mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-04 18:27:25 +00:00
965 lines
23 KiB
C
965 lines
23 KiB
C
|
/*
|
|||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|||
|
*
|
|||
|
* This program is free software; you can redistribute it and/or modify
|
|||
|
* it under the terms of the GNU General Public License as published by
|
|||
|
* the Free Software Foundation; either version 2 of the License, or
|
|||
|
* (at your option) any later version.
|
|||
|
*
|
|||
|
* This program is distributed in the hope that it will be useful,
|
|||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
* GNU General Public License for more details.
|
|||
|
*
|
|||
|
* You should have received a copy of the GNU General Public License
|
|||
|
* along with this program; if not, write to the Free Software
|
|||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|||
|
*
|
|||
|
*/
|
|||
|
|
|||
|
/* Lots of ugly duplication from verify-lib.c, plus lots of ugliness in
|
|||
|
general for all of the r2r variants...oh well, for now */
|
|||
|
|
|||
|
#include "verify.h"
|
|||
|
#include <math.h>
|
|||
|
#include <stdlib.h>
|
|||
|
#include <stdio.h>
|
|||
|
|
|||
|
typedef struct {
|
|||
|
bench_problem *p;
|
|||
|
bench_tensor *probsz;
|
|||
|
bench_tensor *totalsz;
|
|||
|
bench_tensor *pckdsz;
|
|||
|
bench_tensor *pckdvecsz;
|
|||
|
} info;
|
|||
|
|
|||
|
/*
|
|||
|
* Utility functions:
|
|||
|
*/
|
|||
|
|
|||
|
static double dabs(double x) { return (x < 0.0) ? -x : x; }
|
|||
|
static double dmin(double x, double y) { return (x < y) ? x : y; }
|
|||
|
|
|||
|
static double raerror(R *a, R *b, int n)
|
|||
|
{
|
|||
|
if (n > 0) {
|
|||
|
/* compute the relative Linf error */
|
|||
|
double e = 0.0, mag = 0.0;
|
|||
|
int i;
|
|||
|
|
|||
|
for (i = 0; i < n; ++i) {
|
|||
|
e = dmax(e, dabs(a[i] - b[i]));
|
|||
|
mag = dmax(mag, dmin(dabs(a[i]), dabs(b[i])));
|
|||
|
}
|
|||
|
if (dabs(mag) < 1e-14 && dabs(e) < 1e-14)
|
|||
|
e = 0.0;
|
|||
|
else
|
|||
|
e /= mag;
|
|||
|
|
|||
|
#ifdef HAVE_ISNAN
|
|||
|
BENCH_ASSERT(!isnan(e));
|
|||
|
#endif
|
|||
|
return e;
|
|||
|
} else
|
|||
|
return 0.0;
|
|||
|
}
|
|||
|
|
|||
|
#define by2pi(m, n) ((K2PI * (m)) / (n))
|
|||
|
|
|||
|
/*
|
|||
|
* Improve accuracy by reducing x to range [0..1/8]
|
|||
|
* before multiplication by 2 * PI.
|
|||
|
*/
|
|||
|
|
|||
|
static trigreal bench_sincos(trigreal m, trigreal n, int sinp)
|
|||
|
{
|
|||
|
/* waiting for C to get tail recursion... */
|
|||
|
trigreal half_n = n * 0.5;
|
|||
|
trigreal quarter_n = half_n * 0.5;
|
|||
|
trigreal eighth_n = quarter_n * 0.5;
|
|||
|
trigreal sgn = 1.0;
|
|||
|
|
|||
|
if (sinp) goto sin;
|
|||
|
cos:
|
|||
|
if (m < 0) { m = -m; /* goto cos; */ }
|
|||
|
if (m > half_n) { m = n - m; goto cos; }
|
|||
|
if (m > eighth_n) { m = quarter_n - m; goto sin; }
|
|||
|
return sgn * COS(by2pi(m, n));
|
|||
|
|
|||
|
msin:
|
|||
|
sgn = -sgn;
|
|||
|
sin:
|
|||
|
if (m < 0) { m = -m; goto msin; }
|
|||
|
if (m > half_n) { m = n - m; goto msin; }
|
|||
|
if (m > eighth_n) { m = quarter_n - m; goto cos; }
|
|||
|
return sgn * SIN(by2pi(m, n));
|
|||
|
}
|
|||
|
|
|||
|
static trigreal cos2pi(int m, int n)
|
|||
|
{
|
|||
|
return bench_sincos((trigreal)m, (trigreal)n, 0);
|
|||
|
}
|
|||
|
|
|||
|
static trigreal sin2pi(int m, int n)
|
|||
|
{
|
|||
|
return bench_sincos((trigreal)m, (trigreal)n, 1);
|
|||
|
}
|
|||
|
|
|||
|
static trigreal cos00(int i, int j, int n)
|
|||
|
{
|
|||
|
return cos2pi(i * j, n);
|
|||
|
}
|
|||
|
|
|||
|
static trigreal cos01(int i, int j, int n)
|
|||
|
{
|
|||
|
return cos00(i, 2*j + 1, 2*n);
|
|||
|
}
|
|||
|
|
|||
|
static trigreal cos10(int i, int j, int n)
|
|||
|
{
|
|||
|
return cos00(2*i + 1, j, 2*n);
|
|||
|
}
|
|||
|
|
|||
|
static trigreal cos11(int i, int j, int n)
|
|||
|
{
|
|||
|
return cos00(2*i + 1, 2*j + 1, 4*n);
|
|||
|
}
|
|||
|
|
|||
|
static trigreal sin00(int i, int j, int n)
|
|||
|
{
|
|||
|
return sin2pi(i * j, n);
|
|||
|
}
|
|||
|
|
|||
|
static trigreal sin01(int i, int j, int n)
|
|||
|
{
|
|||
|
return sin00(i, 2*j + 1, 2*n);
|
|||
|
}
|
|||
|
|
|||
|
static trigreal sin10(int i, int j, int n)
|
|||
|
{
|
|||
|
return sin00(2*i + 1, j, 2*n);
|
|||
|
}
|
|||
|
|
|||
|
static trigreal sin11(int i, int j, int n)
|
|||
|
{
|
|||
|
return sin00(2*i + 1, 2*j + 1, 4*n);
|
|||
|
}
|
|||
|
|
|||
|
static trigreal realhalf(int i, int j, int n)
|
|||
|
{
|
|||
|
UNUSED(i);
|
|||
|
if (j <= n - j)
|
|||
|
return 1.0;
|
|||
|
else
|
|||
|
return 0.0;
|
|||
|
}
|
|||
|
|
|||
|
static trigreal coshalf(int i, int j, int n)
|
|||
|
{
|
|||
|
if (j <= n - j)
|
|||
|
return cos00(i, j, n);
|
|||
|
else
|
|||
|
return cos00(i, n - j, n);
|
|||
|
}
|
|||
|
|
|||
|
static trigreal unity(int i, int j, int n)
|
|||
|
{
|
|||
|
UNUSED(i);
|
|||
|
UNUSED(j);
|
|||
|
UNUSED(n);
|
|||
|
return 1.0;
|
|||
|
}
|
|||
|
|
|||
|
typedef trigreal (*trigfun)(int, int, int);
|
|||
|
|
|||
|
static void rarand(R *a, int n)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
/* generate random inputs */
|
|||
|
for (i = 0; i < n; ++i) {
|
|||
|
a[i] = mydrand();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* C = A + B */
|
|||
|
static void raadd(R *c, R *a, R *b, int n)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
for (i = 0; i < n; ++i) {
|
|||
|
c[i] = a[i] + b[i];
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* C = A - B */
|
|||
|
static void rasub(R *c, R *a, R *b, int n)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
for (i = 0; i < n; ++i) {
|
|||
|
c[i] = a[i] - b[i];
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* B = rotate left A + rotate right A */
|
|||
|
static void rarolr(R *b, R *a, int n, int nb, int na,
|
|||
|
r2r_kind_t k)
|
|||
|
{
|
|||
|
int isL0 = 0, isL1 = 0, isR0 = 0, isR1 = 0;
|
|||
|
int i, ib, ia;
|
|||
|
|
|||
|
for (ib = 0; ib < nb; ++ib) {
|
|||
|
for (i = 0; i < n - 1; ++i)
|
|||
|
for (ia = 0; ia < na; ++ia)
|
|||
|
b[(ib * n + i) * na + ia] =
|
|||
|
a[(ib * n + i + 1) * na + ia];
|
|||
|
|
|||
|
/* ugly switch to do boundary conditions for various r2r types */
|
|||
|
switch (k) {
|
|||
|
/* periodic boundaries */
|
|||
|
case R2R_DHT:
|
|||
|
case R2R_R2HC:
|
|||
|
for (ia = 0; ia < na; ++ia) {
|
|||
|
b[(ib * n + n - 1) * na + ia] =
|
|||
|
a[(ib * n + 0) * na + ia];
|
|||
|
b[(ib * n + 0) * na + ia] +=
|
|||
|
a[(ib * n + n - 1) * na + ia];
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
case R2R_HC2R: /* ugh (hermitian halfcomplex boundaries) */
|
|||
|
if (n > 2) {
|
|||
|
if (n % 2 == 0)
|
|||
|
for (ia = 0; ia < na; ++ia) {
|
|||
|
b[(ib * n + n - 1) * na + ia] = 0.0;
|
|||
|
b[(ib * n + 0) * na + ia] +=
|
|||
|
a[(ib * n + 1) * na + ia];
|
|||
|
b[(ib * n + n/2) * na + ia] +=
|
|||
|
+ a[(ib * n + n/2 - 1) * na + ia]
|
|||
|
- a[(ib * n + n/2 + 1) * na + ia];
|
|||
|
b[(ib * n + n/2 + 1) * na + ia] +=
|
|||
|
- a[(ib * n + n/2) * na + ia];
|
|||
|
}
|
|||
|
else
|
|||
|
for (ia = 0; ia < na; ++ia) {
|
|||
|
b[(ib * n + n - 1) * na + ia] = 0.0;
|
|||
|
b[(ib * n + 0) * na + ia] +=
|
|||
|
a[(ib * n + 1) * na + ia];
|
|||
|
b[(ib * n + n/2) * na + ia] +=
|
|||
|
+ a[(ib * n + n/2) * na + ia]
|
|||
|
- a[(ib * n + n/2 + 1) * na + ia];
|
|||
|
b[(ib * n + n/2 + 1) * na + ia] +=
|
|||
|
- a[(ib * n + n/2 + 1) * na + ia]
|
|||
|
- a[(ib * n + n/2) * na + ia];
|
|||
|
}
|
|||
|
} else /* n <= 2 */ {
|
|||
|
for (ia = 0; ia < na; ++ia) {
|
|||
|
b[(ib * n + n - 1) * na + ia] =
|
|||
|
a[(ib * n + 0) * na + ia];
|
|||
|
b[(ib * n + 0) * na + ia] +=
|
|||
|
a[(ib * n + n - 1) * na + ia];
|
|||
|
}
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
/* various even/odd boundary conditions */
|
|||
|
case R2R_REDFT00:
|
|||
|
isL1 = isR1 = 1;
|
|||
|
goto mirrors;
|
|||
|
case R2R_REDFT01:
|
|||
|
isL1 = 1;
|
|||
|
goto mirrors;
|
|||
|
case R2R_REDFT10:
|
|||
|
isL0 = isR0 = 1;
|
|||
|
goto mirrors;
|
|||
|
case R2R_REDFT11:
|
|||
|
isL0 = 1;
|
|||
|
isR0 = -1;
|
|||
|
goto mirrors;
|
|||
|
case R2R_RODFT00:
|
|||
|
goto mirrors;
|
|||
|
case R2R_RODFT01:
|
|||
|
isR1 = 1;
|
|||
|
goto mirrors;
|
|||
|
case R2R_RODFT10:
|
|||
|
isL0 = isR0 = -1;
|
|||
|
goto mirrors;
|
|||
|
case R2R_RODFT11:
|
|||
|
isL0 = -1;
|
|||
|
isR0 = 1;
|
|||
|
goto mirrors;
|
|||
|
|
|||
|
mirrors:
|
|||
|
|
|||
|
for (ia = 0; ia < na; ++ia)
|
|||
|
b[(ib * n + n - 1) * na + ia] =
|
|||
|
isR0 * a[(ib * n + n - 1) * na + ia]
|
|||
|
+ (n > 1 ? isR1 * a[(ib * n + n - 2) * na + ia]
|
|||
|
: 0);
|
|||
|
|
|||
|
for (ia = 0; ia < na; ++ia)
|
|||
|
b[(ib * n) * na + ia] +=
|
|||
|
isL0 * a[(ib * n) * na + ia]
|
|||
|
+ (n > 1 ? isL1 * a[(ib * n + 1) * na + ia] : 0);
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
for (i = 1; i < n; ++i)
|
|||
|
for (ia = 0; ia < na; ++ia)
|
|||
|
b[(ib * n + i) * na + ia] +=
|
|||
|
a[(ib * n + i - 1) * na + ia];
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
static void raphase_shift(R *b, R *a, int n, int nb, int na,
|
|||
|
int n0, int k0, trigfun t)
|
|||
|
{
|
|||
|
int j, jb, ja;
|
|||
|
|
|||
|
for (jb = 0; jb < nb; ++jb)
|
|||
|
for (j = 0; j < n; ++j) {
|
|||
|
trigreal c = 2.0 * t(1, j + k0, n0);
|
|||
|
|
|||
|
for (ja = 0; ja < na; ++ja) {
|
|||
|
int k = (jb * n + j) * na + ja;
|
|||
|
b[k] = a[k] * c;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* A = alpha * A (real, in place) */
|
|||
|
static void rascale(R *a, R alpha, int n)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
for (i = 0; i < n; ++i) {
|
|||
|
a[i] *= alpha;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
* compute rdft:
|
|||
|
*/
|
|||
|
|
|||
|
/* copy real A into real B, using output stride of A and input stride of B */
|
|||
|
typedef struct {
|
|||
|
dotens2_closure k;
|
|||
|
R *ra;
|
|||
|
R *rb;
|
|||
|
} cpyr_closure;
|
|||
|
|
|||
|
static void cpyr0(dotens2_closure *k_,
|
|||
|
int indxa, int ondxa, int indxb, int ondxb)
|
|||
|
{
|
|||
|
cpyr_closure *k = (cpyr_closure *)k_;
|
|||
|
k->rb[indxb] = k->ra[ondxa];
|
|||
|
UNUSED(indxa); UNUSED(ondxb);
|
|||
|
}
|
|||
|
|
|||
|
static void cpyr(R *ra, bench_tensor *sza, R *rb, bench_tensor *szb)
|
|||
|
{
|
|||
|
cpyr_closure k;
|
|||
|
k.k.apply = cpyr0;
|
|||
|
k.ra = ra; k.rb = rb;
|
|||
|
bench_dotens2(sza, szb, &k.k);
|
|||
|
}
|
|||
|
|
|||
|
static void dofft(info *nfo, R *in, R *out)
|
|||
|
{
|
|||
|
cpyr(in, nfo->pckdsz, (R *) nfo->p->in, nfo->totalsz);
|
|||
|
after_problem_rcopy_from(nfo->p, (bench_real *)nfo->p->in);
|
|||
|
doit(1, nfo->p);
|
|||
|
after_problem_rcopy_to(nfo->p, (bench_real *)nfo->p->out);
|
|||
|
cpyr((R *) nfo->p->out, nfo->totalsz, out, nfo->pckdsz);
|
|||
|
}
|
|||
|
|
|||
|
static double racmp(R *a, R *b, int n, const char *test, double tol)
|
|||
|
{
|
|||
|
double d = raerror(a, b, n);
|
|||
|
if (d > tol) {
|
|||
|
ovtpvt_err("Found relative error %e (%s)\n", d, test);
|
|||
|
{
|
|||
|
int i, N;
|
|||
|
N = n > 300 && verbose <= 2 ? 300 : n;
|
|||
|
for (i = 0; i < N; ++i)
|
|||
|
ovtpvt_err("%8d %16.12f %16.12f\n", i,
|
|||
|
(double) a[i],
|
|||
|
(double) b[i]);
|
|||
|
}
|
|||
|
bench_exit(EXIT_FAILURE);
|
|||
|
}
|
|||
|
return d;
|
|||
|
}
|
|||
|
|
|||
|
/***********************************************************************/
|
|||
|
|
|||
|
typedef struct {
|
|||
|
int n; /* physical size */
|
|||
|
int n0; /* "logical" transform size */
|
|||
|
int i0, k0; /* shifts of input/output */
|
|||
|
trigfun ti, ts; /* impulse/shift trig functions */
|
|||
|
} dim_stuff;
|
|||
|
|
|||
|
static void impulse_response(int rnk, dim_stuff *d, R impulse_amp,
|
|||
|
R *A, int N)
|
|||
|
{
|
|||
|
if (rnk == 0)
|
|||
|
A[0] = impulse_amp;
|
|||
|
else {
|
|||
|
int i;
|
|||
|
N /= d->n;
|
|||
|
for (i = 0; i < d->n; ++i) {
|
|||
|
impulse_response(rnk - 1, d + 1,
|
|||
|
impulse_amp * d->ti(d->i0, d->k0 + i, d->n0),
|
|||
|
A + i * N, N);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/***************************************************************************/
|
|||
|
|
|||
|
/*
|
|||
|
* Implementation of the FFT tester described in
|
|||
|
*
|
|||
|
* Funda Erg<EFBFBD>n. Testing multivariate linear functions: Overcoming the
|
|||
|
* generator bottleneck. In Proceedings of the Twenty-Seventh Annual
|
|||
|
* ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas,
|
|||
|
* Nevada, 29 May--1 June 1995.
|
|||
|
*
|
|||
|
* Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without
|
|||
|
* the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000).
|
|||
|
*/
|
|||
|
|
|||
|
static double rlinear(int n, info *nfo, R *inA, R *inB, R *inC, R *outA,
|
|||
|
R *outB, R *outC, R *tmp, int rounds, double tol)
|
|||
|
{
|
|||
|
double e = 0.0;
|
|||
|
int j;
|
|||
|
|
|||
|
for (j = 0; j < rounds; ++j) {
|
|||
|
R alpha, beta;
|
|||
|
alpha = mydrand();
|
|||
|
beta = mydrand();
|
|||
|
rarand(inA, n);
|
|||
|
rarand(inB, n);
|
|||
|
dofft(nfo, inA, outA);
|
|||
|
dofft(nfo, inB, outB);
|
|||
|
|
|||
|
rascale(outA, alpha, n);
|
|||
|
rascale(outB, beta, n);
|
|||
|
raadd(tmp, outA, outB, n);
|
|||
|
rascale(inA, alpha, n);
|
|||
|
rascale(inB, beta, n);
|
|||
|
raadd(inC, inA, inB, n);
|
|||
|
dofft(nfo, inC, outC);
|
|||
|
|
|||
|
e = dmax(e, racmp(outC, tmp, n, "linear", tol));
|
|||
|
}
|
|||
|
return e;
|
|||
|
}
|
|||
|
|
|||
|
static double rimpulse(dim_stuff *d, R impulse_amp,
|
|||
|
int n, int vecn, info *nfo,
|
|||
|
R *inA, R *inB, R *inC,
|
|||
|
R *outA, R *outB, R *outC,
|
|||
|
R *tmp, int rounds, double tol)
|
|||
|
{
|
|||
|
double e = 0.0;
|
|||
|
int N = n * vecn;
|
|||
|
int i;
|
|||
|
int j;
|
|||
|
|
|||
|
/* test 2: check that the unit impulse is transformed properly */
|
|||
|
|
|||
|
for (i = 0; i < N; ++i) {
|
|||
|
/* pls */
|
|||
|
inA[i] = 0.0;
|
|||
|
}
|
|||
|
for (i = 0; i < vecn; ++i) {
|
|||
|
inA[i * n] = (i+1) / (double)(vecn+1);
|
|||
|
|
|||
|
/* transform of the pls */
|
|||
|
impulse_response(nfo->probsz->rnk, d, impulse_amp * inA[i * n],
|
|||
|
outA + i * n, n);
|
|||
|
}
|
|||
|
|
|||
|
dofft(nfo, inA, tmp);
|
|||
|
e = dmax(e, racmp(tmp, outA, N, "impulse 1", tol));
|
|||
|
|
|||
|
for (j = 0; j < rounds; ++j) {
|
|||
|
rarand(inB, N);
|
|||
|
rasub(inC, inA, inB, N);
|
|||
|
dofft(nfo, inB, outB);
|
|||
|
dofft(nfo, inC, outC);
|
|||
|
raadd(tmp, outB, outC, N);
|
|||
|
e = dmax(e, racmp(tmp, outA, N, "impulse", tol));
|
|||
|
}
|
|||
|
return e;
|
|||
|
}
|
|||
|
|
|||
|
static double t_shift(int n, int vecn, info *nfo,
|
|||
|
R *inA, R *inB, R *outA, R *outB, R *tmp,
|
|||
|
int rounds, double tol,
|
|||
|
dim_stuff *d)
|
|||
|
{
|
|||
|
double e = 0.0;
|
|||
|
int nb, na, dim, N = n * vecn;
|
|||
|
int i, j;
|
|||
|
bench_tensor *sz = nfo->probsz;
|
|||
|
|
|||
|
/* test 3: check the time-shift property */
|
|||
|
/* the paper performs more tests, but this code should be fine too */
|
|||
|
|
|||
|
nb = 1;
|
|||
|
na = n;
|
|||
|
|
|||
|
/* check shifts across all SZ dimensions */
|
|||
|
for (dim = 0; dim < sz->rnk; ++dim) {
|
|||
|
int ncur = sz->dims[dim].n;
|
|||
|
|
|||
|
na /= ncur;
|
|||
|
|
|||
|
for (j = 0; j < rounds; ++j) {
|
|||
|
rarand(inA, N);
|
|||
|
|
|||
|
for (i = 0; i < vecn; ++i) {
|
|||
|
rarolr(inB + i * n, inA + i*n, ncur, nb,na,
|
|||
|
nfo->p->k[dim]);
|
|||
|
}
|
|||
|
dofft(nfo, inA, outA);
|
|||
|
dofft(nfo, inB, outB);
|
|||
|
for (i = 0; i < vecn; ++i)
|
|||
|
raphase_shift(tmp + i * n, outA + i * n, ncur,
|
|||
|
nb, na, d[dim].n0, d[dim].k0, d[dim].ts);
|
|||
|
e = dmax(e, racmp(tmp, outB, N, "time shift", tol));
|
|||
|
}
|
|||
|
|
|||
|
nb *= ncur;
|
|||
|
}
|
|||
|
return e;
|
|||
|
}
|
|||
|
|
|||
|
/***********************************************************************/
|
|||
|
|
|||
|
void verify_r2r(bench_problem *p, int rounds, double tol, errors *e)
|
|||
|
{
|
|||
|
R *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
|
|||
|
info nfo;
|
|||
|
int n, vecn, N;
|
|||
|
double impulse_amp = 1.0;
|
|||
|
dim_stuff *d;
|
|||
|
int i;
|
|||
|
|
|||
|
if (rounds == 0)
|
|||
|
rounds = 20; /* default value */
|
|||
|
|
|||
|
n = tensor_sz(p->sz);
|
|||
|
vecn = tensor_sz(p->vecsz);
|
|||
|
N = n * vecn;
|
|||
|
|
|||
|
d = (dim_stuff *) bench_malloc(sizeof(dim_stuff) * p->sz->rnk);
|
|||
|
for (i = 0; i < p->sz->rnk; ++i) {
|
|||
|
int n0, i0, k0;
|
|||
|
trigfun ti, ts;
|
|||
|
|
|||
|
d[i].n = n0 = p->sz->dims[i].n;
|
|||
|
if (p->k[i] > R2R_DHT)
|
|||
|
n0 = 2 * (n0 + (p->k[i] == R2R_REDFT00 ? -1 :
|
|||
|
(p->k[i] == R2R_RODFT00 ? 1 : 0)));
|
|||
|
|
|||
|
switch (p->k[i]) {
|
|||
|
case R2R_R2HC:
|
|||
|
i0 = k0 = 0;
|
|||
|
ti = realhalf;
|
|||
|
ts = coshalf;
|
|||
|
break;
|
|||
|
case R2R_DHT:
|
|||
|
i0 = k0 = 0;
|
|||
|
ti = unity;
|
|||
|
ts = cos00;
|
|||
|
break;
|
|||
|
case R2R_HC2R:
|
|||
|
i0 = k0 = 0;
|
|||
|
ti = unity;
|
|||
|
ts = cos00;
|
|||
|
break;
|
|||
|
case R2R_REDFT00:
|
|||
|
i0 = k0 = 0;
|
|||
|
ti = ts = cos00;
|
|||
|
break;
|
|||
|
case R2R_REDFT01:
|
|||
|
i0 = k0 = 0;
|
|||
|
ti = ts = cos01;
|
|||
|
break;
|
|||
|
case R2R_REDFT10:
|
|||
|
i0 = k0 = 0;
|
|||
|
ti = cos10; impulse_amp *= 2.0;
|
|||
|
ts = cos00;
|
|||
|
break;
|
|||
|
case R2R_REDFT11:
|
|||
|
i0 = k0 = 0;
|
|||
|
ti = cos11; impulse_amp *= 2.0;
|
|||
|
ts = cos01;
|
|||
|
break;
|
|||
|
case R2R_RODFT00:
|
|||
|
i0 = k0 = 1;
|
|||
|
ti = sin00; impulse_amp *= 2.0;
|
|||
|
ts = cos00;
|
|||
|
break;
|
|||
|
case R2R_RODFT01:
|
|||
|
i0 = 1; k0 = 0;
|
|||
|
ti = sin01; impulse_amp *= n == 1 ? 1.0 : 2.0;
|
|||
|
ts = cos01;
|
|||
|
break;
|
|||
|
case R2R_RODFT10:
|
|||
|
i0 = 0; k0 = 1;
|
|||
|
ti = sin10; impulse_amp *= 2.0;
|
|||
|
ts = cos00;
|
|||
|
break;
|
|||
|
case R2R_RODFT11:
|
|||
|
i0 = k0 = 0;
|
|||
|
ti = sin11; impulse_amp *= 2.0;
|
|||
|
ts = cos01;
|
|||
|
break;
|
|||
|
default:
|
|||
|
BENCH_ASSERT(0);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
d[i].n0 = n0;
|
|||
|
d[i].i0 = i0;
|
|||
|
d[i].k0 = k0;
|
|||
|
d[i].ti = ti;
|
|||
|
d[i].ts = ts;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
inA = (R *) bench_malloc(N * sizeof(R));
|
|||
|
inB = (R *) bench_malloc(N * sizeof(R));
|
|||
|
inC = (R *) bench_malloc(N * sizeof(R));
|
|||
|
outA = (R *) bench_malloc(N * sizeof(R));
|
|||
|
outB = (R *) bench_malloc(N * sizeof(R));
|
|||
|
outC = (R *) bench_malloc(N * sizeof(R));
|
|||
|
tmp = (R *) bench_malloc(N * sizeof(R));
|
|||
|
|
|||
|
nfo.p = p;
|
|||
|
nfo.probsz = p->sz;
|
|||
|
nfo.totalsz = tensor_append(p->vecsz, nfo.probsz);
|
|||
|
nfo.pckdsz = verify_pack(nfo.totalsz, 1);
|
|||
|
nfo.pckdvecsz = verify_pack(p->vecsz, tensor_sz(nfo.probsz));
|
|||
|
|
|||
|
e->i = rimpulse(d, impulse_amp, n, vecn, &nfo,
|
|||
|
inA, inB, inC, outA, outB, outC, tmp, rounds, tol);
|
|||
|
e->l = rlinear(N, &nfo, inA, inB, inC, outA, outB, outC, tmp, rounds,tol);
|
|||
|
e->s = t_shift(n, vecn, &nfo, inA, inB, outA, outB, tmp,
|
|||
|
rounds, tol, d);
|
|||
|
|
|||
|
/* grr, verify-lib.c:preserves_input() only works for complex */
|
|||
|
if (!p->in_place && !p->destroy_input) {
|
|||
|
bench_tensor *totalsz_swap, *pckdsz_swap;
|
|||
|
totalsz_swap = tensor_copy_swapio(nfo.totalsz);
|
|||
|
pckdsz_swap = tensor_copy_swapio(nfo.pckdsz);
|
|||
|
|
|||
|
for (i = 0; i < rounds; ++i) {
|
|||
|
rarand(inA, N);
|
|||
|
dofft(&nfo, inA, outB);
|
|||
|
cpyr((R *) nfo.p->in, totalsz_swap, inB, pckdsz_swap);
|
|||
|
racmp(inB, inA, N, "preserves_input", 0.0);
|
|||
|
}
|
|||
|
|
|||
|
tensor_destroy(totalsz_swap);
|
|||
|
tensor_destroy(pckdsz_swap);
|
|||
|
}
|
|||
|
|
|||
|
tensor_destroy(nfo.totalsz);
|
|||
|
tensor_destroy(nfo.pckdsz);
|
|||
|
tensor_destroy(nfo.pckdvecsz);
|
|||
|
bench_free(tmp);
|
|||
|
bench_free(outC);
|
|||
|
bench_free(outB);
|
|||
|
bench_free(outA);
|
|||
|
bench_free(inC);
|
|||
|
bench_free(inB);
|
|||
|
bench_free(inA);
|
|||
|
bench_free(d);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
typedef struct {
|
|||
|
dofft_closure k;
|
|||
|
bench_problem *p;
|
|||
|
int n0;
|
|||
|
} dofft_r2r_closure;
|
|||
|
|
|||
|
static void cpyr1(int n, R *in, int is, R *out, int os, R scale)
|
|||
|
{
|
|||
|
int i;
|
|||
|
for (i = 0; i < n; ++i)
|
|||
|
out[i * os] = in[i * is] * scale;
|
|||
|
}
|
|||
|
|
|||
|
static void mke00(C *a, int n, int c)
|
|||
|
{
|
|||
|
int i;
|
|||
|
for (i = 1; i + i < n; ++i)
|
|||
|
a[n - i][c] = a[i][c];
|
|||
|
}
|
|||
|
|
|||
|
static void mkre00(C *a, int n)
|
|||
|
{
|
|||
|
mkreal(a, n);
|
|||
|
mke00(a, n, 0);
|
|||
|
}
|
|||
|
|
|||
|
static void mkimag(C *a, int n)
|
|||
|
{
|
|||
|
int i;
|
|||
|
for (i = 0; i < n; ++i)
|
|||
|
c_re(a[i]) = 0.0;
|
|||
|
}
|
|||
|
|
|||
|
static void mko00(C *a, int n, int c)
|
|||
|
{
|
|||
|
int i;
|
|||
|
a[0][c] = 0.0;
|
|||
|
for (i = 1; i + i < n; ++i)
|
|||
|
a[n - i][c] = -a[i][c];
|
|||
|
if (i + i == n)
|
|||
|
a[i][c] = 0.0;
|
|||
|
}
|
|||
|
|
|||
|
static void mkro00(C *a, int n)
|
|||
|
{
|
|||
|
mkreal(a, n);
|
|||
|
mko00(a, n, 0);
|
|||
|
}
|
|||
|
|
|||
|
static void mkio00(C *a, int n)
|
|||
|
{
|
|||
|
mkimag(a, n);
|
|||
|
mko00(a, n, 1);
|
|||
|
}
|
|||
|
|
|||
|
static void mkre01(C *a, int n) /* n should be be multiple of 4 */
|
|||
|
{
|
|||
|
R a0;
|
|||
|
a0 = c_re(a[0]);
|
|||
|
mko00(a, n/2, 0);
|
|||
|
c_re(a[n/2]) = -(c_re(a[0]) = a0);
|
|||
|
mkre00(a, n);
|
|||
|
}
|
|||
|
|
|||
|
static void mkro01(C *a, int n) /* n should be be multiple of 4 */
|
|||
|
{
|
|||
|
c_re(a[0]) = c_im(a[0]) = 0.0;
|
|||
|
mkre00(a, n/2);
|
|||
|
mkro00(a, n);
|
|||
|
}
|
|||
|
|
|||
|
static void mkoddonly(C *a, int n)
|
|||
|
{
|
|||
|
int i;
|
|||
|
for (i = 0; i < n; i += 2)
|
|||
|
c_re(a[i]) = c_im(a[i]) = 0.0;
|
|||
|
}
|
|||
|
|
|||
|
static void mkre10(C *a, int n)
|
|||
|
{
|
|||
|
mkoddonly(a, n);
|
|||
|
mkre00(a, n);
|
|||
|
}
|
|||
|
|
|||
|
static void mkio10(C *a, int n)
|
|||
|
{
|
|||
|
mkoddonly(a, n);
|
|||
|
mkio00(a, n);
|
|||
|
}
|
|||
|
|
|||
|
static void mkre11(C *a, int n)
|
|||
|
{
|
|||
|
mkoddonly(a, n);
|
|||
|
mko00(a, n/2, 0);
|
|||
|
mkre00(a, n);
|
|||
|
}
|
|||
|
|
|||
|
static void mkro11(C *a, int n)
|
|||
|
{
|
|||
|
mkoddonly(a, n);
|
|||
|
mkre00(a, n/2);
|
|||
|
mkro00(a, n);
|
|||
|
}
|
|||
|
|
|||
|
static void mkio11(C *a, int n)
|
|||
|
{
|
|||
|
mkoddonly(a, n);
|
|||
|
mke00(a, n/2, 1);
|
|||
|
mkio00(a, n);
|
|||
|
}
|
|||
|
|
|||
|
static void r2r_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
|
|||
|
{
|
|||
|
dofft_r2r_closure *k = (dofft_r2r_closure *)k_;
|
|||
|
bench_problem *p = k->p;
|
|||
|
bench_real *ri, *ro;
|
|||
|
int n, is, os;
|
|||
|
|
|||
|
n = p->sz->dims[0].n;
|
|||
|
is = p->sz->dims[0].is;
|
|||
|
os = p->sz->dims[0].os;
|
|||
|
|
|||
|
ri = (bench_real *) p->in;
|
|||
|
ro = (bench_real *) p->out;
|
|||
|
|
|||
|
switch (p->k[0]) {
|
|||
|
case R2R_R2HC:
|
|||
|
cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
|
|||
|
break;
|
|||
|
case R2R_HC2R:
|
|||
|
cpyr1(n/2 + 1, &c_re(in[0]), 2, ri, is, 1.0);
|
|||
|
cpyr1((n+1)/2 - 1, &c_im(in[n-1]), -2, ri + is*(n-1), -is, 1.0);
|
|||
|
break;
|
|||
|
case R2R_REDFT00:
|
|||
|
cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
|
|||
|
break;
|
|||
|
case R2R_RODFT00:
|
|||
|
cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
|
|||
|
break;
|
|||
|
case R2R_REDFT01:
|
|||
|
cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
|
|||
|
break;
|
|||
|
case R2R_REDFT10:
|
|||
|
cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
|
|||
|
break;
|
|||
|
case R2R_RODFT01:
|
|||
|
cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
|
|||
|
break;
|
|||
|
case R2R_RODFT10:
|
|||
|
cpyr1(n, &c_im(in[1]), 4, ri, is, 1.0);
|
|||
|
break;
|
|||
|
case R2R_REDFT11:
|
|||
|
cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
|
|||
|
break;
|
|||
|
case R2R_RODFT11:
|
|||
|
cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
|
|||
|
break;
|
|||
|
default:
|
|||
|
BENCH_ASSERT(0); /* not yet implemented */
|
|||
|
}
|
|||
|
|
|||
|
after_problem_rcopy_from(p, ri);
|
|||
|
doit(1, p);
|
|||
|
after_problem_rcopy_to(p, ro);
|
|||
|
|
|||
|
switch (p->k[0]) {
|
|||
|
case R2R_R2HC:
|
|||
|
if (k->k.recopy_input)
|
|||
|
cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
|
|||
|
cpyr1(n/2 + 1, ro, os, &c_re(out[0]), 2, 1.0);
|
|||
|
cpyr1((n+1)/2 - 1, ro + os*(n-1), -os, &c_im(out[1]), 2, 1.0);
|
|||
|
c_im(out[0]) = 0.0;
|
|||
|
if (n % 2 == 0)
|
|||
|
c_im(out[n/2]) = 0.0;
|
|||
|
mkhermitian1(out, n);
|
|||
|
break;
|
|||
|
case R2R_HC2R:
|
|||
|
if (k->k.recopy_input) {
|
|||
|
cpyr1(n/2 + 1, ri, is, &c_re(in[0]), 2, 1.0);
|
|||
|
cpyr1((n+1)/2 - 1, ri + is*(n-1), -is, &c_im(in[1]), 2,1.0);
|
|||
|
}
|
|||
|
cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
|
|||
|
mkreal(out, n);
|
|||
|
break;
|
|||
|
case R2R_REDFT00:
|
|||
|
if (k->k.recopy_input)
|
|||
|
cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
|
|||
|
cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
|
|||
|
mkre00(out, k->n0);
|
|||
|
break;
|
|||
|
case R2R_RODFT00:
|
|||
|
if (k->k.recopy_input)
|
|||
|
cpyr1(n, ri, is, &c_im(in[1]), 2, -1.0);
|
|||
|
cpyr1(n, ro, os, &c_im(out[1]), 2, -1.0);
|
|||
|
mkio00(out, k->n0);
|
|||
|
break;
|
|||
|
case R2R_REDFT01:
|
|||
|
if (k->k.recopy_input)
|
|||
|
cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
|
|||
|
cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
|
|||
|
mkre10(out, k->n0);
|
|||
|
break;
|
|||
|
case R2R_REDFT10:
|
|||
|
if (k->k.recopy_input)
|
|||
|
cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
|
|||
|
cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
|
|||
|
mkre01(out, k->n0);
|
|||
|
break;
|
|||
|
case R2R_RODFT01:
|
|||
|
if (k->k.recopy_input)
|
|||
|
cpyr1(n, ri, is, &c_re(in[1]), 2, 1.0);
|
|||
|
cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
|
|||
|
mkio10(out, k->n0);
|
|||
|
break;
|
|||
|
case R2R_RODFT10:
|
|||
|
if (k->k.recopy_input)
|
|||
|
cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
|
|||
|
cpyr1(n, ro, os, &c_re(out[1]), 2, 1.0);
|
|||
|
mkro01(out, k->n0);
|
|||
|
break;
|
|||
|
case R2R_REDFT11:
|
|||
|
if (k->k.recopy_input)
|
|||
|
cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
|
|||
|
cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
|
|||
|
mkre11(out, k->n0);
|
|||
|
break;
|
|||
|
case R2R_RODFT11:
|
|||
|
if (k->k.recopy_input)
|
|||
|
cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
|
|||
|
cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
|
|||
|
mkio11(out, k->n0);
|
|||
|
break;
|
|||
|
default:
|
|||
|
BENCH_ASSERT(0); /* not yet implemented */
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
void accuracy_r2r(bench_problem *p, int rounds, int impulse_rounds,
|
|||
|
double t[6])
|
|||
|
{
|
|||
|
dofft_r2r_closure k;
|
|||
|
int n, n0 = 1;
|
|||
|
C *a, *b;
|
|||
|
aconstrain constrain = 0;
|
|||
|
|
|||
|
BENCH_ASSERT(p->kind == PROBLEM_R2R);
|
|||
|
BENCH_ASSERT(p->sz->rnk == 1);
|
|||
|
BENCH_ASSERT(p->vecsz->rnk == 0);
|
|||
|
|
|||
|
k.k.apply = r2r_apply;
|
|||
|
k.k.recopy_input = 0;
|
|||
|
k.p = p;
|
|||
|
n = tensor_sz(p->sz);
|
|||
|
|
|||
|
switch (p->k[0]) {
|
|||
|
case R2R_R2HC: constrain = mkreal; n0 = n; break;
|
|||
|
case R2R_HC2R: constrain = mkhermitian1; n0 = n; break;
|
|||
|
case R2R_REDFT00: constrain = mkre00; n0 = 2*(n-1); break;
|
|||
|
case R2R_RODFT00: constrain = mkro00; n0 = 2*(n+1); break;
|
|||
|
case R2R_REDFT01: constrain = mkre01; n0 = 4*n; break;
|
|||
|
case R2R_REDFT10: constrain = mkre10; n0 = 4*n; break;
|
|||
|
case R2R_RODFT01: constrain = mkro01; n0 = 4*n; break;
|
|||
|
case R2R_RODFT10: constrain = mkio10; n0 = 4*n; break;
|
|||
|
case R2R_REDFT11: constrain = mkre11; n0 = 8*n; break;
|
|||
|
case R2R_RODFT11: constrain = mkro11; n0 = 8*n; break;
|
|||
|
default: BENCH_ASSERT(0); /* not yet implemented */
|
|||
|
}
|
|||
|
k.n0 = n0;
|
|||
|
|
|||
|
a = (C *) bench_malloc(n0 * sizeof(C));
|
|||
|
b = (C *) bench_malloc(n0 * sizeof(C));
|
|||
|
accuracy_test(&k.k, constrain, -1, n0, a, b, rounds, impulse_rounds, t);
|
|||
|
bench_free(b);
|
|||
|
bench_free(a);
|
|||
|
}
|