2),
X(tensor_append)(p->vecsz, sz1),
p->I, p->O, p->kind + spltrnk));
if (!cld1) goto nada;
cld2 = X(mkplan_d)(plnr,
X(mkproblem_rdft_d)(
X(tensor_copy_inplace)(sz1, INPLACE_OS),
X(tensor_append)(vecszi, sz2i),
p->O, p->O, p->kind));
if (!cld2) goto nada;
pln = MKPLAN_RDFT(P, &padt, apply);
pln->cld1 = cld1;
pln->cld2 = cld2;
pln->solver = ego;
X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
X(tensor_destroy4)(sz2, sz1, vecszi, sz2i);
return &(pln->super.super);
nada:
X(plan_destroy_internal)(cld2);
X(plan_destroy_internal)(cld1);
X(tensor_destroy4)(sz2, sz1, vecszi, sz2i);
return (plan *) 0;
}
static solver *mksolver(int spltrnk, const int *buddies, size_t nbuddies)
{
static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->spltrnk = spltrnk;
slv->buddies = buddies;
slv->nbuddies = nbuddies;
return &(slv->super);
}
void X(rdft_rank_geq2_register)(planner *p)
{
static const int buddies[] = { 1, 0, -2 };
size_t i;
for (i = 0; i < NELEM(buddies); ++i)
REGISTER_SOLVER(p, mksolver(buddies[i], buddies, NELEM(buddies)));
/* FIXME: Should we try more buddies? See also dft/rank-geq2. */
}