mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-07 13:25:04 +00:00
391 lines
12 KiB
C
391 lines
12 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:45:58 EDT 2021 */
|
||
|
|
||
|
#include "dft/codelet-dft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twiddle.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include dft/simd/ts.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 66 FP additions, 36 FP multiplications,
|
||
|
* (or, 44 additions, 14 multiplications, 22 fused multiply/add),
|
||
|
* 34 stack variables, 1 constants, and 32 memory accesses
|
||
|
*/
|
||
|
#include "dft/simd/ts.h"
|
||
|
|
||
|
static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) {
|
||
|
V T1, T1m, T7, T1l, Tk, TS, Te, TQ, TF, T14, TL, T16, T12, T17, Ts;
|
||
|
V TX, Ty, TZ, TV, T10;
|
||
|
T1 = LD(&(ri[0]), ms, &(ri[0]));
|
||
|
T1m = LD(&(ii[0]), ms, &(ii[0]));
|
||
|
{
|
||
|
V T3, T6, T4, T1k, T2, T5;
|
||
|
T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
|
||
|
T6 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
|
||
|
T2 = LDW(&(W[TWVL * 6]));
|
||
|
T4 = VMUL(T2, T3);
|
||
|
T1k = VMUL(T2, T6);
|
||
|
T5 = LDW(&(W[TWVL * 7]));
|
||
|
T7 = VFMA(T5, T6, T4);
|
||
|
T1l = VFNMS(T5, T3, T1k);
|
||
|
}
|
||
|
{
|
||
|
V Tg, Tj, Th, TR, Tf, Ti;
|
||
|
Tg = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
|
||
|
Tj = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
|
||
|
Tf = LDW(&(W[TWVL * 10]));
|
||
|
Th = VMUL(Tf, Tg);
|
||
|
TR = VMUL(Tf, Tj);
|
||
|
Ti = LDW(&(W[TWVL * 11]));
|
||
|
Tk = VFMA(Ti, Tj, Th);
|
||
|
TS = VFNMS(Ti, Tg, TR);
|
||
|
}
|
||
|
{
|
||
|
V Ta, Td, Tb, TP, T9, Tc;
|
||
|
Ta = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
|
||
|
Td = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
|
||
|
T9 = LDW(&(W[TWVL * 2]));
|
||
|
Tb = VMUL(T9, Ta);
|
||
|
TP = VMUL(T9, Td);
|
||
|
Tc = LDW(&(W[TWVL * 3]));
|
||
|
Te = VFMA(Tc, Td, Tb);
|
||
|
TQ = VFNMS(Tc, Ta, TP);
|
||
|
}
|
||
|
{
|
||
|
V TB, TE, TC, T13, TH, TK, TI, T15, TA, TG, TD, TJ;
|
||
|
TB = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
|
||
|
TE = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
|
||
|
TA = LDW(&(W[TWVL * 12]));
|
||
|
TC = VMUL(TA, TB);
|
||
|
T13 = VMUL(TA, TE);
|
||
|
TH = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
|
||
|
TK = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
|
||
|
TG = LDW(&(W[TWVL * 4]));
|
||
|
TI = VMUL(TG, TH);
|
||
|
T15 = VMUL(TG, TK);
|
||
|
TD = LDW(&(W[TWVL * 13]));
|
||
|
TF = VFMA(TD, TE, TC);
|
||
|
T14 = VFNMS(TD, TB, T13);
|
||
|
TJ = LDW(&(W[TWVL * 5]));
|
||
|
TL = VFMA(TJ, TK, TI);
|
||
|
T16 = VFNMS(TJ, TH, T15);
|
||
|
T12 = VSUB(TF, TL);
|
||
|
T17 = VSUB(T14, T16);
|
||
|
}
|
||
|
{
|
||
|
V To, Tr, Tp, TW, Tu, Tx, Tv, TY, Tn, Tt, Tq, Tw;
|
||
|
To = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
|
||
|
Tr = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
|
||
|
Tn = LDW(&(W[0]));
|
||
|
Tp = VMUL(Tn, To);
|
||
|
TW = VMUL(Tn, Tr);
|
||
|
Tu = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
|
||
|
Tx = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
|
||
|
Tt = LDW(&(W[TWVL * 8]));
|
||
|
Tv = VMUL(Tt, Tu);
|
||
|
TY = VMUL(Tt, Tx);
|
||
|
Tq = LDW(&(W[TWVL * 1]));
|
||
|
Ts = VFMA(Tq, Tr, Tp);
|
||
|
TX = VFNMS(Tq, To, TW);
|
||
|
Tw = LDW(&(W[TWVL * 9]));
|
||
|
Ty = VFMA(Tw, Tx, Tv);
|
||
|
TZ = VFNMS(Tw, Tu, TY);
|
||
|
TV = VSUB(Ts, Ty);
|
||
|
T10 = VSUB(TX, TZ);
|
||
|
}
|
||
|
{
|
||
|
V TU, T1a, T1t, T1v, T19, T1w, T1d, T1u;
|
||
|
{
|
||
|
V TO, TT, T1r, T1s;
|
||
|
TO = VSUB(T1, T7);
|
||
|
TT = VSUB(TQ, TS);
|
||
|
TU = VADD(TO, TT);
|
||
|
T1a = VSUB(TO, TT);
|
||
|
T1r = VSUB(T1m, T1l);
|
||
|
T1s = VSUB(Te, Tk);
|
||
|
T1t = VSUB(T1r, T1s);
|
||
|
T1v = VADD(T1s, T1r);
|
||
|
}
|
||
|
{
|
||
|
V T11, T18, T1b, T1c;
|
||
|
T11 = VADD(TV, T10);
|
||
|
T18 = VSUB(T12, T17);
|
||
|
T19 = VADD(T11, T18);
|
||
|
T1w = VSUB(T18, T11);
|
||
|
T1b = VSUB(T10, TV);
|
||
|
T1c = VADD(T12, T17);
|
||
|
T1d = VSUB(T1b, T1c);
|
||
|
T1u = VADD(T1b, T1c);
|
||
|
}
|
||
|
ST(&(ri[WS(rs, 5)]), VFNMS(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)]));
|
||
|
ST(&(ii[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)]));
|
||
|
ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)]));
|
||
|
ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)]));
|
||
|
ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)]));
|
||
|
ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)]));
|
||
|
ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)]));
|
||
|
ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)]));
|
||
|
}
|
||
|
{
|
||
|
V Tm, T1e, T1o, T1q, TN, T1p, T1h, T1i;
|
||
|
{
|
||
|
V T8, Tl, T1j, T1n;
|
||
|
T8 = VADD(T1, T7);
|
||
|
Tl = VADD(Te, Tk);
|
||
|
Tm = VADD(T8, Tl);
|
||
|
T1e = VSUB(T8, Tl);
|
||
|
T1j = VADD(TQ, TS);
|
||
|
T1n = VADD(T1l, T1m);
|
||
|
T1o = VADD(T1j, T1n);
|
||
|
T1q = VSUB(T1n, T1j);
|
||
|
}
|
||
|
{
|
||
|
V Tz, TM, T1f, T1g;
|
||
|
Tz = VADD(Ts, Ty);
|
||
|
TM = VADD(TF, TL);
|
||
|
TN = VADD(Tz, TM);
|
||
|
T1p = VSUB(TM, Tz);
|
||
|
T1f = VADD(TX, TZ);
|
||
|
T1g = VADD(T14, T16);
|
||
|
T1h = VSUB(T1f, T1g);
|
||
|
T1i = VADD(T1f, T1g);
|
||
|
}
|
||
|
ST(&(ri[WS(rs, 4)]), VSUB(Tm, TN), ms, &(ri[0]));
|
||
|
ST(&(ii[WS(rs, 4)]), VSUB(T1o, T1i), ms, &(ii[0]));
|
||
|
ST(&(ri[0]), VADD(Tm, TN), ms, &(ri[0]));
|
||
|
ST(&(ii[0]), VADD(T1i, T1o), ms, &(ii[0]));
|
||
|
ST(&(ri[WS(rs, 6)]), VSUB(T1e, T1h), ms, &(ri[0]));
|
||
|
ST(&(ii[WS(rs, 6)]), VSUB(T1q, T1p), ms, &(ii[0]));
|
||
|
ST(&(ri[WS(rs, 2)]), VADD(T1e, T1h), ms, &(ri[0]));
|
||
|
ST(&(ii[WS(rs, 2)]), VADD(T1p, T1q), ms, &(ii[0]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
VLEAVE();
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
VTW(0, 1),
|
||
|
VTW(0, 2),
|
||
|
VTW(0, 3),
|
||
|
VTW(0, 4),
|
||
|
VTW(0, 5),
|
||
|
VTW(0, 6),
|
||
|
VTW(0, 7),
|
||
|
{ TW_NEXT, (2 * VL), 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, { 44, 14, 22, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void XSIMD(codelet_t1sv_8) (planner *p) {
|
||
|
X(kdft_dit_register) (p, t1sv_8, &desc);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include dft/simd/ts.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 66 FP additions, 32 FP multiplications,
|
||
|
* (or, 52 additions, 18 multiplications, 14 fused multiply/add),
|
||
|
* 28 stack variables, 1 constants, and 32 memory accesses
|
||
|
*/
|
||
|
#include "dft/simd/ts.h"
|
||
|
|
||
|
static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) {
|
||
|
V T7, T1e, TH, T19, TF, T13, TR, TU, Ti, T1f, TK, T16, Tu, T12, TM;
|
||
|
V TP;
|
||
|
{
|
||
|
V T1, T18, T6, T17;
|
||
|
T1 = LD(&(ri[0]), ms, &(ri[0]));
|
||
|
T18 = LD(&(ii[0]), ms, &(ii[0]));
|
||
|
{
|
||
|
V T3, T5, T2, T4;
|
||
|
T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
|
||
|
T5 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
|
||
|
T2 = LDW(&(W[TWVL * 6]));
|
||
|
T4 = LDW(&(W[TWVL * 7]));
|
||
|
T6 = VFMA(T2, T3, VMUL(T4, T5));
|
||
|
T17 = VFNMS(T4, T3, VMUL(T2, T5));
|
||
|
}
|
||
|
T7 = VADD(T1, T6);
|
||
|
T1e = VSUB(T18, T17);
|
||
|
TH = VSUB(T1, T6);
|
||
|
T19 = VADD(T17, T18);
|
||
|
}
|
||
|
{
|
||
|
V Tz, TS, TE, TT;
|
||
|
{
|
||
|
V Tw, Ty, Tv, Tx;
|
||
|
Tw = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
|
||
|
Ty = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
|
||
|
Tv = LDW(&(W[TWVL * 12]));
|
||
|
Tx = LDW(&(W[TWVL * 13]));
|
||
|
Tz = VFMA(Tv, Tw, VMUL(Tx, Ty));
|
||
|
TS = VFNMS(Tx, Tw, VMUL(Tv, Ty));
|
||
|
}
|
||
|
{
|
||
|
V TB, TD, TA, TC;
|
||
|
TB = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
|
||
|
TD = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
|
||
|
TA = LDW(&(W[TWVL * 4]));
|
||
|
TC = LDW(&(W[TWVL * 5]));
|
||
|
TE = VFMA(TA, TB, VMUL(TC, TD));
|
||
|
TT = VFNMS(TC, TB, VMUL(TA, TD));
|
||
|
}
|
||
|
TF = VADD(Tz, TE);
|
||
|
T13 = VADD(TS, TT);
|
||
|
TR = VSUB(Tz, TE);
|
||
|
TU = VSUB(TS, TT);
|
||
|
}
|
||
|
{
|
||
|
V Tc, TI, Th, TJ;
|
||
|
{
|
||
|
V T9, Tb, T8, Ta;
|
||
|
T9 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
|
||
|
Tb = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
|
||
|
T8 = LDW(&(W[TWVL * 2]));
|
||
|
Ta = LDW(&(W[TWVL * 3]));
|
||
|
Tc = VFMA(T8, T9, VMUL(Ta, Tb));
|
||
|
TI = VFNMS(Ta, T9, VMUL(T8, Tb));
|
||
|
}
|
||
|
{
|
||
|
V Te, Tg, Td, Tf;
|
||
|
Te = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
|
||
|
Tg = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
|
||
|
Td = LDW(&(W[TWVL * 10]));
|
||
|
Tf = LDW(&(W[TWVL * 11]));
|
||
|
Th = VFMA(Td, Te, VMUL(Tf, Tg));
|
||
|
TJ = VFNMS(Tf, Te, VMUL(Td, Tg));
|
||
|
}
|
||
|
Ti = VADD(Tc, Th);
|
||
|
T1f = VSUB(Tc, Th);
|
||
|
TK = VSUB(TI, TJ);
|
||
|
T16 = VADD(TI, TJ);
|
||
|
}
|
||
|
{
|
||
|
V To, TN, Tt, TO;
|
||
|
{
|
||
|
V Tl, Tn, Tk, Tm;
|
||
|
Tl = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
|
||
|
Tn = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
|
||
|
Tk = LDW(&(W[0]));
|
||
|
Tm = LDW(&(W[TWVL * 1]));
|
||
|
To = VFMA(Tk, Tl, VMUL(Tm, Tn));
|
||
|
TN = VFNMS(Tm, Tl, VMUL(Tk, Tn));
|
||
|
}
|
||
|
{
|
||
|
V Tq, Ts, Tp, Tr;
|
||
|
Tq = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
|
||
|
Ts = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
|
||
|
Tp = LDW(&(W[TWVL * 8]));
|
||
|
Tr = LDW(&(W[TWVL * 9]));
|
||
|
Tt = VFMA(Tp, Tq, VMUL(Tr, Ts));
|
||
|
TO = VFNMS(Tr, Tq, VMUL(Tp, Ts));
|
||
|
}
|
||
|
Tu = VADD(To, Tt);
|
||
|
T12 = VADD(TN, TO);
|
||
|
TM = VSUB(To, Tt);
|
||
|
TP = VSUB(TN, TO);
|
||
|
}
|
||
|
{
|
||
|
V Tj, TG, T1b, T1c;
|
||
|
Tj = VADD(T7, Ti);
|
||
|
TG = VADD(Tu, TF);
|
||
|
ST(&(ri[WS(rs, 4)]), VSUB(Tj, TG), ms, &(ri[0]));
|
||
|
ST(&(ri[0]), VADD(Tj, TG), ms, &(ri[0]));
|
||
|
{
|
||
|
V T15, T1a, T11, T14;
|
||
|
T15 = VADD(T12, T13);
|
||
|
T1a = VADD(T16, T19);
|
||
|
ST(&(ii[0]), VADD(T15, T1a), ms, &(ii[0]));
|
||
|
ST(&(ii[WS(rs, 4)]), VSUB(T1a, T15), ms, &(ii[0]));
|
||
|
T11 = VSUB(T7, Ti);
|
||
|
T14 = VSUB(T12, T13);
|
||
|
ST(&(ri[WS(rs, 6)]), VSUB(T11, T14), ms, &(ri[0]));
|
||
|
ST(&(ri[WS(rs, 2)]), VADD(T11, T14), ms, &(ri[0]));
|
||
|
}
|
||
|
T1b = VSUB(TF, Tu);
|
||
|
T1c = VSUB(T19, T16);
|
||
|
ST(&(ii[WS(rs, 2)]), VADD(T1b, T1c), ms, &(ii[0]));
|
||
|
ST(&(ii[WS(rs, 6)]), VSUB(T1c, T1b), ms, &(ii[0]));
|
||
|
{
|
||
|
V TX, T1g, T10, T1d, TY, TZ;
|
||
|
TX = VSUB(TH, TK);
|
||
|
T1g = VSUB(T1e, T1f);
|
||
|
TY = VSUB(TP, TM);
|
||
|
TZ = VADD(TR, TU);
|
||
|
T10 = VMUL(LDK(KP707106781), VSUB(TY, TZ));
|
||
|
T1d = VMUL(LDK(KP707106781), VADD(TY, TZ));
|
||
|
ST(&(ri[WS(rs, 7)]), VSUB(TX, T10), ms, &(ri[WS(rs, 1)]));
|
||
|
ST(&(ii[WS(rs, 5)]), VSUB(T1g, T1d), ms, &(ii[WS(rs, 1)]));
|
||
|
ST(&(ri[WS(rs, 3)]), VADD(TX, T10), ms, &(ri[WS(rs, 1)]));
|
||
|
ST(&(ii[WS(rs, 1)]), VADD(T1d, T1g), ms, &(ii[WS(rs, 1)]));
|
||
|
}
|
||
|
{
|
||
|
V TL, T1i, TW, T1h, TQ, TV;
|
||
|
TL = VADD(TH, TK);
|
||
|
T1i = VADD(T1f, T1e);
|
||
|
TQ = VADD(TM, TP);
|
||
|
TV = VSUB(TR, TU);
|
||
|
TW = VMUL(LDK(KP707106781), VADD(TQ, TV));
|
||
|
T1h = VMUL(LDK(KP707106781), VSUB(TV, TQ));
|
||
|
ST(&(ri[WS(rs, 5)]), VSUB(TL, TW), ms, &(ri[WS(rs, 1)]));
|
||
|
ST(&(ii[WS(rs, 7)]), VSUB(T1i, T1h), ms, &(ii[WS(rs, 1)]));
|
||
|
ST(&(ri[WS(rs, 1)]), VADD(TL, TW), ms, &(ri[WS(rs, 1)]));
|
||
|
ST(&(ii[WS(rs, 3)]), VADD(T1h, T1i), ms, &(ii[WS(rs, 1)]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
VLEAVE();
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
VTW(0, 1),
|
||
|
VTW(0, 2),
|
||
|
VTW(0, 3),
|
||
|
VTW(0, 4),
|
||
|
VTW(0, 5),
|
||
|
VTW(0, 6),
|
||
|
VTW(0, 7),
|
||
|
{ TW_NEXT, (2 * VL), 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, { 52, 18, 14, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void XSIMD(codelet_t1sv_8) (planner *p) {
|
||
|
X(kdft_dit_register) (p, t1sv_8, &desc);
|
||
|
}
|
||
|
#endif
|