mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-07 13:25:04 +00:00
323 lines
9.9 KiB
C
323 lines
9.9 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:45:49 EDT 2021 */
|
||
|
|
||
|
#include "dft/codelet-dft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1bv_12 -include dft/simd/t1b.h -sign 1 */
|
||
|
|
||
|
/*
|
||
|
* This function contains 59 FP additions, 42 FP multiplications,
|
||
|
* (or, 41 additions, 24 multiplications, 18 fused multiply/add),
|
||
|
* 28 stack variables, 2 constants, and 24 memory accesses
|
||
|
*/
|
||
|
#include "dft/simd/t1b.h"
|
||
|
|
||
|
static void t1bv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
{
|
||
|
INT m;
|
||
|
R *x;
|
||
|
x = ii;
|
||
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) {
|
||
|
V T1, TK, T6, TA, Tq, TI, Tv, TE, T9, TL, Te, TB, Ti, TH, Tn;
|
||
|
V TD;
|
||
|
{
|
||
|
V T5, T3, T4, T2;
|
||
|
T1 = LD(&(x[0]), ms, &(x[0]));
|
||
|
T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
||
|
T5 = BYTW(&(W[TWVL * 14]), T4);
|
||
|
T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
||
|
T3 = BYTW(&(W[TWVL * 6]), T2);
|
||
|
TK = VSUB(T3, T5);
|
||
|
T6 = VADD(T3, T5);
|
||
|
TA = VFNMS(LDK(KP500000000), T6, T1);
|
||
|
}
|
||
|
{
|
||
|
V Tu, Ts, Tp, Tt, Tr;
|
||
|
Tp = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
||
|
Tq = BYTW(&(W[TWVL * 16]), Tp);
|
||
|
Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
||
|
Tu = BYTW(&(W[TWVL * 8]), Tt);
|
||
|
Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
||
|
Ts = BYTW(&(W[0]), Tr);
|
||
|
TI = VSUB(Tu, Ts);
|
||
|
Tv = VADD(Ts, Tu);
|
||
|
TE = VFNMS(LDK(KP500000000), Tv, Tq);
|
||
|
}
|
||
|
{
|
||
|
V Td, Tb, T8, Tc, Ta;
|
||
|
T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
||
|
T9 = BYTW(&(W[TWVL * 10]), T8);
|
||
|
Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
||
|
Td = BYTW(&(W[TWVL * 2]), Tc);
|
||
|
Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
||
|
Tb = BYTW(&(W[TWVL * 18]), Ta);
|
||
|
TL = VSUB(Tb, Td);
|
||
|
Te = VADD(Tb, Td);
|
||
|
TB = VFNMS(LDK(KP500000000), Te, T9);
|
||
|
}
|
||
|
{
|
||
|
V Tm, Tk, Th, Tl, Tj;
|
||
|
Th = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
||
|
Ti = BYTW(&(W[TWVL * 4]), Th);
|
||
|
Tl = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
||
|
Tm = BYTW(&(W[TWVL * 20]), Tl);
|
||
|
Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
||
|
Tk = BYTW(&(W[TWVL * 12]), Tj);
|
||
|
TH = VSUB(Tk, Tm);
|
||
|
Tn = VADD(Tk, Tm);
|
||
|
TD = VFNMS(LDK(KP500000000), Tn, Ti);
|
||
|
}
|
||
|
{
|
||
|
V Tg, Ty, Tx, Tz;
|
||
|
{
|
||
|
V T7, Tf, To, Tw;
|
||
|
T7 = VADD(T1, T6);
|
||
|
Tf = VADD(T9, Te);
|
||
|
Tg = VSUB(T7, Tf);
|
||
|
Ty = VADD(T7, Tf);
|
||
|
To = VADD(Ti, Tn);
|
||
|
Tw = VADD(Tq, Tv);
|
||
|
Tx = VSUB(To, Tw);
|
||
|
Tz = VADD(To, Tw);
|
||
|
}
|
||
|
ST(&(x[WS(rs, 3)]), VFNMSI(Tx, Tg), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[0]), VADD(Ty, Tz), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 9)]), VFMAI(Tx, Tg), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 6)]), VSUB(Ty, Tz), ms, &(x[0]));
|
||
|
}
|
||
|
{
|
||
|
V TS, TW, TV, TX;
|
||
|
{
|
||
|
V TQ, TR, TT, TU;
|
||
|
TQ = VSUB(TA, TB);
|
||
|
TR = VADD(TH, TI);
|
||
|
TS = VFNMS(LDK(KP866025403), TR, TQ);
|
||
|
TW = VFMA(LDK(KP866025403), TR, TQ);
|
||
|
TT = VSUB(TD, TE);
|
||
|
TU = VSUB(TK, TL);
|
||
|
TV = VFMA(LDK(KP866025403), TU, TT);
|
||
|
TX = VFNMS(LDK(KP866025403), TU, TT);
|
||
|
}
|
||
|
ST(&(x[WS(rs, 1)]), VFMAI(TV, TS), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 7)]), VFNMSI(TX, TW), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 11)]), VFNMSI(TV, TS), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 5)]), VFMAI(TX, TW), ms, &(x[WS(rs, 1)]));
|
||
|
}
|
||
|
{
|
||
|
V TG, TO, TN, TP;
|
||
|
{
|
||
|
V TC, TF, TJ, TM;
|
||
|
TC = VADD(TA, TB);
|
||
|
TF = VADD(TD, TE);
|
||
|
TG = VSUB(TC, TF);
|
||
|
TO = VADD(TC, TF);
|
||
|
TJ = VSUB(TH, TI);
|
||
|
TM = VADD(TK, TL);
|
||
|
TN = VMUL(LDK(KP866025403), VSUB(TJ, TM));
|
||
|
TP = VMUL(LDK(KP866025403), VADD(TM, TJ));
|
||
|
}
|
||
|
ST(&(x[WS(rs, 10)]), VFNMSI(TN, TG), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 2)]), VFMAI(TN, TG), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 8)]), VFNMSI(TP, TO), ms, &(x[0]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
VLEAVE();
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
VTW(0, 1),
|
||
|
VTW(0, 2),
|
||
|
VTW(0, 3),
|
||
|
VTW(0, 4),
|
||
|
VTW(0, 5),
|
||
|
VTW(0, 6),
|
||
|
VTW(0, 7),
|
||
|
VTW(0, 8),
|
||
|
VTW(0, 9),
|
||
|
VTW(0, 10),
|
||
|
VTW(0, 11),
|
||
|
{ TW_NEXT, VL, 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 12, XSIMD_STRING("t1bv_12"), twinstr, &GENUS, { 41, 24, 18, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void XSIMD(codelet_t1bv_12) (planner *p) {
|
||
|
X(kdft_dit_register) (p, t1bv_12, &desc);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1bv_12 -include dft/simd/t1b.h -sign 1 */
|
||
|
|
||
|
/*
|
||
|
* This function contains 59 FP additions, 30 FP multiplications,
|
||
|
* (or, 55 additions, 26 multiplications, 4 fused multiply/add),
|
||
|
* 28 stack variables, 2 constants, and 24 memory accesses
|
||
|
*/
|
||
|
#include "dft/simd/t1b.h"
|
||
|
|
||
|
static void t1bv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
{
|
||
|
INT m;
|
||
|
R *x;
|
||
|
x = ii;
|
||
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) {
|
||
|
V T1, Tt, T6, T7, TB, Tq, TC, TD, T9, Tu, Te, Tf, Tx, Tl, Ty;
|
||
|
V Tz;
|
||
|
{
|
||
|
V T5, T3, T4, T2;
|
||
|
T1 = LD(&(x[0]), ms, &(x[0]));
|
||
|
T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
||
|
T5 = BYTW(&(W[TWVL * 14]), T4);
|
||
|
T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
||
|
T3 = BYTW(&(W[TWVL * 6]), T2);
|
||
|
Tt = VSUB(T3, T5);
|
||
|
T6 = VADD(T3, T5);
|
||
|
T7 = VFNMS(LDK(KP500000000), T6, T1);
|
||
|
}
|
||
|
{
|
||
|
V Tn, Tp, Tm, TA, To;
|
||
|
Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
||
|
Tn = BYTW(&(W[0]), Tm);
|
||
|
TA = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
||
|
TB = BYTW(&(W[TWVL * 16]), TA);
|
||
|
To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
||
|
Tp = BYTW(&(W[TWVL * 8]), To);
|
||
|
Tq = VSUB(Tn, Tp);
|
||
|
TC = VADD(Tn, Tp);
|
||
|
TD = VFNMS(LDK(KP500000000), TC, TB);
|
||
|
}
|
||
|
{
|
||
|
V Td, Tb, T8, Tc, Ta;
|
||
|
T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
||
|
T9 = BYTW(&(W[TWVL * 10]), T8);
|
||
|
Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
||
|
Td = BYTW(&(W[TWVL * 2]), Tc);
|
||
|
Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
||
|
Tb = BYTW(&(W[TWVL * 18]), Ta);
|
||
|
Tu = VSUB(Tb, Td);
|
||
|
Te = VADD(Tb, Td);
|
||
|
Tf = VFNMS(LDK(KP500000000), Te, T9);
|
||
|
}
|
||
|
{
|
||
|
V Ti, Tk, Th, Tw, Tj;
|
||
|
Th = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
||
|
Ti = BYTW(&(W[TWVL * 12]), Th);
|
||
|
Tw = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
||
|
Tx = BYTW(&(W[TWVL * 4]), Tw);
|
||
|
Tj = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
||
|
Tk = BYTW(&(W[TWVL * 20]), Tj);
|
||
|
Tl = VSUB(Ti, Tk);
|
||
|
Ty = VADD(Ti, Tk);
|
||
|
Tz = VFNMS(LDK(KP500000000), Ty, Tx);
|
||
|
}
|
||
|
{
|
||
|
V Ts, TG, TF, TH;
|
||
|
{
|
||
|
V Tg, Tr, Tv, TE;
|
||
|
Tg = VSUB(T7, Tf);
|
||
|
Tr = VMUL(LDK(KP866025403), VSUB(Tl, Tq));
|
||
|
Ts = VSUB(Tg, Tr);
|
||
|
TG = VADD(Tg, Tr);
|
||
|
Tv = VMUL(LDK(KP866025403), VSUB(Tt, Tu));
|
||
|
TE = VSUB(Tz, TD);
|
||
|
TF = VBYI(VADD(Tv, TE));
|
||
|
TH = VBYI(VSUB(TE, Tv));
|
||
|
}
|
||
|
ST(&(x[WS(rs, 11)]), VSUB(Ts, TF), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 5)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 1)]), VADD(Ts, TF), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 7)]), VSUB(TG, TH), ms, &(x[WS(rs, 1)]));
|
||
|
}
|
||
|
{
|
||
|
V TS, TW, TV, TX;
|
||
|
{
|
||
|
V TQ, TR, TT, TU;
|
||
|
TQ = VADD(T1, T6);
|
||
|
TR = VADD(T9, Te);
|
||
|
TS = VSUB(TQ, TR);
|
||
|
TW = VADD(TQ, TR);
|
||
|
TT = VADD(Tx, Ty);
|
||
|
TU = VADD(TB, TC);
|
||
|
TV = VBYI(VSUB(TT, TU));
|
||
|
TX = VADD(TT, TU);
|
||
|
}
|
||
|
ST(&(x[WS(rs, 3)]), VSUB(TS, TV), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[0]), VADD(TW, TX), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 9)]), VADD(TS, TV), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 6)]), VSUB(TW, TX), ms, &(x[0]));
|
||
|
}
|
||
|
{
|
||
|
V TK, TO, TN, TP;
|
||
|
{
|
||
|
V TI, TJ, TL, TM;
|
||
|
TI = VADD(Tl, Tq);
|
||
|
TJ = VADD(Tt, Tu);
|
||
|
TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ)));
|
||
|
TO = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI)));
|
||
|
TL = VADD(T7, Tf);
|
||
|
TM = VADD(Tz, TD);
|
||
|
TN = VSUB(TL, TM);
|
||
|
TP = VADD(TL, TM);
|
||
|
}
|
||
|
ST(&(x[WS(rs, 2)]), VADD(TK, TN), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 8)]), VSUB(TP, TO), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 10)]), VSUB(TN, TK), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 4)]), VADD(TO, TP), ms, &(x[0]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
VLEAVE();
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
VTW(0, 1),
|
||
|
VTW(0, 2),
|
||
|
VTW(0, 3),
|
||
|
VTW(0, 4),
|
||
|
VTW(0, 5),
|
||
|
VTW(0, 6),
|
||
|
VTW(0, 7),
|
||
|
VTW(0, 8),
|
||
|
VTW(0, 9),
|
||
|
VTW(0, 10),
|
||
|
VTW(0, 11),
|
||
|
{ TW_NEXT, VL, 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 12, XSIMD_STRING("t1bv_12"), twinstr, &GENUS, { 55, 26, 4, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void XSIMD(codelet_t1bv_12) (planner *p) {
|
||
|
X(kdft_dit_register) (p, t1bv_12, &desc);
|
||
|
}
|
||
|
#endif
|