mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-17 01:55:10 +00:00
4106 lines
101 KiB
C
4106 lines
101 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:44:29 EDT 2021 */
|
||
|
|
||
|
#include "dft/codelet-dft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include dft/scalar/t.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 1038 FP additions, 644 FP multiplications,
|
||
|
* (or, 520 additions, 126 multiplications, 518 fused multiply/add),
|
||
|
* 190 stack variables, 15 constants, and 256 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/t.h"
|
||
|
|
||
|
static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP995184726, +0.995184726672196886244836953109479921575474869);
|
||
|
DK(KP773010453, +0.773010453362736960810906609758469800971041293);
|
||
|
DK(KP956940335, +0.956940335732208864935797886980269969482849206);
|
||
|
DK(KP881921264, +0.881921264348355029712756863660388349508442621);
|
||
|
DK(KP098491403, +0.098491403357164253077197521291327432293052451);
|
||
|
DK(KP820678790, +0.820678790828660330972281985331011598767386482);
|
||
|
DK(KP303346683, +0.303346683607342391675883946941299872384187453);
|
||
|
DK(KP534511135, +0.534511135950791641089685961295362908582039528);
|
||
|
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
|
||
|
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
|
||
|
DK(KP198912367, +0.198912367379658006911597622644676228597850501);
|
||
|
DK(KP668178637, +0.668178637919298919997757686523080761552472251);
|
||
|
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
||
|
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
||
|
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) {
|
||
|
E Tm, TeM, TjR, Tkl, T7e, TcA, TiV, Tjm, T1G, TeW, TeZ, Ths, T7Q, TcJ, T7X;
|
||
|
E TcI, T29, Tf8, Tf5, Thv, T87, TcN, T8u, TcQ, T5K, Tg9, TfU, ThS, Taq, Tdm;
|
||
|
E Tbj, Tdx, TN, Tjl, TeP, TiP, T7l, TcB, T7s, TcC, T1f, TeR, TeU, Thr, T7B;
|
||
|
E TcG, T7I, TcF, T32, Tfj, Tfg, ThB, T8G, TcU, T93, TcX, T3X, TfI, Tft, ThH;
|
||
|
E T9h, Td3, Taa, Tde, T2A, Tf6, Tfb, Thw, T8m, TcR, T8x, TcO, T3t, Tfh, Tfm;
|
||
|
E ThC, T8V, TcY, T96, TcV, T4o, Tfu, TfL, ThI, T9w, Tdf, Tad, Td4, T6b, TfV;
|
||
|
E Tgc, ThT, TaF, Tdy, Tbm, Tdn, T4Q, ThN, TfA, TfN, Ta1, Tdh, Taf, Td8, T5h;
|
||
|
E ThO, TfF, TfO, T9M, Tdi, Tag, Tdb, T6D, ThY, Tg1, Tge, Tba, TdA, Tbo, Tdr;
|
||
|
E T74, ThZ, Tg6, Tgf, TaV, TdB, Tbp, Tdu;
|
||
|
{
|
||
|
E T1, TiT, T7, TiS, Te, T7a, Tk, T7c;
|
||
|
T1 = ri[0];
|
||
|
TiT = ii[0];
|
||
|
{
|
||
|
E T3, T6, T4, TiR, T2, T5;
|
||
|
T3 = ri[WS(rs, 32)];
|
||
|
T6 = ii[WS(rs, 32)];
|
||
|
T2 = W[62];
|
||
|
T4 = T2 * T3;
|
||
|
TiR = T2 * T6;
|
||
|
T5 = W[63];
|
||
|
T7 = FMA(T5, T6, T4);
|
||
|
TiS = FNMS(T5, T3, TiR);
|
||
|
}
|
||
|
{
|
||
|
E Ta, Td, Tb, T79, T9, Tc;
|
||
|
Ta = ri[WS(rs, 16)];
|
||
|
Td = ii[WS(rs, 16)];
|
||
|
T9 = W[30];
|
||
|
Tb = T9 * Ta;
|
||
|
T79 = T9 * Td;
|
||
|
Tc = W[31];
|
||
|
Te = FMA(Tc, Td, Tb);
|
||
|
T7a = FNMS(Tc, Ta, T79);
|
||
|
}
|
||
|
{
|
||
|
E Tg, Tj, Th, T7b, Tf, Ti;
|
||
|
Tg = ri[WS(rs, 48)];
|
||
|
Tj = ii[WS(rs, 48)];
|
||
|
Tf = W[94];
|
||
|
Th = Tf * Tg;
|
||
|
T7b = Tf * Tj;
|
||
|
Ti = W[95];
|
||
|
Tk = FMA(Ti, Tj, Th);
|
||
|
T7c = FNMS(Ti, Tg, T7b);
|
||
|
}
|
||
|
{
|
||
|
E T8, Tl, TjP, TjQ;
|
||
|
T8 = T1 + T7;
|
||
|
Tl = Te + Tk;
|
||
|
Tm = T8 + Tl;
|
||
|
TeM = T8 - Tl;
|
||
|
TjP = TiT - TiS;
|
||
|
TjQ = Te - Tk;
|
||
|
TjR = TjP - TjQ;
|
||
|
Tkl = TjQ + TjP;
|
||
|
}
|
||
|
{
|
||
|
E T78, T7d, TiQ, TiU;
|
||
|
T78 = T1 - T7;
|
||
|
T7d = T7a - T7c;
|
||
|
T7e = T78 - T7d;
|
||
|
TcA = T78 + T7d;
|
||
|
TiQ = T7a + T7c;
|
||
|
TiU = TiS + TiT;
|
||
|
TiV = TiQ + TiU;
|
||
|
Tjm = TiU - TiQ;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1l, T7L, T1E, T7V, T1r, T7N, T1y, T7T;
|
||
|
{
|
||
|
E T1h, T1k, T1i, T7K, T1g, T1j;
|
||
|
T1h = ri[WS(rs, 60)];
|
||
|
T1k = ii[WS(rs, 60)];
|
||
|
T1g = W[118];
|
||
|
T1i = T1g * T1h;
|
||
|
T7K = T1g * T1k;
|
||
|
T1j = W[119];
|
||
|
T1l = FMA(T1j, T1k, T1i);
|
||
|
T7L = FNMS(T1j, T1h, T7K);
|
||
|
}
|
||
|
{
|
||
|
E T1A, T1D, T1B, T7U, T1z, T1C;
|
||
|
T1A = ri[WS(rs, 44)];
|
||
|
T1D = ii[WS(rs, 44)];
|
||
|
T1z = W[86];
|
||
|
T1B = T1z * T1A;
|
||
|
T7U = T1z * T1D;
|
||
|
T1C = W[87];
|
||
|
T1E = FMA(T1C, T1D, T1B);
|
||
|
T7V = FNMS(T1C, T1A, T7U);
|
||
|
}
|
||
|
{
|
||
|
E T1n, T1q, T1o, T7M, T1m, T1p;
|
||
|
T1n = ri[WS(rs, 28)];
|
||
|
T1q = ii[WS(rs, 28)];
|
||
|
T1m = W[54];
|
||
|
T1o = T1m * T1n;
|
||
|
T7M = T1m * T1q;
|
||
|
T1p = W[55];
|
||
|
T1r = FMA(T1p, T1q, T1o);
|
||
|
T7N = FNMS(T1p, T1n, T7M);
|
||
|
}
|
||
|
{
|
||
|
E T1u, T1x, T1v, T7S, T1t, T1w;
|
||
|
T1u = ri[WS(rs, 12)];
|
||
|
T1x = ii[WS(rs, 12)];
|
||
|
T1t = W[22];
|
||
|
T1v = T1t * T1u;
|
||
|
T7S = T1t * T1x;
|
||
|
T1w = W[23];
|
||
|
T1y = FMA(T1w, T1x, T1v);
|
||
|
T7T = FNMS(T1w, T1u, T7S);
|
||
|
}
|
||
|
{
|
||
|
E T1s, T1F, TeX, TeY;
|
||
|
T1s = T1l + T1r;
|
||
|
T1F = T1y + T1E;
|
||
|
T1G = T1s + T1F;
|
||
|
TeW = T1s - T1F;
|
||
|
TeX = T7L + T7N;
|
||
|
TeY = T7T + T7V;
|
||
|
TeZ = TeX - TeY;
|
||
|
Ths = TeX + TeY;
|
||
|
}
|
||
|
{
|
||
|
E T7O, T7P, T7R, T7W;
|
||
|
T7O = T7L - T7N;
|
||
|
T7P = T1y - T1E;
|
||
|
T7Q = T7O + T7P;
|
||
|
TcJ = T7O - T7P;
|
||
|
T7R = T1l - T1r;
|
||
|
T7W = T7T - T7V;
|
||
|
T7X = T7R - T7W;
|
||
|
TcI = T7R + T7W;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1O, T82, T27, T8s, T1U, T84, T21, T8q;
|
||
|
{
|
||
|
E T1K, T1N, T1L, T81, T1J, T1M;
|
||
|
T1K = ri[WS(rs, 2)];
|
||
|
T1N = ii[WS(rs, 2)];
|
||
|
T1J = W[2];
|
||
|
T1L = T1J * T1K;
|
||
|
T81 = T1J * T1N;
|
||
|
T1M = W[3];
|
||
|
T1O = FMA(T1M, T1N, T1L);
|
||
|
T82 = FNMS(T1M, T1K, T81);
|
||
|
}
|
||
|
{
|
||
|
E T23, T26, T24, T8r, T22, T25;
|
||
|
T23 = ri[WS(rs, 50)];
|
||
|
T26 = ii[WS(rs, 50)];
|
||
|
T22 = W[98];
|
||
|
T24 = T22 * T23;
|
||
|
T8r = T22 * T26;
|
||
|
T25 = W[99];
|
||
|
T27 = FMA(T25, T26, T24);
|
||
|
T8s = FNMS(T25, T23, T8r);
|
||
|
}
|
||
|
{
|
||
|
E T1Q, T1T, T1R, T83, T1P, T1S;
|
||
|
T1Q = ri[WS(rs, 34)];
|
||
|
T1T = ii[WS(rs, 34)];
|
||
|
T1P = W[66];
|
||
|
T1R = T1P * T1Q;
|
||
|
T83 = T1P * T1T;
|
||
|
T1S = W[67];
|
||
|
T1U = FMA(T1S, T1T, T1R);
|
||
|
T84 = FNMS(T1S, T1Q, T83);
|
||
|
}
|
||
|
{
|
||
|
E T1X, T20, T1Y, T8p, T1W, T1Z;
|
||
|
T1X = ri[WS(rs, 18)];
|
||
|
T20 = ii[WS(rs, 18)];
|
||
|
T1W = W[34];
|
||
|
T1Y = T1W * T1X;
|
||
|
T8p = T1W * T20;
|
||
|
T1Z = W[35];
|
||
|
T21 = FMA(T1Z, T20, T1Y);
|
||
|
T8q = FNMS(T1Z, T1X, T8p);
|
||
|
}
|
||
|
{
|
||
|
E T1V, T28, Tf3, Tf4;
|
||
|
T1V = T1O + T1U;
|
||
|
T28 = T21 + T27;
|
||
|
T29 = T1V + T28;
|
||
|
Tf8 = T1V - T28;
|
||
|
Tf3 = T82 + T84;
|
||
|
Tf4 = T8q + T8s;
|
||
|
Tf5 = Tf3 - Tf4;
|
||
|
Thv = Tf3 + Tf4;
|
||
|
}
|
||
|
{
|
||
|
E T85, T86, T8o, T8t;
|
||
|
T85 = T82 - T84;
|
||
|
T86 = T21 - T27;
|
||
|
T87 = T85 + T86;
|
||
|
TcN = T85 - T86;
|
||
|
T8o = T1O - T1U;
|
||
|
T8t = T8q - T8s;
|
||
|
T8u = T8o - T8t;
|
||
|
TcQ = T8o + T8t;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T5p, Tal, T5I, Tbh, T5v, Tan, T5C, Tbf;
|
||
|
{
|
||
|
E T5l, T5o, T5m, Tak, T5k, T5n;
|
||
|
T5l = ri[WS(rs, 63)];
|
||
|
T5o = ii[WS(rs, 63)];
|
||
|
T5k = W[124];
|
||
|
T5m = T5k * T5l;
|
||
|
Tak = T5k * T5o;
|
||
|
T5n = W[125];
|
||
|
T5p = FMA(T5n, T5o, T5m);
|
||
|
Tal = FNMS(T5n, T5l, Tak);
|
||
|
}
|
||
|
{
|
||
|
E T5E, T5H, T5F, Tbg, T5D, T5G;
|
||
|
T5E = ri[WS(rs, 47)];
|
||
|
T5H = ii[WS(rs, 47)];
|
||
|
T5D = W[92];
|
||
|
T5F = T5D * T5E;
|
||
|
Tbg = T5D * T5H;
|
||
|
T5G = W[93];
|
||
|
T5I = FMA(T5G, T5H, T5F);
|
||
|
Tbh = FNMS(T5G, T5E, Tbg);
|
||
|
}
|
||
|
{
|
||
|
E T5r, T5u, T5s, Tam, T5q, T5t;
|
||
|
T5r = ri[WS(rs, 31)];
|
||
|
T5u = ii[WS(rs, 31)];
|
||
|
T5q = W[60];
|
||
|
T5s = T5q * T5r;
|
||
|
Tam = T5q * T5u;
|
||
|
T5t = W[61];
|
||
|
T5v = FMA(T5t, T5u, T5s);
|
||
|
Tan = FNMS(T5t, T5r, Tam);
|
||
|
}
|
||
|
{
|
||
|
E T5y, T5B, T5z, Tbe, T5x, T5A;
|
||
|
T5y = ri[WS(rs, 15)];
|
||
|
T5B = ii[WS(rs, 15)];
|
||
|
T5x = W[28];
|
||
|
T5z = T5x * T5y;
|
||
|
Tbe = T5x * T5B;
|
||
|
T5A = W[29];
|
||
|
T5C = FMA(T5A, T5B, T5z);
|
||
|
Tbf = FNMS(T5A, T5y, Tbe);
|
||
|
}
|
||
|
{
|
||
|
E T5w, T5J, TfS, TfT;
|
||
|
T5w = T5p + T5v;
|
||
|
T5J = T5C + T5I;
|
||
|
T5K = T5w + T5J;
|
||
|
Tg9 = T5w - T5J;
|
||
|
TfS = Tal + Tan;
|
||
|
TfT = Tbf + Tbh;
|
||
|
TfU = TfS - TfT;
|
||
|
ThS = TfS + TfT;
|
||
|
}
|
||
|
{
|
||
|
E Tao, Tap, Tbd, Tbi;
|
||
|
Tao = Tal - Tan;
|
||
|
Tap = T5C - T5I;
|
||
|
Taq = Tao + Tap;
|
||
|
Tdm = Tao - Tap;
|
||
|
Tbd = T5p - T5v;
|
||
|
Tbi = Tbf - Tbh;
|
||
|
Tbj = Tbd - Tbi;
|
||
|
Tdx = Tbd + Tbi;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Ts, T7g, TL, T7q, Ty, T7i, TF, T7o;
|
||
|
{
|
||
|
E To, Tr, Tp, T7f, Tn, Tq;
|
||
|
To = ri[WS(rs, 8)];
|
||
|
Tr = ii[WS(rs, 8)];
|
||
|
Tn = W[14];
|
||
|
Tp = Tn * To;
|
||
|
T7f = Tn * Tr;
|
||
|
Tq = W[15];
|
||
|
Ts = FMA(Tq, Tr, Tp);
|
||
|
T7g = FNMS(Tq, To, T7f);
|
||
|
}
|
||
|
{
|
||
|
E TH, TK, TI, T7p, TG, TJ;
|
||
|
TH = ri[WS(rs, 24)];
|
||
|
TK = ii[WS(rs, 24)];
|
||
|
TG = W[46];
|
||
|
TI = TG * TH;
|
||
|
T7p = TG * TK;
|
||
|
TJ = W[47];
|
||
|
TL = FMA(TJ, TK, TI);
|
||
|
T7q = FNMS(TJ, TH, T7p);
|
||
|
}
|
||
|
{
|
||
|
E Tu, Tx, Tv, T7h, Tt, Tw;
|
||
|
Tu = ri[WS(rs, 40)];
|
||
|
Tx = ii[WS(rs, 40)];
|
||
|
Tt = W[78];
|
||
|
Tv = Tt * Tu;
|
||
|
T7h = Tt * Tx;
|
||
|
Tw = W[79];
|
||
|
Ty = FMA(Tw, Tx, Tv);
|
||
|
T7i = FNMS(Tw, Tu, T7h);
|
||
|
}
|
||
|
{
|
||
|
E TB, TE, TC, T7n, TA, TD;
|
||
|
TB = ri[WS(rs, 56)];
|
||
|
TE = ii[WS(rs, 56)];
|
||
|
TA = W[110];
|
||
|
TC = TA * TB;
|
||
|
T7n = TA * TE;
|
||
|
TD = W[111];
|
||
|
TF = FMA(TD, TE, TC);
|
||
|
T7o = FNMS(TD, TB, T7n);
|
||
|
}
|
||
|
{
|
||
|
E Tz, TM, TeN, TeO;
|
||
|
Tz = Ts + Ty;
|
||
|
TM = TF + TL;
|
||
|
TN = Tz + TM;
|
||
|
Tjl = TM - Tz;
|
||
|
TeN = T7g + T7i;
|
||
|
TeO = T7o + T7q;
|
||
|
TeP = TeN - TeO;
|
||
|
TiP = TeN + TeO;
|
||
|
}
|
||
|
{
|
||
|
E T7j, T7k, T7m, T7r;
|
||
|
T7j = T7g - T7i;
|
||
|
T7k = Ts - Ty;
|
||
|
T7l = T7j - T7k;
|
||
|
TcB = T7k + T7j;
|
||
|
T7m = TF - TL;
|
||
|
T7r = T7o - T7q;
|
||
|
T7s = T7m + T7r;
|
||
|
TcC = T7m - T7r;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E TU, T7w, T1d, T7G, T10, T7y, T17, T7E;
|
||
|
{
|
||
|
E TQ, TT, TR, T7v, TP, TS;
|
||
|
TQ = ri[WS(rs, 4)];
|
||
|
TT = ii[WS(rs, 4)];
|
||
|
TP = W[6];
|
||
|
TR = TP * TQ;
|
||
|
T7v = TP * TT;
|
||
|
TS = W[7];
|
||
|
TU = FMA(TS, TT, TR);
|
||
|
T7w = FNMS(TS, TQ, T7v);
|
||
|
}
|
||
|
{
|
||
|
E T19, T1c, T1a, T7F, T18, T1b;
|
||
|
T19 = ri[WS(rs, 52)];
|
||
|
T1c = ii[WS(rs, 52)];
|
||
|
T18 = W[102];
|
||
|
T1a = T18 * T19;
|
||
|
T7F = T18 * T1c;
|
||
|
T1b = W[103];
|
||
|
T1d = FMA(T1b, T1c, T1a);
|
||
|
T7G = FNMS(T1b, T19, T7F);
|
||
|
}
|
||
|
{
|
||
|
E TW, TZ, TX, T7x, TV, TY;
|
||
|
TW = ri[WS(rs, 36)];
|
||
|
TZ = ii[WS(rs, 36)];
|
||
|
TV = W[70];
|
||
|
TX = TV * TW;
|
||
|
T7x = TV * TZ;
|
||
|
TY = W[71];
|
||
|
T10 = FMA(TY, TZ, TX);
|
||
|
T7y = FNMS(TY, TW, T7x);
|
||
|
}
|
||
|
{
|
||
|
E T13, T16, T14, T7D, T12, T15;
|
||
|
T13 = ri[WS(rs, 20)];
|
||
|
T16 = ii[WS(rs, 20)];
|
||
|
T12 = W[38];
|
||
|
T14 = T12 * T13;
|
||
|
T7D = T12 * T16;
|
||
|
T15 = W[39];
|
||
|
T17 = FMA(T15, T16, T14);
|
||
|
T7E = FNMS(T15, T13, T7D);
|
||
|
}
|
||
|
{
|
||
|
E T11, T1e, TeS, TeT;
|
||
|
T11 = TU + T10;
|
||
|
T1e = T17 + T1d;
|
||
|
T1f = T11 + T1e;
|
||
|
TeR = T11 - T1e;
|
||
|
TeS = T7w + T7y;
|
||
|
TeT = T7E + T7G;
|
||
|
TeU = TeS - TeT;
|
||
|
Thr = TeS + TeT;
|
||
|
}
|
||
|
{
|
||
|
E T7z, T7A, T7C, T7H;
|
||
|
T7z = T7w - T7y;
|
||
|
T7A = T17 - T1d;
|
||
|
T7B = T7z + T7A;
|
||
|
TcG = T7z - T7A;
|
||
|
T7C = TU - T10;
|
||
|
T7H = T7E - T7G;
|
||
|
T7I = T7C - T7H;
|
||
|
TcF = T7C + T7H;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T2H, T8B, T30, T91, T2N, T8D, T2U, T8Z;
|
||
|
{
|
||
|
E T2D, T2G, T2E, T8A, T2C, T2F;
|
||
|
T2D = ri[WS(rs, 62)];
|
||
|
T2G = ii[WS(rs, 62)];
|
||
|
T2C = W[122];
|
||
|
T2E = T2C * T2D;
|
||
|
T8A = T2C * T2G;
|
||
|
T2F = W[123];
|
||
|
T2H = FMA(T2F, T2G, T2E);
|
||
|
T8B = FNMS(T2F, T2D, T8A);
|
||
|
}
|
||
|
{
|
||
|
E T2W, T2Z, T2X, T90, T2V, T2Y;
|
||
|
T2W = ri[WS(rs, 46)];
|
||
|
T2Z = ii[WS(rs, 46)];
|
||
|
T2V = W[90];
|
||
|
T2X = T2V * T2W;
|
||
|
T90 = T2V * T2Z;
|
||
|
T2Y = W[91];
|
||
|
T30 = FMA(T2Y, T2Z, T2X);
|
||
|
T91 = FNMS(T2Y, T2W, T90);
|
||
|
}
|
||
|
{
|
||
|
E T2J, T2M, T2K, T8C, T2I, T2L;
|
||
|
T2J = ri[WS(rs, 30)];
|
||
|
T2M = ii[WS(rs, 30)];
|
||
|
T2I = W[58];
|
||
|
T2K = T2I * T2J;
|
||
|
T8C = T2I * T2M;
|
||
|
T2L = W[59];
|
||
|
T2N = FMA(T2L, T2M, T2K);
|
||
|
T8D = FNMS(T2L, T2J, T8C);
|
||
|
}
|
||
|
{
|
||
|
E T2Q, T2T, T2R, T8Y, T2P, T2S;
|
||
|
T2Q = ri[WS(rs, 14)];
|
||
|
T2T = ii[WS(rs, 14)];
|
||
|
T2P = W[26];
|
||
|
T2R = T2P * T2Q;
|
||
|
T8Y = T2P * T2T;
|
||
|
T2S = W[27];
|
||
|
T2U = FMA(T2S, T2T, T2R);
|
||
|
T8Z = FNMS(T2S, T2Q, T8Y);
|
||
|
}
|
||
|
{
|
||
|
E T2O, T31, Tfe, Tff;
|
||
|
T2O = T2H + T2N;
|
||
|
T31 = T2U + T30;
|
||
|
T32 = T2O + T31;
|
||
|
Tfj = T2O - T31;
|
||
|
Tfe = T8B + T8D;
|
||
|
Tff = T8Z + T91;
|
||
|
Tfg = Tfe - Tff;
|
||
|
ThB = Tfe + Tff;
|
||
|
}
|
||
|
{
|
||
|
E T8E, T8F, T8X, T92;
|
||
|
T8E = T8B - T8D;
|
||
|
T8F = T2U - T30;
|
||
|
T8G = T8E + T8F;
|
||
|
TcU = T8E - T8F;
|
||
|
T8X = T2H - T2N;
|
||
|
T92 = T8Z - T91;
|
||
|
T93 = T8X - T92;
|
||
|
TcX = T8X + T92;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T3C, T9c, T3V, Ta8, T3I, T9e, T3P, Ta6;
|
||
|
{
|
||
|
E T3y, T3B, T3z, T9b, T3x, T3A;
|
||
|
T3y = ri[WS(rs, 1)];
|
||
|
T3B = ii[WS(rs, 1)];
|
||
|
T3x = W[0];
|
||
|
T3z = T3x * T3y;
|
||
|
T9b = T3x * T3B;
|
||
|
T3A = W[1];
|
||
|
T3C = FMA(T3A, T3B, T3z);
|
||
|
T9c = FNMS(T3A, T3y, T9b);
|
||
|
}
|
||
|
{
|
||
|
E T3R, T3U, T3S, Ta7, T3Q, T3T;
|
||
|
T3R = ri[WS(rs, 49)];
|
||
|
T3U = ii[WS(rs, 49)];
|
||
|
T3Q = W[96];
|
||
|
T3S = T3Q * T3R;
|
||
|
Ta7 = T3Q * T3U;
|
||
|
T3T = W[97];
|
||
|
T3V = FMA(T3T, T3U, T3S);
|
||
|
Ta8 = FNMS(T3T, T3R, Ta7);
|
||
|
}
|
||
|
{
|
||
|
E T3E, T3H, T3F, T9d, T3D, T3G;
|
||
|
T3E = ri[WS(rs, 33)];
|
||
|
T3H = ii[WS(rs, 33)];
|
||
|
T3D = W[64];
|
||
|
T3F = T3D * T3E;
|
||
|
T9d = T3D * T3H;
|
||
|
T3G = W[65];
|
||
|
T3I = FMA(T3G, T3H, T3F);
|
||
|
T9e = FNMS(T3G, T3E, T9d);
|
||
|
}
|
||
|
{
|
||
|
E T3L, T3O, T3M, Ta5, T3K, T3N;
|
||
|
T3L = ri[WS(rs, 17)];
|
||
|
T3O = ii[WS(rs, 17)];
|
||
|
T3K = W[32];
|
||
|
T3M = T3K * T3L;
|
||
|
Ta5 = T3K * T3O;
|
||
|
T3N = W[33];
|
||
|
T3P = FMA(T3N, T3O, T3M);
|
||
|
Ta6 = FNMS(T3N, T3L, Ta5);
|
||
|
}
|
||
|
{
|
||
|
E T3J, T3W, Tfr, Tfs;
|
||
|
T3J = T3C + T3I;
|
||
|
T3W = T3P + T3V;
|
||
|
T3X = T3J + T3W;
|
||
|
TfI = T3J - T3W;
|
||
|
Tfr = T9c + T9e;
|
||
|
Tfs = Ta6 + Ta8;
|
||
|
Tft = Tfr - Tfs;
|
||
|
ThH = Tfr + Tfs;
|
||
|
}
|
||
|
{
|
||
|
E T9f, T9g, Ta4, Ta9;
|
||
|
T9f = T9c - T9e;
|
||
|
T9g = T3P - T3V;
|
||
|
T9h = T9f + T9g;
|
||
|
Td3 = T9f - T9g;
|
||
|
Ta4 = T3C - T3I;
|
||
|
Ta9 = Ta6 - Ta8;
|
||
|
Taa = Ta4 - Ta9;
|
||
|
Tde = Ta4 + Ta9;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T2f, T8a, T2y, T8j, T2l, T8c, T2s, T8h;
|
||
|
{
|
||
|
E T2b, T2e, T2c, T89, T2a, T2d;
|
||
|
T2b = ri[WS(rs, 10)];
|
||
|
T2e = ii[WS(rs, 10)];
|
||
|
T2a = W[18];
|
||
|
T2c = T2a * T2b;
|
||
|
T89 = T2a * T2e;
|
||
|
T2d = W[19];
|
||
|
T2f = FMA(T2d, T2e, T2c);
|
||
|
T8a = FNMS(T2d, T2b, T89);
|
||
|
}
|
||
|
{
|
||
|
E T2u, T2x, T2v, T8i, T2t, T2w;
|
||
|
T2u = ri[WS(rs, 26)];
|
||
|
T2x = ii[WS(rs, 26)];
|
||
|
T2t = W[50];
|
||
|
T2v = T2t * T2u;
|
||
|
T8i = T2t * T2x;
|
||
|
T2w = W[51];
|
||
|
T2y = FMA(T2w, T2x, T2v);
|
||
|
T8j = FNMS(T2w, T2u, T8i);
|
||
|
}
|
||
|
{
|
||
|
E T2h, T2k, T2i, T8b, T2g, T2j;
|
||
|
T2h = ri[WS(rs, 42)];
|
||
|
T2k = ii[WS(rs, 42)];
|
||
|
T2g = W[82];
|
||
|
T2i = T2g * T2h;
|
||
|
T8b = T2g * T2k;
|
||
|
T2j = W[83];
|
||
|
T2l = FMA(T2j, T2k, T2i);
|
||
|
T8c = FNMS(T2j, T2h, T8b);
|
||
|
}
|
||
|
{
|
||
|
E T2o, T2r, T2p, T8g, T2n, T2q;
|
||
|
T2o = ri[WS(rs, 58)];
|
||
|
T2r = ii[WS(rs, 58)];
|
||
|
T2n = W[114];
|
||
|
T2p = T2n * T2o;
|
||
|
T8g = T2n * T2r;
|
||
|
T2q = W[115];
|
||
|
T2s = FMA(T2q, T2r, T2p);
|
||
|
T8h = FNMS(T2q, T2o, T8g);
|
||
|
}
|
||
|
{
|
||
|
E T2m, T2z, Tf9, Tfa;
|
||
|
T2m = T2f + T2l;
|
||
|
T2z = T2s + T2y;
|
||
|
T2A = T2m + T2z;
|
||
|
Tf6 = T2z - T2m;
|
||
|
Tf9 = T8a + T8c;
|
||
|
Tfa = T8h + T8j;
|
||
|
Tfb = Tf9 - Tfa;
|
||
|
Thw = Tf9 + Tfa;
|
||
|
{
|
||
|
E T8e, T8w, T8l, T8v;
|
||
|
{
|
||
|
E T88, T8d, T8f, T8k;
|
||
|
T88 = T2f - T2l;
|
||
|
T8d = T8a - T8c;
|
||
|
T8e = T88 + T8d;
|
||
|
T8w = T8d - T88;
|
||
|
T8f = T2s - T2y;
|
||
|
T8k = T8h - T8j;
|
||
|
T8l = T8f - T8k;
|
||
|
T8v = T8f + T8k;
|
||
|
}
|
||
|
T8m = T8e - T8l;
|
||
|
TcR = T8e + T8l;
|
||
|
T8x = T8v - T8w;
|
||
|
TcO = T8w + T8v;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T38, T8J, T3r, T8S, T3e, T8L, T3l, T8Q;
|
||
|
{
|
||
|
E T34, T37, T35, T8I, T33, T36;
|
||
|
T34 = ri[WS(rs, 6)];
|
||
|
T37 = ii[WS(rs, 6)];
|
||
|
T33 = W[10];
|
||
|
T35 = T33 * T34;
|
||
|
T8I = T33 * T37;
|
||
|
T36 = W[11];
|
||
|
T38 = FMA(T36, T37, T35);
|
||
|
T8J = FNMS(T36, T34, T8I);
|
||
|
}
|
||
|
{
|
||
|
E T3n, T3q, T3o, T8R, T3m, T3p;
|
||
|
T3n = ri[WS(rs, 22)];
|
||
|
T3q = ii[WS(rs, 22)];
|
||
|
T3m = W[42];
|
||
|
T3o = T3m * T3n;
|
||
|
T8R = T3m * T3q;
|
||
|
T3p = W[43];
|
||
|
T3r = FMA(T3p, T3q, T3o);
|
||
|
T8S = FNMS(T3p, T3n, T8R);
|
||
|
}
|
||
|
{
|
||
|
E T3a, T3d, T3b, T8K, T39, T3c;
|
||
|
T3a = ri[WS(rs, 38)];
|
||
|
T3d = ii[WS(rs, 38)];
|
||
|
T39 = W[74];
|
||
|
T3b = T39 * T3a;
|
||
|
T8K = T39 * T3d;
|
||
|
T3c = W[75];
|
||
|
T3e = FMA(T3c, T3d, T3b);
|
||
|
T8L = FNMS(T3c, T3a, T8K);
|
||
|
}
|
||
|
{
|
||
|
E T3h, T3k, T3i, T8P, T3g, T3j;
|
||
|
T3h = ri[WS(rs, 54)];
|
||
|
T3k = ii[WS(rs, 54)];
|
||
|
T3g = W[106];
|
||
|
T3i = T3g * T3h;
|
||
|
T8P = T3g * T3k;
|
||
|
T3j = W[107];
|
||
|
T3l = FMA(T3j, T3k, T3i);
|
||
|
T8Q = FNMS(T3j, T3h, T8P);
|
||
|
}
|
||
|
{
|
||
|
E T3f, T3s, Tfk, Tfl;
|
||
|
T3f = T38 + T3e;
|
||
|
T3s = T3l + T3r;
|
||
|
T3t = T3f + T3s;
|
||
|
Tfh = T3s - T3f;
|
||
|
Tfk = T8J + T8L;
|
||
|
Tfl = T8Q + T8S;
|
||
|
Tfm = Tfk - Tfl;
|
||
|
ThC = Tfk + Tfl;
|
||
|
{
|
||
|
E T8N, T95, T8U, T94;
|
||
|
{
|
||
|
E T8H, T8M, T8O, T8T;
|
||
|
T8H = T38 - T3e;
|
||
|
T8M = T8J - T8L;
|
||
|
T8N = T8H + T8M;
|
||
|
T95 = T8M - T8H;
|
||
|
T8O = T3l - T3r;
|
||
|
T8T = T8Q - T8S;
|
||
|
T8U = T8O - T8T;
|
||
|
T94 = T8O + T8T;
|
||
|
}
|
||
|
T8V = T8N - T8U;
|
||
|
TcY = T8N + T8U;
|
||
|
T96 = T94 - T95;
|
||
|
TcV = T95 + T94;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T43, T9k, T4m, T9t, T49, T9m, T4g, T9r;
|
||
|
{
|
||
|
E T3Z, T42, T40, T9j, T3Y, T41;
|
||
|
T3Z = ri[WS(rs, 9)];
|
||
|
T42 = ii[WS(rs, 9)];
|
||
|
T3Y = W[16];
|
||
|
T40 = T3Y * T3Z;
|
||
|
T9j = T3Y * T42;
|
||
|
T41 = W[17];
|
||
|
T43 = FMA(T41, T42, T40);
|
||
|
T9k = FNMS(T41, T3Z, T9j);
|
||
|
}
|
||
|
{
|
||
|
E T4i, T4l, T4j, T9s, T4h, T4k;
|
||
|
T4i = ri[WS(rs, 25)];
|
||
|
T4l = ii[WS(rs, 25)];
|
||
|
T4h = W[48];
|
||
|
T4j = T4h * T4i;
|
||
|
T9s = T4h * T4l;
|
||
|
T4k = W[49];
|
||
|
T4m = FMA(T4k, T4l, T4j);
|
||
|
T9t = FNMS(T4k, T4i, T9s);
|
||
|
}
|
||
|
{
|
||
|
E T45, T48, T46, T9l, T44, T47;
|
||
|
T45 = ri[WS(rs, 41)];
|
||
|
T48 = ii[WS(rs, 41)];
|
||
|
T44 = W[80];
|
||
|
T46 = T44 * T45;
|
||
|
T9l = T44 * T48;
|
||
|
T47 = W[81];
|
||
|
T49 = FMA(T47, T48, T46);
|
||
|
T9m = FNMS(T47, T45, T9l);
|
||
|
}
|
||
|
{
|
||
|
E T4c, T4f, T4d, T9q, T4b, T4e;
|
||
|
T4c = ri[WS(rs, 57)];
|
||
|
T4f = ii[WS(rs, 57)];
|
||
|
T4b = W[112];
|
||
|
T4d = T4b * T4c;
|
||
|
T9q = T4b * T4f;
|
||
|
T4e = W[113];
|
||
|
T4g = FMA(T4e, T4f, T4d);
|
||
|
T9r = FNMS(T4e, T4c, T9q);
|
||
|
}
|
||
|
{
|
||
|
E T4a, T4n, TfJ, TfK;
|
||
|
T4a = T43 + T49;
|
||
|
T4n = T4g + T4m;
|
||
|
T4o = T4a + T4n;
|
||
|
Tfu = T4n - T4a;
|
||
|
TfJ = T9k + T9m;
|
||
|
TfK = T9r + T9t;
|
||
|
TfL = TfJ - TfK;
|
||
|
ThI = TfJ + TfK;
|
||
|
{
|
||
|
E T9o, Tac, T9v, Tab;
|
||
|
{
|
||
|
E T9i, T9n, T9p, T9u;
|
||
|
T9i = T43 - T49;
|
||
|
T9n = T9k - T9m;
|
||
|
T9o = T9i + T9n;
|
||
|
Tac = T9n - T9i;
|
||
|
T9p = T4g - T4m;
|
||
|
T9u = T9r - T9t;
|
||
|
T9v = T9p - T9u;
|
||
|
Tab = T9p + T9u;
|
||
|
}
|
||
|
T9w = T9o - T9v;
|
||
|
Tdf = T9o + T9v;
|
||
|
Tad = Tab - Tac;
|
||
|
Td4 = Tac + Tab;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T5Q, Tat, T69, TaC, T5W, Tav, T63, TaA;
|
||
|
{
|
||
|
E T5M, T5P, T5N, Tas, T5L, T5O;
|
||
|
T5M = ri[WS(rs, 7)];
|
||
|
T5P = ii[WS(rs, 7)];
|
||
|
T5L = W[12];
|
||
|
T5N = T5L * T5M;
|
||
|
Tas = T5L * T5P;
|
||
|
T5O = W[13];
|
||
|
T5Q = FMA(T5O, T5P, T5N);
|
||
|
Tat = FNMS(T5O, T5M, Tas);
|
||
|
}
|
||
|
{
|
||
|
E T65, T68, T66, TaB, T64, T67;
|
||
|
T65 = ri[WS(rs, 23)];
|
||
|
T68 = ii[WS(rs, 23)];
|
||
|
T64 = W[44];
|
||
|
T66 = T64 * T65;
|
||
|
TaB = T64 * T68;
|
||
|
T67 = W[45];
|
||
|
T69 = FMA(T67, T68, T66);
|
||
|
TaC = FNMS(T67, T65, TaB);
|
||
|
}
|
||
|
{
|
||
|
E T5S, T5V, T5T, Tau, T5R, T5U;
|
||
|
T5S = ri[WS(rs, 39)];
|
||
|
T5V = ii[WS(rs, 39)];
|
||
|
T5R = W[76];
|
||
|
T5T = T5R * T5S;
|
||
|
Tau = T5R * T5V;
|
||
|
T5U = W[77];
|
||
|
T5W = FMA(T5U, T5V, T5T);
|
||
|
Tav = FNMS(T5U, T5S, Tau);
|
||
|
}
|
||
|
{
|
||
|
E T5Z, T62, T60, Taz, T5Y, T61;
|
||
|
T5Z = ri[WS(rs, 55)];
|
||
|
T62 = ii[WS(rs, 55)];
|
||
|
T5Y = W[108];
|
||
|
T60 = T5Y * T5Z;
|
||
|
Taz = T5Y * T62;
|
||
|
T61 = W[109];
|
||
|
T63 = FMA(T61, T62, T60);
|
||
|
TaA = FNMS(T61, T5Z, Taz);
|
||
|
}
|
||
|
{
|
||
|
E T5X, T6a, Tga, Tgb;
|
||
|
T5X = T5Q + T5W;
|
||
|
T6a = T63 + T69;
|
||
|
T6b = T5X + T6a;
|
||
|
TfV = T6a - T5X;
|
||
|
Tga = Tat + Tav;
|
||
|
Tgb = TaA + TaC;
|
||
|
Tgc = Tga - Tgb;
|
||
|
ThT = Tga + Tgb;
|
||
|
{
|
||
|
E Tax, Tbl, TaE, Tbk;
|
||
|
{
|
||
|
E Tar, Taw, Tay, TaD;
|
||
|
Tar = T5Q - T5W;
|
||
|
Taw = Tat - Tav;
|
||
|
Tax = Tar + Taw;
|
||
|
Tbl = Taw - Tar;
|
||
|
Tay = T63 - T69;
|
||
|
TaD = TaA - TaC;
|
||
|
TaE = Tay - TaD;
|
||
|
Tbk = Tay + TaD;
|
||
|
}
|
||
|
TaF = Tax - TaE;
|
||
|
Tdy = Tax + TaE;
|
||
|
Tbm = Tbk - Tbl;
|
||
|
Tdn = Tbl + Tbk;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T4v, T9V, T4O, T9R, T4B, T9X, T4I, T9P;
|
||
|
{
|
||
|
E T4r, T4u, T4s, T9U, T4q, T4t;
|
||
|
T4r = ri[WS(rs, 5)];
|
||
|
T4u = ii[WS(rs, 5)];
|
||
|
T4q = W[8];
|
||
|
T4s = T4q * T4r;
|
||
|
T9U = T4q * T4u;
|
||
|
T4t = W[9];
|
||
|
T4v = FMA(T4t, T4u, T4s);
|
||
|
T9V = FNMS(T4t, T4r, T9U);
|
||
|
}
|
||
|
{
|
||
|
E T4K, T4N, T4L, T9Q, T4J, T4M;
|
||
|
T4K = ri[WS(rs, 53)];
|
||
|
T4N = ii[WS(rs, 53)];
|
||
|
T4J = W[104];
|
||
|
T4L = T4J * T4K;
|
||
|
T9Q = T4J * T4N;
|
||
|
T4M = W[105];
|
||
|
T4O = FMA(T4M, T4N, T4L);
|
||
|
T9R = FNMS(T4M, T4K, T9Q);
|
||
|
}
|
||
|
{
|
||
|
E T4x, T4A, T4y, T9W, T4w, T4z;
|
||
|
T4x = ri[WS(rs, 37)];
|
||
|
T4A = ii[WS(rs, 37)];
|
||
|
T4w = W[72];
|
||
|
T4y = T4w * T4x;
|
||
|
T9W = T4w * T4A;
|
||
|
T4z = W[73];
|
||
|
T4B = FMA(T4z, T4A, T4y);
|
||
|
T9X = FNMS(T4z, T4x, T9W);
|
||
|
}
|
||
|
{
|
||
|
E T4E, T4H, T4F, T9O, T4D, T4G;
|
||
|
T4E = ri[WS(rs, 21)];
|
||
|
T4H = ii[WS(rs, 21)];
|
||
|
T4D = W[40];
|
||
|
T4F = T4D * T4E;
|
||
|
T9O = T4D * T4H;
|
||
|
T4G = W[41];
|
||
|
T4I = FMA(T4G, T4H, T4F);
|
||
|
T9P = FNMS(T4G, T4E, T9O);
|
||
|
}
|
||
|
{
|
||
|
E T4C, T4P, Tfz, Tfw, Tfx, Tfy;
|
||
|
T4C = T4v + T4B;
|
||
|
T4P = T4I + T4O;
|
||
|
Tfz = T4C - T4P;
|
||
|
Tfw = T9V + T9X;
|
||
|
Tfx = T9P + T9R;
|
||
|
Tfy = Tfw - Tfx;
|
||
|
T4Q = T4C + T4P;
|
||
|
ThN = Tfw + Tfx;
|
||
|
TfA = Tfy - Tfz;
|
||
|
TfN = Tfz + Tfy;
|
||
|
}
|
||
|
{
|
||
|
E T9T, Td7, Ta0, Td6;
|
||
|
{
|
||
|
E T9N, T9S, T9Y, T9Z;
|
||
|
T9N = T4v - T4B;
|
||
|
T9S = T9P - T9R;
|
||
|
T9T = T9N - T9S;
|
||
|
Td7 = T9N + T9S;
|
||
|
T9Y = T9V - T9X;
|
||
|
T9Z = T4I - T4O;
|
||
|
Ta0 = T9Y + T9Z;
|
||
|
Td6 = T9Y - T9Z;
|
||
|
}
|
||
|
Ta1 = FNMS(KP414213562, Ta0, T9T);
|
||
|
Tdh = FMA(KP414213562, Td6, Td7);
|
||
|
Taf = FMA(KP414213562, T9T, Ta0);
|
||
|
Td8 = FNMS(KP414213562, Td7, Td6);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T4W, T9G, T5f, T9C, T52, T9I, T59, T9A;
|
||
|
{
|
||
|
E T4S, T4V, T4T, T9F, T4R, T4U;
|
||
|
T4S = ri[WS(rs, 61)];
|
||
|
T4V = ii[WS(rs, 61)];
|
||
|
T4R = W[120];
|
||
|
T4T = T4R * T4S;
|
||
|
T9F = T4R * T4V;
|
||
|
T4U = W[121];
|
||
|
T4W = FMA(T4U, T4V, T4T);
|
||
|
T9G = FNMS(T4U, T4S, T9F);
|
||
|
}
|
||
|
{
|
||
|
E T5b, T5e, T5c, T9B, T5a, T5d;
|
||
|
T5b = ri[WS(rs, 45)];
|
||
|
T5e = ii[WS(rs, 45)];
|
||
|
T5a = W[88];
|
||
|
T5c = T5a * T5b;
|
||
|
T9B = T5a * T5e;
|
||
|
T5d = W[89];
|
||
|
T5f = FMA(T5d, T5e, T5c);
|
||
|
T9C = FNMS(T5d, T5b, T9B);
|
||
|
}
|
||
|
{
|
||
|
E T4Y, T51, T4Z, T9H, T4X, T50;
|
||
|
T4Y = ri[WS(rs, 29)];
|
||
|
T51 = ii[WS(rs, 29)];
|
||
|
T4X = W[56];
|
||
|
T4Z = T4X * T4Y;
|
||
|
T9H = T4X * T51;
|
||
|
T50 = W[57];
|
||
|
T52 = FMA(T50, T51, T4Z);
|
||
|
T9I = FNMS(T50, T4Y, T9H);
|
||
|
}
|
||
|
{
|
||
|
E T55, T58, T56, T9z, T54, T57;
|
||
|
T55 = ri[WS(rs, 13)];
|
||
|
T58 = ii[WS(rs, 13)];
|
||
|
T54 = W[24];
|
||
|
T56 = T54 * T55;
|
||
|
T9z = T54 * T58;
|
||
|
T57 = W[25];
|
||
|
T59 = FMA(T57, T58, T56);
|
||
|
T9A = FNMS(T57, T55, T9z);
|
||
|
}
|
||
|
{
|
||
|
E T53, T5g, TfB, TfC, TfD, TfE;
|
||
|
T53 = T4W + T52;
|
||
|
T5g = T59 + T5f;
|
||
|
TfB = T53 - T5g;
|
||
|
TfC = T9G + T9I;
|
||
|
TfD = T9A + T9C;
|
||
|
TfE = TfC - TfD;
|
||
|
T5h = T53 + T5g;
|
||
|
ThO = TfC + TfD;
|
||
|
TfF = TfB + TfE;
|
||
|
TfO = TfB - TfE;
|
||
|
}
|
||
|
{
|
||
|
E T9E, Tda, T9L, Td9;
|
||
|
{
|
||
|
E T9y, T9D, T9J, T9K;
|
||
|
T9y = T4W - T52;
|
||
|
T9D = T9A - T9C;
|
||
|
T9E = T9y - T9D;
|
||
|
Tda = T9y + T9D;
|
||
|
T9J = T9G - T9I;
|
||
|
T9K = T59 - T5f;
|
||
|
T9L = T9J + T9K;
|
||
|
Td9 = T9J - T9K;
|
||
|
}
|
||
|
T9M = FMA(KP414213562, T9L, T9E);
|
||
|
Tdi = FNMS(KP414213562, Td9, Tda);
|
||
|
Tag = FNMS(KP414213562, T9E, T9L);
|
||
|
Tdb = FMA(KP414213562, Tda, Td9);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T6i, Tb4, T6B, Tb0, T6o, Tb6, T6v, TaY;
|
||
|
{
|
||
|
E T6e, T6h, T6f, Tb3, T6d, T6g;
|
||
|
T6e = ri[WS(rs, 3)];
|
||
|
T6h = ii[WS(rs, 3)];
|
||
|
T6d = W[4];
|
||
|
T6f = T6d * T6e;
|
||
|
Tb3 = T6d * T6h;
|
||
|
T6g = W[5];
|
||
|
T6i = FMA(T6g, T6h, T6f);
|
||
|
Tb4 = FNMS(T6g, T6e, Tb3);
|
||
|
}
|
||
|
{
|
||
|
E T6x, T6A, T6y, TaZ, T6w, T6z;
|
||
|
T6x = ri[WS(rs, 51)];
|
||
|
T6A = ii[WS(rs, 51)];
|
||
|
T6w = W[100];
|
||
|
T6y = T6w * T6x;
|
||
|
TaZ = T6w * T6A;
|
||
|
T6z = W[101];
|
||
|
T6B = FMA(T6z, T6A, T6y);
|
||
|
Tb0 = FNMS(T6z, T6x, TaZ);
|
||
|
}
|
||
|
{
|
||
|
E T6k, T6n, T6l, Tb5, T6j, T6m;
|
||
|
T6k = ri[WS(rs, 35)];
|
||
|
T6n = ii[WS(rs, 35)];
|
||
|
T6j = W[68];
|
||
|
T6l = T6j * T6k;
|
||
|
Tb5 = T6j * T6n;
|
||
|
T6m = W[69];
|
||
|
T6o = FMA(T6m, T6n, T6l);
|
||
|
Tb6 = FNMS(T6m, T6k, Tb5);
|
||
|
}
|
||
|
{
|
||
|
E T6r, T6u, T6s, TaX, T6q, T6t;
|
||
|
T6r = ri[WS(rs, 19)];
|
||
|
T6u = ii[WS(rs, 19)];
|
||
|
T6q = W[36];
|
||
|
T6s = T6q * T6r;
|
||
|
TaX = T6q * T6u;
|
||
|
T6t = W[37];
|
||
|
T6v = FMA(T6t, T6u, T6s);
|
||
|
TaY = FNMS(T6t, T6r, TaX);
|
||
|
}
|
||
|
{
|
||
|
E T6p, T6C, Tg0, TfX, TfY, TfZ;
|
||
|
T6p = T6i + T6o;
|
||
|
T6C = T6v + T6B;
|
||
|
Tg0 = T6p - T6C;
|
||
|
TfX = Tb4 + Tb6;
|
||
|
TfY = TaY + Tb0;
|
||
|
TfZ = TfX - TfY;
|
||
|
T6D = T6p + T6C;
|
||
|
ThY = TfX + TfY;
|
||
|
Tg1 = TfZ - Tg0;
|
||
|
Tge = Tg0 + TfZ;
|
||
|
}
|
||
|
{
|
||
|
E Tb2, Tdq, Tb9, Tdp;
|
||
|
{
|
||
|
E TaW, Tb1, Tb7, Tb8;
|
||
|
TaW = T6i - T6o;
|
||
|
Tb1 = TaY - Tb0;
|
||
|
Tb2 = TaW - Tb1;
|
||
|
Tdq = TaW + Tb1;
|
||
|
Tb7 = Tb4 - Tb6;
|
||
|
Tb8 = T6v - T6B;
|
||
|
Tb9 = Tb7 + Tb8;
|
||
|
Tdp = Tb7 - Tb8;
|
||
|
}
|
||
|
Tba = FNMS(KP414213562, Tb9, Tb2);
|
||
|
TdA = FMA(KP414213562, Tdp, Tdq);
|
||
|
Tbo = FMA(KP414213562, Tb2, Tb9);
|
||
|
Tdr = FNMS(KP414213562, Tdq, Tdp);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T6J, TaP, T72, TaL, T6P, TaR, T6W, TaJ;
|
||
|
{
|
||
|
E T6F, T6I, T6G, TaO, T6E, T6H;
|
||
|
T6F = ri[WS(rs, 59)];
|
||
|
T6I = ii[WS(rs, 59)];
|
||
|
T6E = W[116];
|
||
|
T6G = T6E * T6F;
|
||
|
TaO = T6E * T6I;
|
||
|
T6H = W[117];
|
||
|
T6J = FMA(T6H, T6I, T6G);
|
||
|
TaP = FNMS(T6H, T6F, TaO);
|
||
|
}
|
||
|
{
|
||
|
E T6Y, T71, T6Z, TaK, T6X, T70;
|
||
|
T6Y = ri[WS(rs, 43)];
|
||
|
T71 = ii[WS(rs, 43)];
|
||
|
T6X = W[84];
|
||
|
T6Z = T6X * T6Y;
|
||
|
TaK = T6X * T71;
|
||
|
T70 = W[85];
|
||
|
T72 = FMA(T70, T71, T6Z);
|
||
|
TaL = FNMS(T70, T6Y, TaK);
|
||
|
}
|
||
|
{
|
||
|
E T6L, T6O, T6M, TaQ, T6K, T6N;
|
||
|
T6L = ri[WS(rs, 27)];
|
||
|
T6O = ii[WS(rs, 27)];
|
||
|
T6K = W[52];
|
||
|
T6M = T6K * T6L;
|
||
|
TaQ = T6K * T6O;
|
||
|
T6N = W[53];
|
||
|
T6P = FMA(T6N, T6O, T6M);
|
||
|
TaR = FNMS(T6N, T6L, TaQ);
|
||
|
}
|
||
|
{
|
||
|
E T6S, T6V, T6T, TaI, T6R, T6U;
|
||
|
T6S = ri[WS(rs, 11)];
|
||
|
T6V = ii[WS(rs, 11)];
|
||
|
T6R = W[20];
|
||
|
T6T = T6R * T6S;
|
||
|
TaI = T6R * T6V;
|
||
|
T6U = W[21];
|
||
|
T6W = FMA(T6U, T6V, T6T);
|
||
|
TaJ = FNMS(T6U, T6S, TaI);
|
||
|
}
|
||
|
{
|
||
|
E T6Q, T73, Tg2, Tg3, Tg4, Tg5;
|
||
|
T6Q = T6J + T6P;
|
||
|
T73 = T6W + T72;
|
||
|
Tg2 = T6Q - T73;
|
||
|
Tg3 = TaP + TaR;
|
||
|
Tg4 = TaJ + TaL;
|
||
|
Tg5 = Tg3 - Tg4;
|
||
|
T74 = T6Q + T73;
|
||
|
ThZ = Tg3 + Tg4;
|
||
|
Tg6 = Tg2 + Tg5;
|
||
|
Tgf = Tg2 - Tg5;
|
||
|
}
|
||
|
{
|
||
|
E TaN, Tdt, TaU, Tds;
|
||
|
{
|
||
|
E TaH, TaM, TaS, TaT;
|
||
|
TaH = T6J - T6P;
|
||
|
TaM = TaJ - TaL;
|
||
|
TaN = TaH - TaM;
|
||
|
Tdt = TaH + TaM;
|
||
|
TaS = TaP - TaR;
|
||
|
TaT = T6W - T72;
|
||
|
TaU = TaS + TaT;
|
||
|
Tds = TaS - TaT;
|
||
|
}
|
||
|
TaV = FMA(KP414213562, TaU, TaN);
|
||
|
TdB = FNMS(KP414213562, Tds, Tdt);
|
||
|
Tbp = FNMS(KP414213562, TaN, TaU);
|
||
|
Tdu = FMA(KP414213562, Tdt, Tds);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1I, Tio, T3v, Tj1, TiX, Tj2, Tir, TiN, T76, TiK, TiC, TiG, T5j, TiJ, Tix;
|
||
|
E TiF;
|
||
|
{
|
||
|
E TO, T1H, Tip, Tiq;
|
||
|
TO = Tm + TN;
|
||
|
T1H = T1f + T1G;
|
||
|
T1I = TO + T1H;
|
||
|
Tio = TO - T1H;
|
||
|
{
|
||
|
E T2B, T3u, TiO, TiW;
|
||
|
T2B = T29 + T2A;
|
||
|
T3u = T32 + T3t;
|
||
|
T3v = T2B + T3u;
|
||
|
Tj1 = T3u - T2B;
|
||
|
TiO = Thr + Ths;
|
||
|
TiW = TiP + TiV;
|
||
|
TiX = TiO + TiW;
|
||
|
Tj2 = TiW - TiO;
|
||
|
}
|
||
|
Tip = Thv + Thw;
|
||
|
Tiq = ThB + ThC;
|
||
|
Tir = Tip - Tiq;
|
||
|
TiN = Tip + Tiq;
|
||
|
{
|
||
|
E T6c, T75, Tiy, Tiz, TiA, TiB;
|
||
|
T6c = T5K + T6b;
|
||
|
T75 = T6D + T74;
|
||
|
Tiy = T6c - T75;
|
||
|
Tiz = ThS + ThT;
|
||
|
TiA = ThY + ThZ;
|
||
|
TiB = Tiz - TiA;
|
||
|
T76 = T6c + T75;
|
||
|
TiK = Tiz + TiA;
|
||
|
TiC = Tiy - TiB;
|
||
|
TiG = Tiy + TiB;
|
||
|
}
|
||
|
{
|
||
|
E T4p, T5i, Tit, Tiu, Tiv, Tiw;
|
||
|
T4p = T3X + T4o;
|
||
|
T5i = T4Q + T5h;
|
||
|
Tit = T4p - T5i;
|
||
|
Tiu = ThH + ThI;
|
||
|
Tiv = ThN + ThO;
|
||
|
Tiw = Tiu - Tiv;
|
||
|
T5j = T4p + T5i;
|
||
|
TiJ = Tiu + Tiv;
|
||
|
Tix = Tit + Tiw;
|
||
|
TiF = Tiw - Tit;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T3w, T77, TiM, TiY;
|
||
|
T3w = T1I + T3v;
|
||
|
T77 = T5j + T76;
|
||
|
ri[WS(rs, 32)] = T3w - T77;
|
||
|
ri[0] = T3w + T77;
|
||
|
TiM = TiJ + TiK;
|
||
|
TiY = TiN + TiX;
|
||
|
ii[0] = TiM + TiY;
|
||
|
ii[WS(rs, 32)] = TiY - TiM;
|
||
|
}
|
||
|
{
|
||
|
E Tis, TiD, Tj3, Tj4;
|
||
|
Tis = Tio + Tir;
|
||
|
TiD = Tix + TiC;
|
||
|
ri[WS(rs, 40)] = FNMS(KP707106781, TiD, Tis);
|
||
|
ri[WS(rs, 8)] = FMA(KP707106781, TiD, Tis);
|
||
|
Tj3 = Tj1 + Tj2;
|
||
|
Tj4 = TiF + TiG;
|
||
|
ii[WS(rs, 8)] = FMA(KP707106781, Tj4, Tj3);
|
||
|
ii[WS(rs, 40)] = FNMS(KP707106781, Tj4, Tj3);
|
||
|
}
|
||
|
{
|
||
|
E TiE, TiH, Tj5, Tj6;
|
||
|
TiE = Tio - Tir;
|
||
|
TiH = TiF - TiG;
|
||
|
ri[WS(rs, 56)] = FNMS(KP707106781, TiH, TiE);
|
||
|
ri[WS(rs, 24)] = FMA(KP707106781, TiH, TiE);
|
||
|
Tj5 = Tj2 - Tj1;
|
||
|
Tj6 = TiC - Tix;
|
||
|
ii[WS(rs, 24)] = FMA(KP707106781, Tj6, Tj5);
|
||
|
ii[WS(rs, 56)] = FNMS(KP707106781, Tj6, Tj5);
|
||
|
}
|
||
|
{
|
||
|
E TiI, TiL, TiZ, Tj0;
|
||
|
TiI = T1I - T3v;
|
||
|
TiL = TiJ - TiK;
|
||
|
ri[WS(rs, 48)] = TiI - TiL;
|
||
|
ri[WS(rs, 16)] = TiI + TiL;
|
||
|
TiZ = T76 - T5j;
|
||
|
Tj0 = TiX - TiN;
|
||
|
ii[WS(rs, 16)] = TiZ + Tj0;
|
||
|
ii[WS(rs, 48)] = Tj0 - TiZ;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Thu, Ti8, Tj9, Tjf, ThF, Tjg, Tib, Tja, ThR, Til, Ti5, Tif, Ti2, Tim, Ti6;
|
||
|
E Tii;
|
||
|
{
|
||
|
E Thq, Tht, Tj7, Tj8;
|
||
|
Thq = Tm - TN;
|
||
|
Tht = Thr - Ths;
|
||
|
Thu = Thq - Tht;
|
||
|
Ti8 = Thq + Tht;
|
||
|
Tj7 = T1G - T1f;
|
||
|
Tj8 = TiV - TiP;
|
||
|
Tj9 = Tj7 + Tj8;
|
||
|
Tjf = Tj8 - Tj7;
|
||
|
}
|
||
|
{
|
||
|
E Thz, Ti9, ThE, Tia;
|
||
|
{
|
||
|
E Thx, Thy, ThA, ThD;
|
||
|
Thx = Thv - Thw;
|
||
|
Thy = T29 - T2A;
|
||
|
Thz = Thx - Thy;
|
||
|
Ti9 = Thy + Thx;
|
||
|
ThA = T32 - T3t;
|
||
|
ThD = ThB - ThC;
|
||
|
ThE = ThA + ThD;
|
||
|
Tia = ThA - ThD;
|
||
|
}
|
||
|
ThF = Thz - ThE;
|
||
|
Tjg = Tia - Ti9;
|
||
|
Tib = Ti9 + Tia;
|
||
|
Tja = Thz + ThE;
|
||
|
}
|
||
|
{
|
||
|
E ThL, Tie, ThQ, Tid;
|
||
|
{
|
||
|
E ThJ, ThK, ThM, ThP;
|
||
|
ThJ = ThH - ThI;
|
||
|
ThK = T5h - T4Q;
|
||
|
ThL = ThJ - ThK;
|
||
|
Tie = ThJ + ThK;
|
||
|
ThM = T3X - T4o;
|
||
|
ThP = ThN - ThO;
|
||
|
ThQ = ThM - ThP;
|
||
|
Tid = ThM + ThP;
|
||
|
}
|
||
|
ThR = FMA(KP414213562, ThQ, ThL);
|
||
|
Til = FNMS(KP414213562, Tid, Tie);
|
||
|
Ti5 = FNMS(KP414213562, ThL, ThQ);
|
||
|
Tif = FMA(KP414213562, Tie, Tid);
|
||
|
}
|
||
|
{
|
||
|
E ThW, Tih, Ti1, Tig;
|
||
|
{
|
||
|
E ThU, ThV, ThX, Ti0;
|
||
|
ThU = ThS - ThT;
|
||
|
ThV = T74 - T6D;
|
||
|
ThW = ThU - ThV;
|
||
|
Tih = ThU + ThV;
|
||
|
ThX = T5K - T6b;
|
||
|
Ti0 = ThY - ThZ;
|
||
|
Ti1 = ThX - Ti0;
|
||
|
Tig = ThX + Ti0;
|
||
|
}
|
||
|
Ti2 = FNMS(KP414213562, Ti1, ThW);
|
||
|
Tim = FMA(KP414213562, Tig, Tih);
|
||
|
Ti6 = FMA(KP414213562, ThW, Ti1);
|
||
|
Tii = FNMS(KP414213562, Tih, Tig);
|
||
|
}
|
||
|
{
|
||
|
E ThG, Ti3, Tjh, Tji;
|
||
|
ThG = FMA(KP707106781, ThF, Thu);
|
||
|
Ti3 = ThR - Ti2;
|
||
|
ri[WS(rs, 44)] = FNMS(KP923879532, Ti3, ThG);
|
||
|
ri[WS(rs, 12)] = FMA(KP923879532, Ti3, ThG);
|
||
|
Tjh = FMA(KP707106781, Tjg, Tjf);
|
||
|
Tji = Ti6 - Ti5;
|
||
|
ii[WS(rs, 12)] = FMA(KP923879532, Tji, Tjh);
|
||
|
ii[WS(rs, 44)] = FNMS(KP923879532, Tji, Tjh);
|
||
|
}
|
||
|
{
|
||
|
E Ti4, Ti7, Tjj, Tjk;
|
||
|
Ti4 = FNMS(KP707106781, ThF, Thu);
|
||
|
Ti7 = Ti5 + Ti6;
|
||
|
ri[WS(rs, 28)] = FNMS(KP923879532, Ti7, Ti4);
|
||
|
ri[WS(rs, 60)] = FMA(KP923879532, Ti7, Ti4);
|
||
|
Tjj = FNMS(KP707106781, Tjg, Tjf);
|
||
|
Tjk = ThR + Ti2;
|
||
|
ii[WS(rs, 28)] = FNMS(KP923879532, Tjk, Tjj);
|
||
|
ii[WS(rs, 60)] = FMA(KP923879532, Tjk, Tjj);
|
||
|
}
|
||
|
{
|
||
|
E Tic, Tij, Tjb, Tjc;
|
||
|
Tic = FMA(KP707106781, Tib, Ti8);
|
||
|
Tij = Tif + Tii;
|
||
|
ri[WS(rs, 36)] = FNMS(KP923879532, Tij, Tic);
|
||
|
ri[WS(rs, 4)] = FMA(KP923879532, Tij, Tic);
|
||
|
Tjb = FMA(KP707106781, Tja, Tj9);
|
||
|
Tjc = Til + Tim;
|
||
|
ii[WS(rs, 4)] = FMA(KP923879532, Tjc, Tjb);
|
||
|
ii[WS(rs, 36)] = FNMS(KP923879532, Tjc, Tjb);
|
||
|
}
|
||
|
{
|
||
|
E Tik, Tin, Tjd, Tje;
|
||
|
Tik = FNMS(KP707106781, Tib, Ti8);
|
||
|
Tin = Til - Tim;
|
||
|
ri[WS(rs, 52)] = FNMS(KP923879532, Tin, Tik);
|
||
|
ri[WS(rs, 20)] = FMA(KP923879532, Tin, Tik);
|
||
|
Tjd = FNMS(KP707106781, Tja, Tj9);
|
||
|
Tje = Tii - Tif;
|
||
|
ii[WS(rs, 20)] = FMA(KP923879532, Tje, Tjd);
|
||
|
ii[WS(rs, 52)] = FNMS(KP923879532, Tje, Tjd);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Tf2, TjJ, Tgo, TjD, TgI, Tjv, Tha, Tjp, Tfp, Tjw, Tgr, Tjq, Th4, Tho, Th8;
|
||
|
E Thk, TfR, TgB, Tgl, Tgv, TgP, TjK, Thd, TjE, TgX, Thn, Th7, Thh, Tgi, TgC;
|
||
|
E Tgm, Tgy;
|
||
|
{
|
||
|
E TeQ, TjB, Tf1, TjC, TeV, Tf0;
|
||
|
TeQ = TeM + TeP;
|
||
|
TjB = Tjm - Tjl;
|
||
|
TeV = TeR + TeU;
|
||
|
Tf0 = TeW - TeZ;
|
||
|
Tf1 = TeV + Tf0;
|
||
|
TjC = Tf0 - TeV;
|
||
|
Tf2 = FNMS(KP707106781, Tf1, TeQ);
|
||
|
TjJ = FNMS(KP707106781, TjC, TjB);
|
||
|
Tgo = FMA(KP707106781, Tf1, TeQ);
|
||
|
TjD = FMA(KP707106781, TjC, TjB);
|
||
|
}
|
||
|
{
|
||
|
E TgE, Tjn, TgH, Tjo, TgF, TgG;
|
||
|
TgE = TeM - TeP;
|
||
|
Tjn = Tjl + Tjm;
|
||
|
TgF = TeU - TeR;
|
||
|
TgG = TeW + TeZ;
|
||
|
TgH = TgF - TgG;
|
||
|
Tjo = TgF + TgG;
|
||
|
TgI = FMA(KP707106781, TgH, TgE);
|
||
|
Tjv = FNMS(KP707106781, Tjo, Tjn);
|
||
|
Tha = FNMS(KP707106781, TgH, TgE);
|
||
|
Tjp = FMA(KP707106781, Tjo, Tjn);
|
||
|
}
|
||
|
{
|
||
|
E Tfd, Tgp, Tfo, Tgq;
|
||
|
{
|
||
|
E Tf7, Tfc, Tfi, Tfn;
|
||
|
Tf7 = Tf5 + Tf6;
|
||
|
Tfc = Tf8 + Tfb;
|
||
|
Tfd = FNMS(KP414213562, Tfc, Tf7);
|
||
|
Tgp = FMA(KP414213562, Tf7, Tfc);
|
||
|
Tfi = Tfg + Tfh;
|
||
|
Tfn = Tfj + Tfm;
|
||
|
Tfo = FMA(KP414213562, Tfn, Tfi);
|
||
|
Tgq = FNMS(KP414213562, Tfi, Tfn);
|
||
|
}
|
||
|
Tfp = Tfd - Tfo;
|
||
|
Tjw = Tgq - Tgp;
|
||
|
Tgr = Tgp + Tgq;
|
||
|
Tjq = Tfd + Tfo;
|
||
|
}
|
||
|
{
|
||
|
E Th0, Thj, Th3, Thi;
|
||
|
{
|
||
|
E TgY, TgZ, Th1, Th2;
|
||
|
TgY = Tg9 - Tgc;
|
||
|
TgZ = Tg6 - Tg1;
|
||
|
Th0 = FNMS(KP707106781, TgZ, TgY);
|
||
|
Thj = FMA(KP707106781, TgZ, TgY);
|
||
|
Th1 = TfU - TfV;
|
||
|
Th2 = Tge - Tgf;
|
||
|
Th3 = FNMS(KP707106781, Th2, Th1);
|
||
|
Thi = FMA(KP707106781, Th2, Th1);
|
||
|
}
|
||
|
Th4 = FNMS(KP668178637, Th3, Th0);
|
||
|
Tho = FMA(KP198912367, Thi, Thj);
|
||
|
Th8 = FMA(KP668178637, Th0, Th3);
|
||
|
Thk = FNMS(KP198912367, Thj, Thi);
|
||
|
}
|
||
|
{
|
||
|
E TfH, Tgu, TfQ, Tgt;
|
||
|
{
|
||
|
E Tfv, TfG, TfM, TfP;
|
||
|
Tfv = Tft + Tfu;
|
||
|
TfG = TfA + TfF;
|
||
|
TfH = FNMS(KP707106781, TfG, Tfv);
|
||
|
Tgu = FMA(KP707106781, TfG, Tfv);
|
||
|
TfM = TfI + TfL;
|
||
|
TfP = TfN + TfO;
|
||
|
TfQ = FNMS(KP707106781, TfP, TfM);
|
||
|
Tgt = FMA(KP707106781, TfP, TfM);
|
||
|
}
|
||
|
TfR = FMA(KP668178637, TfQ, TfH);
|
||
|
TgB = FNMS(KP198912367, Tgt, Tgu);
|
||
|
Tgl = FNMS(KP668178637, TfH, TfQ);
|
||
|
Tgv = FMA(KP198912367, Tgu, Tgt);
|
||
|
}
|
||
|
{
|
||
|
E TgL, Thb, TgO, Thc;
|
||
|
{
|
||
|
E TgJ, TgK, TgM, TgN;
|
||
|
TgJ = Tf5 - Tf6;
|
||
|
TgK = Tf8 - Tfb;
|
||
|
TgL = FMA(KP414213562, TgK, TgJ);
|
||
|
Thb = FNMS(KP414213562, TgJ, TgK);
|
||
|
TgM = Tfg - Tfh;
|
||
|
TgN = Tfj - Tfm;
|
||
|
TgO = FNMS(KP414213562, TgN, TgM);
|
||
|
Thc = FMA(KP414213562, TgM, TgN);
|
||
|
}
|
||
|
TgP = TgL - TgO;
|
||
|
TjK = TgL + TgO;
|
||
|
Thd = Thb + Thc;
|
||
|
TjE = Thc - Thb;
|
||
|
}
|
||
|
{
|
||
|
E TgT, Thg, TgW, Thf;
|
||
|
{
|
||
|
E TgR, TgS, TgU, TgV;
|
||
|
TgR = TfI - TfL;
|
||
|
TgS = TfF - TfA;
|
||
|
TgT = FNMS(KP707106781, TgS, TgR);
|
||
|
Thg = FMA(KP707106781, TgS, TgR);
|
||
|
TgU = Tft - Tfu;
|
||
|
TgV = TfN - TfO;
|
||
|
TgW = FNMS(KP707106781, TgV, TgU);
|
||
|
Thf = FMA(KP707106781, TgV, TgU);
|
||
|
}
|
||
|
TgX = FMA(KP668178637, TgW, TgT);
|
||
|
Thn = FNMS(KP198912367, Thf, Thg);
|
||
|
Th7 = FNMS(KP668178637, TgT, TgW);
|
||
|
Thh = FMA(KP198912367, Thg, Thf);
|
||
|
}
|
||
|
{
|
||
|
E Tg8, Tgx, Tgh, Tgw;
|
||
|
{
|
||
|
E TfW, Tg7, Tgd, Tgg;
|
||
|
TfW = TfU + TfV;
|
||
|
Tg7 = Tg1 + Tg6;
|
||
|
Tg8 = FNMS(KP707106781, Tg7, TfW);
|
||
|
Tgx = FMA(KP707106781, Tg7, TfW);
|
||
|
Tgd = Tg9 + Tgc;
|
||
|
Tgg = Tge + Tgf;
|
||
|
Tgh = FNMS(KP707106781, Tgg, Tgd);
|
||
|
Tgw = FMA(KP707106781, Tgg, Tgd);
|
||
|
}
|
||
|
Tgi = FNMS(KP668178637, Tgh, Tg8);
|
||
|
TgC = FMA(KP198912367, Tgw, Tgx);
|
||
|
Tgm = FMA(KP668178637, Tg8, Tgh);
|
||
|
Tgy = FNMS(KP198912367, Tgx, Tgw);
|
||
|
}
|
||
|
{
|
||
|
E Tfq, Tgj, Tjx, Tjy;
|
||
|
Tfq = FMA(KP923879532, Tfp, Tf2);
|
||
|
Tgj = TfR - Tgi;
|
||
|
ri[WS(rs, 42)] = FNMS(KP831469612, Tgj, Tfq);
|
||
|
ri[WS(rs, 10)] = FMA(KP831469612, Tgj, Tfq);
|
||
|
Tjx = FMA(KP923879532, Tjw, Tjv);
|
||
|
Tjy = Tgm - Tgl;
|
||
|
ii[WS(rs, 10)] = FMA(KP831469612, Tjy, Tjx);
|
||
|
ii[WS(rs, 42)] = FNMS(KP831469612, Tjy, Tjx);
|
||
|
}
|
||
|
{
|
||
|
E Tgk, Tgn, Tjz, TjA;
|
||
|
Tgk = FNMS(KP923879532, Tfp, Tf2);
|
||
|
Tgn = Tgl + Tgm;
|
||
|
ri[WS(rs, 26)] = FNMS(KP831469612, Tgn, Tgk);
|
||
|
ri[WS(rs, 58)] = FMA(KP831469612, Tgn, Tgk);
|
||
|
Tjz = FNMS(KP923879532, Tjw, Tjv);
|
||
|
TjA = TfR + Tgi;
|
||
|
ii[WS(rs, 26)] = FNMS(KP831469612, TjA, Tjz);
|
||
|
ii[WS(rs, 58)] = FMA(KP831469612, TjA, Tjz);
|
||
|
}
|
||
|
{
|
||
|
E Tgs, Tgz, Tjr, Tjs;
|
||
|
Tgs = FMA(KP923879532, Tgr, Tgo);
|
||
|
Tgz = Tgv + Tgy;
|
||
|
ri[WS(rs, 34)] = FNMS(KP980785280, Tgz, Tgs);
|
||
|
ri[WS(rs, 2)] = FMA(KP980785280, Tgz, Tgs);
|
||
|
Tjr = FMA(KP923879532, Tjq, Tjp);
|
||
|
Tjs = TgB + TgC;
|
||
|
ii[WS(rs, 2)] = FMA(KP980785280, Tjs, Tjr);
|
||
|
ii[WS(rs, 34)] = FNMS(KP980785280, Tjs, Tjr);
|
||
|
}
|
||
|
{
|
||
|
E TgA, TgD, Tjt, Tju;
|
||
|
TgA = FNMS(KP923879532, Tgr, Tgo);
|
||
|
TgD = TgB - TgC;
|
||
|
ri[WS(rs, 50)] = FNMS(KP980785280, TgD, TgA);
|
||
|
ri[WS(rs, 18)] = FMA(KP980785280, TgD, TgA);
|
||
|
Tjt = FNMS(KP923879532, Tjq, Tjp);
|
||
|
Tju = Tgy - Tgv;
|
||
|
ii[WS(rs, 18)] = FMA(KP980785280, Tju, Tjt);
|
||
|
ii[WS(rs, 50)] = FNMS(KP980785280, Tju, Tjt);
|
||
|
}
|
||
|
{
|
||
|
E TgQ, Th5, TjF, TjG;
|
||
|
TgQ = FMA(KP923879532, TgP, TgI);
|
||
|
Th5 = TgX + Th4;
|
||
|
ri[WS(rs, 38)] = FNMS(KP831469612, Th5, TgQ);
|
||
|
ri[WS(rs, 6)] = FMA(KP831469612, Th5, TgQ);
|
||
|
TjF = FMA(KP923879532, TjE, TjD);
|
||
|
TjG = Th7 + Th8;
|
||
|
ii[WS(rs, 6)] = FMA(KP831469612, TjG, TjF);
|
||
|
ii[WS(rs, 38)] = FNMS(KP831469612, TjG, TjF);
|
||
|
}
|
||
|
{
|
||
|
E Th6, Th9, TjH, TjI;
|
||
|
Th6 = FNMS(KP923879532, TgP, TgI);
|
||
|
Th9 = Th7 - Th8;
|
||
|
ri[WS(rs, 54)] = FNMS(KP831469612, Th9, Th6);
|
||
|
ri[WS(rs, 22)] = FMA(KP831469612, Th9, Th6);
|
||
|
TjH = FNMS(KP923879532, TjE, TjD);
|
||
|
TjI = Th4 - TgX;
|
||
|
ii[WS(rs, 22)] = FMA(KP831469612, TjI, TjH);
|
||
|
ii[WS(rs, 54)] = FNMS(KP831469612, TjI, TjH);
|
||
|
}
|
||
|
{
|
||
|
E The, Thl, TjL, TjM;
|
||
|
The = FNMS(KP923879532, Thd, Tha);
|
||
|
Thl = Thh - Thk;
|
||
|
ri[WS(rs, 46)] = FNMS(KP980785280, Thl, The);
|
||
|
ri[WS(rs, 14)] = FMA(KP980785280, Thl, The);
|
||
|
TjL = FNMS(KP923879532, TjK, TjJ);
|
||
|
TjM = Tho - Thn;
|
||
|
ii[WS(rs, 14)] = FMA(KP980785280, TjM, TjL);
|
||
|
ii[WS(rs, 46)] = FNMS(KP980785280, TjM, TjL);
|
||
|
}
|
||
|
{
|
||
|
E Thm, Thp, TjN, TjO;
|
||
|
Thm = FMA(KP923879532, Thd, Tha);
|
||
|
Thp = Thn + Tho;
|
||
|
ri[WS(rs, 30)] = FNMS(KP980785280, Thp, Thm);
|
||
|
ri[WS(rs, 62)] = FMA(KP980785280, Thp, Thm);
|
||
|
TjN = FMA(KP923879532, TjK, TjJ);
|
||
|
TjO = Thh + Thk;
|
||
|
ii[WS(rs, 30)] = FNMS(KP980785280, TjO, TjN);
|
||
|
ii[WS(rs, 62)] = FMA(KP980785280, TjO, TjN);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T99, Tkw, TbB, Tkq, Taj, TbL, Tbv, TbF, Tce, Tcy, Tci, Tcu, Tc7, Tcx, Tch;
|
||
|
E Tcr, TbZ, TkK, Tcn, TkE, Tbs, TbM, Tbw, TbI, T80, TkD, TkJ, Tby, TbS, Tkp;
|
||
|
E Tkv, Tck;
|
||
|
{
|
||
|
E T8z, Tbz, T98, TbA;
|
||
|
{
|
||
|
E T8n, T8y, T8W, T97;
|
||
|
T8n = FNMS(KP707106781, T8m, T87);
|
||
|
T8y = FNMS(KP707106781, T8x, T8u);
|
||
|
T8z = FNMS(KP668178637, T8y, T8n);
|
||
|
Tbz = FMA(KP668178637, T8n, T8y);
|
||
|
T8W = FNMS(KP707106781, T8V, T8G);
|
||
|
T97 = FNMS(KP707106781, T96, T93);
|
||
|
T98 = FMA(KP668178637, T97, T8W);
|
||
|
TbA = FNMS(KP668178637, T8W, T97);
|
||
|
}
|
||
|
T99 = T8z - T98;
|
||
|
Tkw = TbA - Tbz;
|
||
|
TbB = Tbz + TbA;
|
||
|
Tkq = T8z + T98;
|
||
|
}
|
||
|
{
|
||
|
E Ta3, TbE, Tai, TbD;
|
||
|
{
|
||
|
E T9x, Ta2, Tae, Tah;
|
||
|
T9x = FNMS(KP707106781, T9w, T9h);
|
||
|
Ta2 = T9M - Ta1;
|
||
|
Ta3 = FNMS(KP923879532, Ta2, T9x);
|
||
|
TbE = FMA(KP923879532, Ta2, T9x);
|
||
|
Tae = FNMS(KP707106781, Tad, Taa);
|
||
|
Tah = Taf - Tag;
|
||
|
Tai = FNMS(KP923879532, Tah, Tae);
|
||
|
TbD = FMA(KP923879532, Tah, Tae);
|
||
|
}
|
||
|
Taj = FMA(KP534511135, Tai, Ta3);
|
||
|
TbL = FNMS(KP303346683, TbD, TbE);
|
||
|
Tbv = FNMS(KP534511135, Ta3, Tai);
|
||
|
TbF = FMA(KP303346683, TbE, TbD);
|
||
|
}
|
||
|
{
|
||
|
E Tca, Tct, Tcd, Tcs;
|
||
|
{
|
||
|
E Tc8, Tc9, Tcb, Tcc;
|
||
|
Tc8 = FMA(KP707106781, Tbm, Tbj);
|
||
|
Tc9 = Tba + TaV;
|
||
|
Tca = FNMS(KP923879532, Tc9, Tc8);
|
||
|
Tct = FMA(KP923879532, Tc9, Tc8);
|
||
|
Tcb = FMA(KP707106781, TaF, Taq);
|
||
|
Tcc = Tbo + Tbp;
|
||
|
Tcd = FNMS(KP923879532, Tcc, Tcb);
|
||
|
Tcs = FMA(KP923879532, Tcc, Tcb);
|
||
|
}
|
||
|
Tce = FNMS(KP820678790, Tcd, Tca);
|
||
|
Tcy = FMA(KP098491403, Tcs, Tct);
|
||
|
Tci = FMA(KP820678790, Tca, Tcd);
|
||
|
Tcu = FNMS(KP098491403, Tct, Tcs);
|
||
|
}
|
||
|
{
|
||
|
E Tc3, Tcq, Tc6, Tcp;
|
||
|
{
|
||
|
E Tc1, Tc2, Tc4, Tc5;
|
||
|
Tc1 = FMA(KP707106781, Tad, Taa);
|
||
|
Tc2 = Ta1 + T9M;
|
||
|
Tc3 = FNMS(KP923879532, Tc2, Tc1);
|
||
|
Tcq = FMA(KP923879532, Tc2, Tc1);
|
||
|
Tc4 = FMA(KP707106781, T9w, T9h);
|
||
|
Tc5 = Taf + Tag;
|
||
|
Tc6 = FNMS(KP923879532, Tc5, Tc4);
|
||
|
Tcp = FMA(KP923879532, Tc5, Tc4);
|
||
|
}
|
||
|
Tc7 = FMA(KP820678790, Tc6, Tc3);
|
||
|
Tcx = FNMS(KP098491403, Tcp, Tcq);
|
||
|
Tch = FNMS(KP820678790, Tc3, Tc6);
|
||
|
Tcr = FMA(KP098491403, Tcq, Tcp);
|
||
|
}
|
||
|
{
|
||
|
E TbV, Tcl, TbY, Tcm;
|
||
|
{
|
||
|
E TbT, TbU, TbW, TbX;
|
||
|
TbT = FMA(KP707106781, T8m, T87);
|
||
|
TbU = FMA(KP707106781, T8x, T8u);
|
||
|
TbV = FMA(KP198912367, TbU, TbT);
|
||
|
Tcl = FNMS(KP198912367, TbT, TbU);
|
||
|
TbW = FMA(KP707106781, T8V, T8G);
|
||
|
TbX = FMA(KP707106781, T96, T93);
|
||
|
TbY = FNMS(KP198912367, TbX, TbW);
|
||
|
Tcm = FMA(KP198912367, TbW, TbX);
|
||
|
}
|
||
|
TbZ = TbV - TbY;
|
||
|
TkK = TbV + TbY;
|
||
|
Tcn = Tcl + Tcm;
|
||
|
TkE = Tcm - Tcl;
|
||
|
}
|
||
|
{
|
||
|
E Tbc, TbH, Tbr, TbG;
|
||
|
{
|
||
|
E TaG, Tbb, Tbn, Tbq;
|
||
|
TaG = FNMS(KP707106781, TaF, Taq);
|
||
|
Tbb = TaV - Tba;
|
||
|
Tbc = FNMS(KP923879532, Tbb, TaG);
|
||
|
TbH = FMA(KP923879532, Tbb, TaG);
|
||
|
Tbn = FNMS(KP707106781, Tbm, Tbj);
|
||
|
Tbq = Tbo - Tbp;
|
||
|
Tbr = FNMS(KP923879532, Tbq, Tbn);
|
||
|
TbG = FMA(KP923879532, Tbq, Tbn);
|
||
|
}
|
||
|
Tbs = FNMS(KP534511135, Tbr, Tbc);
|
||
|
TbM = FMA(KP303346683, TbG, TbH);
|
||
|
Tbw = FMA(KP534511135, Tbc, Tbr);
|
||
|
TbI = FNMS(KP303346683, TbH, TbG);
|
||
|
}
|
||
|
{
|
||
|
E T7u, TbO, Tkn, TkB, T7Z, TkC, TbR, Tko, T7t, Tkm;
|
||
|
T7t = T7l - T7s;
|
||
|
T7u = FMA(KP707106781, T7t, T7e);
|
||
|
TbO = FNMS(KP707106781, T7t, T7e);
|
||
|
Tkm = TcC - TcB;
|
||
|
Tkn = FMA(KP707106781, Tkm, Tkl);
|
||
|
TkB = FNMS(KP707106781, Tkm, Tkl);
|
||
|
{
|
||
|
E T7J, T7Y, TbP, TbQ;
|
||
|
T7J = FMA(KP414213562, T7I, T7B);
|
||
|
T7Y = FNMS(KP414213562, T7X, T7Q);
|
||
|
T7Z = T7J - T7Y;
|
||
|
TkC = T7J + T7Y;
|
||
|
TbP = FNMS(KP414213562, T7B, T7I);
|
||
|
TbQ = FMA(KP414213562, T7Q, T7X);
|
||
|
TbR = TbP + TbQ;
|
||
|
Tko = TbQ - TbP;
|
||
|
}
|
||
|
T80 = FNMS(KP923879532, T7Z, T7u);
|
||
|
TkD = FNMS(KP923879532, TkC, TkB);
|
||
|
TkJ = FMA(KP923879532, TkC, TkB);
|
||
|
Tby = FMA(KP923879532, T7Z, T7u);
|
||
|
TbS = FNMS(KP923879532, TbR, TbO);
|
||
|
Tkp = FMA(KP923879532, Tko, Tkn);
|
||
|
Tkv = FNMS(KP923879532, Tko, Tkn);
|
||
|
Tck = FMA(KP923879532, TbR, TbO);
|
||
|
}
|
||
|
{
|
||
|
E T9a, Tbt, Tkx, Tky;
|
||
|
T9a = FMA(KP831469612, T99, T80);
|
||
|
Tbt = Taj - Tbs;
|
||
|
ri[WS(rs, 43)] = FNMS(KP881921264, Tbt, T9a);
|
||
|
ri[WS(rs, 11)] = FMA(KP881921264, Tbt, T9a);
|
||
|
Tkx = FMA(KP831469612, Tkw, Tkv);
|
||
|
Tky = Tbw - Tbv;
|
||
|
ii[WS(rs, 11)] = FMA(KP881921264, Tky, Tkx);
|
||
|
ii[WS(rs, 43)] = FNMS(KP881921264, Tky, Tkx);
|
||
|
}
|
||
|
{
|
||
|
E Tbu, Tbx, Tkz, TkA;
|
||
|
Tbu = FNMS(KP831469612, T99, T80);
|
||
|
Tbx = Tbv + Tbw;
|
||
|
ri[WS(rs, 27)] = FNMS(KP881921264, Tbx, Tbu);
|
||
|
ri[WS(rs, 59)] = FMA(KP881921264, Tbx, Tbu);
|
||
|
Tkz = FNMS(KP831469612, Tkw, Tkv);
|
||
|
TkA = Taj + Tbs;
|
||
|
ii[WS(rs, 27)] = FNMS(KP881921264, TkA, Tkz);
|
||
|
ii[WS(rs, 59)] = FMA(KP881921264, TkA, Tkz);
|
||
|
}
|
||
|
{
|
||
|
E TbC, TbJ, Tkr, Tks;
|
||
|
TbC = FMA(KP831469612, TbB, Tby);
|
||
|
TbJ = TbF + TbI;
|
||
|
ri[WS(rs, 35)] = FNMS(KP956940335, TbJ, TbC);
|
||
|
ri[WS(rs, 3)] = FMA(KP956940335, TbJ, TbC);
|
||
|
Tkr = FMA(KP831469612, Tkq, Tkp);
|
||
|
Tks = TbL + TbM;
|
||
|
ii[WS(rs, 3)] = FMA(KP956940335, Tks, Tkr);
|
||
|
ii[WS(rs, 35)] = FNMS(KP956940335, Tks, Tkr);
|
||
|
}
|
||
|
{
|
||
|
E TbK, TbN, Tkt, Tku;
|
||
|
TbK = FNMS(KP831469612, TbB, Tby);
|
||
|
TbN = TbL - TbM;
|
||
|
ri[WS(rs, 51)] = FNMS(KP956940335, TbN, TbK);
|
||
|
ri[WS(rs, 19)] = FMA(KP956940335, TbN, TbK);
|
||
|
Tkt = FNMS(KP831469612, Tkq, Tkp);
|
||
|
Tku = TbI - TbF;
|
||
|
ii[WS(rs, 19)] = FMA(KP956940335, Tku, Tkt);
|
||
|
ii[WS(rs, 51)] = FNMS(KP956940335, Tku, Tkt);
|
||
|
}
|
||
|
{
|
||
|
E Tc0, Tcf, TkF, TkG;
|
||
|
Tc0 = FMA(KP980785280, TbZ, TbS);
|
||
|
Tcf = Tc7 + Tce;
|
||
|
ri[WS(rs, 39)] = FNMS(KP773010453, Tcf, Tc0);
|
||
|
ri[WS(rs, 7)] = FMA(KP773010453, Tcf, Tc0);
|
||
|
TkF = FMA(KP980785280, TkE, TkD);
|
||
|
TkG = Tch + Tci;
|
||
|
ii[WS(rs, 7)] = FMA(KP773010453, TkG, TkF);
|
||
|
ii[WS(rs, 39)] = FNMS(KP773010453, TkG, TkF);
|
||
|
}
|
||
|
{
|
||
|
E Tcg, Tcj, TkH, TkI;
|
||
|
Tcg = FNMS(KP980785280, TbZ, TbS);
|
||
|
Tcj = Tch - Tci;
|
||
|
ri[WS(rs, 55)] = FNMS(KP773010453, Tcj, Tcg);
|
||
|
ri[WS(rs, 23)] = FMA(KP773010453, Tcj, Tcg);
|
||
|
TkH = FNMS(KP980785280, TkE, TkD);
|
||
|
TkI = Tce - Tc7;
|
||
|
ii[WS(rs, 23)] = FMA(KP773010453, TkI, TkH);
|
||
|
ii[WS(rs, 55)] = FNMS(KP773010453, TkI, TkH);
|
||
|
}
|
||
|
{
|
||
|
E Tco, Tcv, TkL, TkM;
|
||
|
Tco = FNMS(KP980785280, Tcn, Tck);
|
||
|
Tcv = Tcr - Tcu;
|
||
|
ri[WS(rs, 47)] = FNMS(KP995184726, Tcv, Tco);
|
||
|
ri[WS(rs, 15)] = FMA(KP995184726, Tcv, Tco);
|
||
|
TkL = FNMS(KP980785280, TkK, TkJ);
|
||
|
TkM = Tcy - Tcx;
|
||
|
ii[WS(rs, 15)] = FMA(KP995184726, TkM, TkL);
|
||
|
ii[WS(rs, 47)] = FNMS(KP995184726, TkM, TkL);
|
||
|
}
|
||
|
{
|
||
|
E Tcw, Tcz, TkN, TkO;
|
||
|
Tcw = FMA(KP980785280, Tcn, Tck);
|
||
|
Tcz = Tcx + Tcy;
|
||
|
ri[WS(rs, 31)] = FNMS(KP995184726, Tcz, Tcw);
|
||
|
ri[WS(rs, 63)] = FMA(KP995184726, Tcz, Tcw);
|
||
|
TkN = FMA(KP980785280, TkK, TkJ);
|
||
|
TkO = Tcr + Tcu;
|
||
|
ii[WS(rs, 31)] = FNMS(KP995184726, TkO, TkN);
|
||
|
ii[WS(rs, 63)] = FMA(KP995184726, TkO, TkN);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Td1, Tk2, TdN, TjW, Tdl, TdX, TdH, TdR, Teq, TeK, Teu, TeG, Tej, TeJ, Tet;
|
||
|
E TeD, Teb, Tkg, Tez, Tka, TdE, TdY, TdI, TdU, TcM, Tk9, Tkf, TdK, Te4, TjV;
|
||
|
E Tk1, Tew;
|
||
|
{
|
||
|
E TcT, TdL, Td0, TdM;
|
||
|
{
|
||
|
E TcP, TcS, TcW, TcZ;
|
||
|
TcP = FMA(KP707106781, TcO, TcN);
|
||
|
TcS = FMA(KP707106781, TcR, TcQ);
|
||
|
TcT = FNMS(KP198912367, TcS, TcP);
|
||
|
TdL = FMA(KP198912367, TcP, TcS);
|
||
|
TcW = FMA(KP707106781, TcV, TcU);
|
||
|
TcZ = FMA(KP707106781, TcY, TcX);
|
||
|
Td0 = FMA(KP198912367, TcZ, TcW);
|
||
|
TdM = FNMS(KP198912367, TcW, TcZ);
|
||
|
}
|
||
|
Td1 = TcT - Td0;
|
||
|
Tk2 = TdM - TdL;
|
||
|
TdN = TdL + TdM;
|
||
|
TjW = TcT + Td0;
|
||
|
}
|
||
|
{
|
||
|
E Tdd, TdQ, Tdk, TdP;
|
||
|
{
|
||
|
E Td5, Tdc, Tdg, Tdj;
|
||
|
Td5 = FMA(KP707106781, Td4, Td3);
|
||
|
Tdc = Td8 + Tdb;
|
||
|
Tdd = FNMS(KP923879532, Tdc, Td5);
|
||
|
TdQ = FMA(KP923879532, Tdc, Td5);
|
||
|
Tdg = FMA(KP707106781, Tdf, Tde);
|
||
|
Tdj = Tdh + Tdi;
|
||
|
Tdk = FNMS(KP923879532, Tdj, Tdg);
|
||
|
TdP = FMA(KP923879532, Tdj, Tdg);
|
||
|
}
|
||
|
Tdl = FMA(KP820678790, Tdk, Tdd);
|
||
|
TdX = FNMS(KP098491403, TdP, TdQ);
|
||
|
TdH = FNMS(KP820678790, Tdd, Tdk);
|
||
|
TdR = FMA(KP098491403, TdQ, TdP);
|
||
|
}
|
||
|
{
|
||
|
E Tem, TeF, Tep, TeE;
|
||
|
{
|
||
|
E Tek, Tel, Ten, Teo;
|
||
|
Tek = FNMS(KP707106781, Tdy, Tdx);
|
||
|
Tel = Tdu - Tdr;
|
||
|
Tem = FNMS(KP923879532, Tel, Tek);
|
||
|
TeF = FMA(KP923879532, Tel, Tek);
|
||
|
Ten = FNMS(KP707106781, Tdn, Tdm);
|
||
|
Teo = TdA - TdB;
|
||
|
Tep = FNMS(KP923879532, Teo, Ten);
|
||
|
TeE = FMA(KP923879532, Teo, Ten);
|
||
|
}
|
||
|
Teq = FNMS(KP534511135, Tep, Tem);
|
||
|
TeK = FMA(KP303346683, TeE, TeF);
|
||
|
Teu = FMA(KP534511135, Tem, Tep);
|
||
|
TeG = FNMS(KP303346683, TeF, TeE);
|
||
|
}
|
||
|
{
|
||
|
E Tef, TeC, Tei, TeB;
|
||
|
{
|
||
|
E Ted, Tee, Teg, Teh;
|
||
|
Ted = FNMS(KP707106781, Tdf, Tde);
|
||
|
Tee = Tdb - Td8;
|
||
|
Tef = FNMS(KP923879532, Tee, Ted);
|
||
|
TeC = FMA(KP923879532, Tee, Ted);
|
||
|
Teg = FNMS(KP707106781, Td4, Td3);
|
||
|
Teh = Tdh - Tdi;
|
||
|
Tei = FNMS(KP923879532, Teh, Teg);
|
||
|
TeB = FMA(KP923879532, Teh, Teg);
|
||
|
}
|
||
|
Tej = FMA(KP534511135, Tei, Tef);
|
||
|
TeJ = FNMS(KP303346683, TeB, TeC);
|
||
|
Tet = FNMS(KP534511135, Tef, Tei);
|
||
|
TeD = FMA(KP303346683, TeC, TeB);
|
||
|
}
|
||
|
{
|
||
|
E Te7, Tex, Tea, Tey;
|
||
|
{
|
||
|
E Te5, Te6, Te8, Te9;
|
||
|
Te5 = FNMS(KP707106781, TcO, TcN);
|
||
|
Te6 = FNMS(KP707106781, TcR, TcQ);
|
||
|
Te7 = FMA(KP668178637, Te6, Te5);
|
||
|
Tex = FNMS(KP668178637, Te5, Te6);
|
||
|
Te8 = FNMS(KP707106781, TcV, TcU);
|
||
|
Te9 = FNMS(KP707106781, TcY, TcX);
|
||
|
Tea = FNMS(KP668178637, Te9, Te8);
|
||
|
Tey = FMA(KP668178637, Te8, Te9);
|
||
|
}
|
||
|
Teb = Te7 - Tea;
|
||
|
Tkg = Te7 + Tea;
|
||
|
Tez = Tex + Tey;
|
||
|
Tka = Tey - Tex;
|
||
|
}
|
||
|
{
|
||
|
E Tdw, TdT, TdD, TdS;
|
||
|
{
|
||
|
E Tdo, Tdv, Tdz, TdC;
|
||
|
Tdo = FMA(KP707106781, Tdn, Tdm);
|
||
|
Tdv = Tdr + Tdu;
|
||
|
Tdw = FNMS(KP923879532, Tdv, Tdo);
|
||
|
TdT = FMA(KP923879532, Tdv, Tdo);
|
||
|
Tdz = FMA(KP707106781, Tdy, Tdx);
|
||
|
TdC = TdA + TdB;
|
||
|
TdD = FNMS(KP923879532, TdC, Tdz);
|
||
|
TdS = FMA(KP923879532, TdC, Tdz);
|
||
|
}
|
||
|
TdE = FNMS(KP820678790, TdD, Tdw);
|
||
|
TdY = FMA(KP098491403, TdS, TdT);
|
||
|
TdI = FMA(KP820678790, Tdw, TdD);
|
||
|
TdU = FNMS(KP098491403, TdT, TdS);
|
||
|
}
|
||
|
{
|
||
|
E TcE, Te0, TjT, Tk7, TcL, Tk8, Te3, TjU, TcD, TjS;
|
||
|
TcD = TcB + TcC;
|
||
|
TcE = FMA(KP707106781, TcD, TcA);
|
||
|
Te0 = FNMS(KP707106781, TcD, TcA);
|
||
|
TjS = T7l + T7s;
|
||
|
TjT = FMA(KP707106781, TjS, TjR);
|
||
|
Tk7 = FNMS(KP707106781, TjS, TjR);
|
||
|
{
|
||
|
E TcH, TcK, Te1, Te2;
|
||
|
TcH = FMA(KP414213562, TcG, TcF);
|
||
|
TcK = FNMS(KP414213562, TcJ, TcI);
|
||
|
TcL = TcH + TcK;
|
||
|
Tk8 = TcK - TcH;
|
||
|
Te1 = FNMS(KP414213562, TcF, TcG);
|
||
|
Te2 = FMA(KP414213562, TcI, TcJ);
|
||
|
Te3 = Te1 - Te2;
|
||
|
TjU = Te1 + Te2;
|
||
|
}
|
||
|
TcM = FNMS(KP923879532, TcL, TcE);
|
||
|
Tk9 = FMA(KP923879532, Tk8, Tk7);
|
||
|
Tkf = FNMS(KP923879532, Tk8, Tk7);
|
||
|
TdK = FMA(KP923879532, TcL, TcE);
|
||
|
Te4 = FMA(KP923879532, Te3, Te0);
|
||
|
TjV = FMA(KP923879532, TjU, TjT);
|
||
|
Tk1 = FNMS(KP923879532, TjU, TjT);
|
||
|
Tew = FNMS(KP923879532, Te3, Te0);
|
||
|
}
|
||
|
{
|
||
|
E Td2, TdF, Tk3, Tk4;
|
||
|
Td2 = FMA(KP980785280, Td1, TcM);
|
||
|
TdF = Tdl - TdE;
|
||
|
ri[WS(rs, 41)] = FNMS(KP773010453, TdF, Td2);
|
||
|
ri[WS(rs, 9)] = FMA(KP773010453, TdF, Td2);
|
||
|
Tk3 = FMA(KP980785280, Tk2, Tk1);
|
||
|
Tk4 = TdI - TdH;
|
||
|
ii[WS(rs, 9)] = FMA(KP773010453, Tk4, Tk3);
|
||
|
ii[WS(rs, 41)] = FNMS(KP773010453, Tk4, Tk3);
|
||
|
}
|
||
|
{
|
||
|
E TdG, TdJ, Tk5, Tk6;
|
||
|
TdG = FNMS(KP980785280, Td1, TcM);
|
||
|
TdJ = TdH + TdI;
|
||
|
ri[WS(rs, 25)] = FNMS(KP773010453, TdJ, TdG);
|
||
|
ri[WS(rs, 57)] = FMA(KP773010453, TdJ, TdG);
|
||
|
Tk5 = FNMS(KP980785280, Tk2, Tk1);
|
||
|
Tk6 = Tdl + TdE;
|
||
|
ii[WS(rs, 25)] = FNMS(KP773010453, Tk6, Tk5);
|
||
|
ii[WS(rs, 57)] = FMA(KP773010453, Tk6, Tk5);
|
||
|
}
|
||
|
{
|
||
|
E TdO, TdV, TjX, TjY;
|
||
|
TdO = FMA(KP980785280, TdN, TdK);
|
||
|
TdV = TdR + TdU;
|
||
|
ri[WS(rs, 33)] = FNMS(KP995184726, TdV, TdO);
|
||
|
ri[WS(rs, 1)] = FMA(KP995184726, TdV, TdO);
|
||
|
TjX = FMA(KP980785280, TjW, TjV);
|
||
|
TjY = TdX + TdY;
|
||
|
ii[WS(rs, 1)] = FMA(KP995184726, TjY, TjX);
|
||
|
ii[WS(rs, 33)] = FNMS(KP995184726, TjY, TjX);
|
||
|
}
|
||
|
{
|
||
|
E TdW, TdZ, TjZ, Tk0;
|
||
|
TdW = FNMS(KP980785280, TdN, TdK);
|
||
|
TdZ = TdX - TdY;
|
||
|
ri[WS(rs, 49)] = FNMS(KP995184726, TdZ, TdW);
|
||
|
ri[WS(rs, 17)] = FMA(KP995184726, TdZ, TdW);
|
||
|
TjZ = FNMS(KP980785280, TjW, TjV);
|
||
|
Tk0 = TdU - TdR;
|
||
|
ii[WS(rs, 17)] = FMA(KP995184726, Tk0, TjZ);
|
||
|
ii[WS(rs, 49)] = FNMS(KP995184726, Tk0, TjZ);
|
||
|
}
|
||
|
{
|
||
|
E Tec, Ter, Tkb, Tkc;
|
||
|
Tec = FMA(KP831469612, Teb, Te4);
|
||
|
Ter = Tej + Teq;
|
||
|
ri[WS(rs, 37)] = FNMS(KP881921264, Ter, Tec);
|
||
|
ri[WS(rs, 5)] = FMA(KP881921264, Ter, Tec);
|
||
|
Tkb = FMA(KP831469612, Tka, Tk9);
|
||
|
Tkc = Tet + Teu;
|
||
|
ii[WS(rs, 5)] = FMA(KP881921264, Tkc, Tkb);
|
||
|
ii[WS(rs, 37)] = FNMS(KP881921264, Tkc, Tkb);
|
||
|
}
|
||
|
{
|
||
|
E Tes, Tev, Tkd, Tke;
|
||
|
Tes = FNMS(KP831469612, Teb, Te4);
|
||
|
Tev = Tet - Teu;
|
||
|
ri[WS(rs, 53)] = FNMS(KP881921264, Tev, Tes);
|
||
|
ri[WS(rs, 21)] = FMA(KP881921264, Tev, Tes);
|
||
|
Tkd = FNMS(KP831469612, Tka, Tk9);
|
||
|
Tke = Teq - Tej;
|
||
|
ii[WS(rs, 21)] = FMA(KP881921264, Tke, Tkd);
|
||
|
ii[WS(rs, 53)] = FNMS(KP881921264, Tke, Tkd);
|
||
|
}
|
||
|
{
|
||
|
E TeA, TeH, Tkh, Tki;
|
||
|
TeA = FNMS(KP831469612, Tez, Tew);
|
||
|
TeH = TeD - TeG;
|
||
|
ri[WS(rs, 45)] = FNMS(KP956940335, TeH, TeA);
|
||
|
ri[WS(rs, 13)] = FMA(KP956940335, TeH, TeA);
|
||
|
Tkh = FNMS(KP831469612, Tkg, Tkf);
|
||
|
Tki = TeK - TeJ;
|
||
|
ii[WS(rs, 13)] = FMA(KP956940335, Tki, Tkh);
|
||
|
ii[WS(rs, 45)] = FNMS(KP956940335, Tki, Tkh);
|
||
|
}
|
||
|
{
|
||
|
E TeI, TeL, Tkj, Tkk;
|
||
|
TeI = FMA(KP831469612, Tez, Tew);
|
||
|
TeL = TeJ + TeK;
|
||
|
ri[WS(rs, 29)] = FNMS(KP956940335, TeL, TeI);
|
||
|
ri[WS(rs, 61)] = FMA(KP956940335, TeL, TeI);
|
||
|
Tkj = FMA(KP831469612, Tkg, Tkf);
|
||
|
Tkk = TeD + TeG;
|
||
|
ii[WS(rs, 29)] = FNMS(KP956940335, Tkk, Tkj);
|
||
|
ii[WS(rs, 61)] = FMA(KP956940335, Tkk, Tkj);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 0, 64 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, { 520, 126, 518, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_t1_64) (planner *p) {
|
||
|
X(kdft_dit_register) (p, t1_64, &desc);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include dft/scalar/t.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 1038 FP additions, 500 FP multiplications,
|
||
|
* (or, 808 additions, 270 multiplications, 230 fused multiply/add),
|
||
|
* 176 stack variables, 15 constants, and 256 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/t.h"
|
||
|
|
||
|
static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP471396736, +0.471396736825997648556387625905254377657460319);
|
||
|
DK(KP881921264, +0.881921264348355029712756863660388349508442621);
|
||
|
DK(KP290284677, +0.290284677254462367636192375817395274691476278);
|
||
|
DK(KP956940335, +0.956940335732208864935797886980269969482849206);
|
||
|
DK(KP634393284, +0.634393284163645498215171613225493370675687095);
|
||
|
DK(KP773010453, +0.773010453362736960810906609758469800971041293);
|
||
|
DK(KP098017140, +0.098017140329560601994195563888641845861136673);
|
||
|
DK(KP995184726, +0.995184726672196886244836953109479921575474869);
|
||
|
DK(KP555570233, +0.555570233019602224742830813948532874374937191);
|
||
|
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
|
||
|
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
|
||
|
DK(KP195090322, +0.195090322016128267848284868477022240927691618);
|
||
|
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
||
|
DK(KP382683432, +0.382683432365089771728459984030398866761344562);
|
||
|
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) {
|
||
|
E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, ThQ, TaC;
|
||
|
E Tim, T14, Tfq, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfr, T6J, T9P, TaJ, Tc1;
|
||
|
E TcZ, TeF, T1Q, T2d, Tfx, Tfu, Tfv, Tfw, T6Q, TaM, Tdb, TeJ, T71, TaQ, T7a;
|
||
|
E TaN, Td6, TeI, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeM;
|
||
|
E T7s, TaU, T7B, TaX, Tdh, TeL, T7y, TaT, T5j, TfR, Tec, Tf0, TfY, Tgy, T8D;
|
||
|
E Tbl, T8O, Tbx, T9l, Tbm, TdV, TeX, T9i, Tbw, T3M, TfL, TdL, TeQ, TfI, Tgt;
|
||
|
E T7K, Tb2, T7V, Tbe, T8s, Tb3, Tdu, TeT, T8p, Tbd, T4x, TfJ, TdE, TdM, TfO;
|
||
|
E Tgu, T87, T8v, T8i, T8u, Tba, Tbg, Tdz, TdN, Tb7, Tbh, T64, TfZ, Te5, Ted;
|
||
|
E TfU, Tgz, T90, T9o, T9b, T9n, Tbt, Tbz, Te0, Tee, Tbq, TbA;
|
||
|
{
|
||
|
E T1, TgR, T6, TgQ, Tc, T68, Th, T69;
|
||
|
T1 = ri[0];
|
||
|
TgR = ii[0];
|
||
|
{
|
||
|
E T3, T5, T2, T4;
|
||
|
T3 = ri[WS(rs, 32)];
|
||
|
T5 = ii[WS(rs, 32)];
|
||
|
T2 = W[62];
|
||
|
T4 = W[63];
|
||
|
T6 = FMA(T2, T3, T4 * T5);
|
||
|
TgQ = FNMS(T4, T3, T2 * T5);
|
||
|
}
|
||
|
{
|
||
|
E T9, Tb, T8, Ta;
|
||
|
T9 = ri[WS(rs, 16)];
|
||
|
Tb = ii[WS(rs, 16)];
|
||
|
T8 = W[30];
|
||
|
Ta = W[31];
|
||
|
Tc = FMA(T8, T9, Ta * Tb);
|
||
|
T68 = FNMS(Ta, T9, T8 * Tb);
|
||
|
}
|
||
|
{
|
||
|
E Te, Tg, Td, Tf;
|
||
|
Te = ri[WS(rs, 48)];
|
||
|
Tg = ii[WS(rs, 48)];
|
||
|
Td = W[94];
|
||
|
Tf = W[95];
|
||
|
Th = FMA(Td, Te, Tf * Tg);
|
||
|
T69 = FNMS(Tf, Te, Td * Tg);
|
||
|
}
|
||
|
{
|
||
|
E T7, Ti, ThR, ThS;
|
||
|
T7 = T1 + T6;
|
||
|
Ti = Tc + Th;
|
||
|
Tj = T7 + Ti;
|
||
|
TcL = T7 - Ti;
|
||
|
ThR = TgR - TgQ;
|
||
|
ThS = Tc - Th;
|
||
|
ThT = ThR - ThS;
|
||
|
Tin = ThS + ThR;
|
||
|
}
|
||
|
{
|
||
|
E T67, T6a, TgP, TgS;
|
||
|
T67 = T1 - T6;
|
||
|
T6a = T68 - T69;
|
||
|
T6b = T67 - T6a;
|
||
|
Taz = T67 + T6a;
|
||
|
TgP = T68 + T69;
|
||
|
TgS = TgQ + TgR;
|
||
|
TgT = TgP + TgS;
|
||
|
Thn = TgS - TgP;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E To, T6c, Tt, T6d, T6e, T6f, Tz, T6i, TE, T6j, T6h, T6k;
|
||
|
{
|
||
|
E Tl, Tn, Tk, Tm;
|
||
|
Tl = ri[WS(rs, 8)];
|
||
|
Tn = ii[WS(rs, 8)];
|
||
|
Tk = W[14];
|
||
|
Tm = W[15];
|
||
|
To = FMA(Tk, Tl, Tm * Tn);
|
||
|
T6c = FNMS(Tm, Tl, Tk * Tn);
|
||
|
}
|
||
|
{
|
||
|
E Tq, Ts, Tp, Tr;
|
||
|
Tq = ri[WS(rs, 40)];
|
||
|
Ts = ii[WS(rs, 40)];
|
||
|
Tp = W[78];
|
||
|
Tr = W[79];
|
||
|
Tt = FMA(Tp, Tq, Tr * Ts);
|
||
|
T6d = FNMS(Tr, Tq, Tp * Ts);
|
||
|
}
|
||
|
T6e = T6c - T6d;
|
||
|
T6f = To - Tt;
|
||
|
{
|
||
|
E Tw, Ty, Tv, Tx;
|
||
|
Tw = ri[WS(rs, 56)];
|
||
|
Ty = ii[WS(rs, 56)];
|
||
|
Tv = W[110];
|
||
|
Tx = W[111];
|
||
|
Tz = FMA(Tv, Tw, Tx * Ty);
|
||
|
T6i = FNMS(Tx, Tw, Tv * Ty);
|
||
|
}
|
||
|
{
|
||
|
E TB, TD, TA, TC;
|
||
|
TB = ri[WS(rs, 24)];
|
||
|
TD = ii[WS(rs, 24)];
|
||
|
TA = W[46];
|
||
|
TC = W[47];
|
||
|
TE = FMA(TA, TB, TC * TD);
|
||
|
T6j = FNMS(TC, TB, TA * TD);
|
||
|
}
|
||
|
T6h = Tz - TE;
|
||
|
T6k = T6i - T6j;
|
||
|
{
|
||
|
E Tu, TF, TcM, TcN;
|
||
|
Tu = To + Tt;
|
||
|
TF = Tz + TE;
|
||
|
TG = Tu + TF;
|
||
|
Thm = TF - Tu;
|
||
|
TcM = T6c + T6d;
|
||
|
TcN = T6i + T6j;
|
||
|
TcO = TcM - TcN;
|
||
|
TgO = TcM + TcN;
|
||
|
}
|
||
|
{
|
||
|
E T6g, T6l, TaA, TaB;
|
||
|
T6g = T6e - T6f;
|
||
|
T6l = T6h + T6k;
|
||
|
T6m = KP707106781 * (T6g - T6l);
|
||
|
ThQ = KP707106781 * (T6g + T6l);
|
||
|
TaA = T6f + T6e;
|
||
|
TaB = T6h - T6k;
|
||
|
TaC = KP707106781 * (TaA + TaB);
|
||
|
Tim = KP707106781 * (TaB - TaA);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E TS, TcQ, T6q, T6t, T13, TcR, T6r, T6w, T6s, T6x;
|
||
|
{
|
||
|
E TM, T6o, TR, T6p;
|
||
|
{
|
||
|
E TJ, TL, TI, TK;
|
||
|
TJ = ri[WS(rs, 4)];
|
||
|
TL = ii[WS(rs, 4)];
|
||
|
TI = W[6];
|
||
|
TK = W[7];
|
||
|
TM = FMA(TI, TJ, TK * TL);
|
||
|
T6o = FNMS(TK, TJ, TI * TL);
|
||
|
}
|
||
|
{
|
||
|
E TO, TQ, TN, TP;
|
||
|
TO = ri[WS(rs, 36)];
|
||
|
TQ = ii[WS(rs, 36)];
|
||
|
TN = W[70];
|
||
|
TP = W[71];
|
||
|
TR = FMA(TN, TO, TP * TQ);
|
||
|
T6p = FNMS(TP, TO, TN * TQ);
|
||
|
}
|
||
|
TS = TM + TR;
|
||
|
TcQ = T6o + T6p;
|
||
|
T6q = T6o - T6p;
|
||
|
T6t = TM - TR;
|
||
|
}
|
||
|
{
|
||
|
E TX, T6u, T12, T6v;
|
||
|
{
|
||
|
E TU, TW, TT, TV;
|
||
|
TU = ri[WS(rs, 20)];
|
||
|
TW = ii[WS(rs, 20)];
|
||
|
TT = W[38];
|
||
|
TV = W[39];
|
||
|
TX = FMA(TT, TU, TV * TW);
|
||
|
T6u = FNMS(TV, TU, TT * TW);
|
||
|
}
|
||
|
{
|
||
|
E TZ, T11, TY, T10;
|
||
|
TZ = ri[WS(rs, 52)];
|
||
|
T11 = ii[WS(rs, 52)];
|
||
|
TY = W[102];
|
||
|
T10 = W[103];
|
||
|
T12 = FMA(TY, TZ, T10 * T11);
|
||
|
T6v = FNMS(T10, TZ, TY * T11);
|
||
|
}
|
||
|
T13 = TX + T12;
|
||
|
TcR = T6u + T6v;
|
||
|
T6r = TX - T12;
|
||
|
T6w = T6u - T6v;
|
||
|
}
|
||
|
T14 = TS + T13;
|
||
|
Tfq = TcQ + TcR;
|
||
|
T6s = T6q + T6r;
|
||
|
T6x = T6t - T6w;
|
||
|
T6y = FNMS(KP923879532, T6x, KP382683432 * T6s);
|
||
|
T9O = FMA(KP923879532, T6s, KP382683432 * T6x);
|
||
|
{
|
||
|
E TaE, TaF, TcS, TcT;
|
||
|
TaE = T6q - T6r;
|
||
|
TaF = T6t + T6w;
|
||
|
TaG = FNMS(KP382683432, TaF, KP923879532 * TaE);
|
||
|
Tc0 = FMA(KP382683432, TaE, KP923879532 * TaF);
|
||
|
TcS = TcQ - TcR;
|
||
|
TcT = TS - T13;
|
||
|
TcU = TcS - TcT;
|
||
|
TeE = TcT + TcS;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I;
|
||
|
{
|
||
|
E T19, T6z, T1e, T6A;
|
||
|
{
|
||
|
E T16, T18, T15, T17;
|
||
|
T16 = ri[WS(rs, 60)];
|
||
|
T18 = ii[WS(rs, 60)];
|
||
|
T15 = W[118];
|
||
|
T17 = W[119];
|
||
|
T19 = FMA(T15, T16, T17 * T18);
|
||
|
T6z = FNMS(T17, T16, T15 * T18);
|
||
|
}
|
||
|
{
|
||
|
E T1b, T1d, T1a, T1c;
|
||
|
T1b = ri[WS(rs, 28)];
|
||
|
T1d = ii[WS(rs, 28)];
|
||
|
T1a = W[54];
|
||
|
T1c = W[55];
|
||
|
T1e = FMA(T1a, T1b, T1c * T1d);
|
||
|
T6A = FNMS(T1c, T1b, T1a * T1d);
|
||
|
}
|
||
|
T1f = T19 + T1e;
|
||
|
TcW = T6z + T6A;
|
||
|
T6B = T6z - T6A;
|
||
|
T6E = T19 - T1e;
|
||
|
}
|
||
|
{
|
||
|
E T1k, T6F, T1p, T6G;
|
||
|
{
|
||
|
E T1h, T1j, T1g, T1i;
|
||
|
T1h = ri[WS(rs, 12)];
|
||
|
T1j = ii[WS(rs, 12)];
|
||
|
T1g = W[22];
|
||
|
T1i = W[23];
|
||
|
T1k = FMA(T1g, T1h, T1i * T1j);
|
||
|
T6F = FNMS(T1i, T1h, T1g * T1j);
|
||
|
}
|
||
|
{
|
||
|
E T1m, T1o, T1l, T1n;
|
||
|
T1m = ri[WS(rs, 44)];
|
||
|
T1o = ii[WS(rs, 44)];
|
||
|
T1l = W[86];
|
||
|
T1n = W[87];
|
||
|
T1p = FMA(T1l, T1m, T1n * T1o);
|
||
|
T6G = FNMS(T1n, T1m, T1l * T1o);
|
||
|
}
|
||
|
T1q = T1k + T1p;
|
||
|
TcX = T6F + T6G;
|
||
|
T6C = T1k - T1p;
|
||
|
T6H = T6F - T6G;
|
||
|
}
|
||
|
T1r = T1f + T1q;
|
||
|
Tfr = TcW + TcX;
|
||
|
T6D = T6B + T6C;
|
||
|
T6I = T6E - T6H;
|
||
|
T6J = FMA(KP382683432, T6D, KP923879532 * T6I);
|
||
|
T9P = FNMS(KP923879532, T6D, KP382683432 * T6I);
|
||
|
{
|
||
|
E TaH, TaI, TcV, TcY;
|
||
|
TaH = T6B - T6C;
|
||
|
TaI = T6E + T6H;
|
||
|
TaJ = FMA(KP923879532, TaH, KP382683432 * TaI);
|
||
|
Tc1 = FNMS(KP382683432, TaH, KP923879532 * TaI);
|
||
|
TcV = T1f - T1q;
|
||
|
TcY = TcW - TcX;
|
||
|
TcZ = TcV + TcY;
|
||
|
TeF = TcV - TcY;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1y, T6M, T1D, T6N, T1E, Td2, T1J, T74, T1O, T75, T1P, Td3, T21, Td8, T6W;
|
||
|
E T6Z, T2c, Td9, T6R, T6U;
|
||
|
{
|
||
|
E T1v, T1x, T1u, T1w;
|
||
|
T1v = ri[WS(rs, 2)];
|
||
|
T1x = ii[WS(rs, 2)];
|
||
|
T1u = W[2];
|
||
|
T1w = W[3];
|
||
|
T1y = FMA(T1u, T1v, T1w * T1x);
|
||
|
T6M = FNMS(T1w, T1v, T1u * T1x);
|
||
|
}
|
||
|
{
|
||
|
E T1A, T1C, T1z, T1B;
|
||
|
T1A = ri[WS(rs, 34)];
|
||
|
T1C = ii[WS(rs, 34)];
|
||
|
T1z = W[66];
|
||
|
T1B = W[67];
|
||
|
T1D = FMA(T1z, T1A, T1B * T1C);
|
||
|
T6N = FNMS(T1B, T1A, T1z * T1C);
|
||
|
}
|
||
|
T1E = T1y + T1D;
|
||
|
Td2 = T6M + T6N;
|
||
|
{
|
||
|
E T1G, T1I, T1F, T1H;
|
||
|
T1G = ri[WS(rs, 18)];
|
||
|
T1I = ii[WS(rs, 18)];
|
||
|
T1F = W[34];
|
||
|
T1H = W[35];
|
||
|
T1J = FMA(T1F, T1G, T1H * T1I);
|
||
|
T74 = FNMS(T1H, T1G, T1F * T1I);
|
||
|
}
|
||
|
{
|
||
|
E T1L, T1N, T1K, T1M;
|
||
|
T1L = ri[WS(rs, 50)];
|
||
|
T1N = ii[WS(rs, 50)];
|
||
|
T1K = W[98];
|
||
|
T1M = W[99];
|
||
|
T1O = FMA(T1K, T1L, T1M * T1N);
|
||
|
T75 = FNMS(T1M, T1L, T1K * T1N);
|
||
|
}
|
||
|
T1P = T1J + T1O;
|
||
|
Td3 = T74 + T75;
|
||
|
{
|
||
|
E T1V, T6X, T20, T6Y;
|
||
|
{
|
||
|
E T1S, T1U, T1R, T1T;
|
||
|
T1S = ri[WS(rs, 10)];
|
||
|
T1U = ii[WS(rs, 10)];
|
||
|
T1R = W[18];
|
||
|
T1T = W[19];
|
||
|
T1V = FMA(T1R, T1S, T1T * T1U);
|
||
|
T6X = FNMS(T1T, T1S, T1R * T1U);
|
||
|
}
|
||
|
{
|
||
|
E T1X, T1Z, T1W, T1Y;
|
||
|
T1X = ri[WS(rs, 42)];
|
||
|
T1Z = ii[WS(rs, 42)];
|
||
|
T1W = W[82];
|
||
|
T1Y = W[83];
|
||
|
T20 = FMA(T1W, T1X, T1Y * T1Z);
|
||
|
T6Y = FNMS(T1Y, T1X, T1W * T1Z);
|
||
|
}
|
||
|
T21 = T1V + T20;
|
||
|
Td8 = T6X + T6Y;
|
||
|
T6W = T1V - T20;
|
||
|
T6Z = T6X - T6Y;
|
||
|
}
|
||
|
{
|
||
|
E T26, T6S, T2b, T6T;
|
||
|
{
|
||
|
E T23, T25, T22, T24;
|
||
|
T23 = ri[WS(rs, 58)];
|
||
|
T25 = ii[WS(rs, 58)];
|
||
|
T22 = W[114];
|
||
|
T24 = W[115];
|
||
|
T26 = FMA(T22, T23, T24 * T25);
|
||
|
T6S = FNMS(T24, T23, T22 * T25);
|
||
|
}
|
||
|
{
|
||
|
E T28, T2a, T27, T29;
|
||
|
T28 = ri[WS(rs, 26)];
|
||
|
T2a = ii[WS(rs, 26)];
|
||
|
T27 = W[50];
|
||
|
T29 = W[51];
|
||
|
T2b = FMA(T27, T28, T29 * T2a);
|
||
|
T6T = FNMS(T29, T28, T27 * T2a);
|
||
|
}
|
||
|
T2c = T26 + T2b;
|
||
|
Td9 = T6S + T6T;
|
||
|
T6R = T26 - T2b;
|
||
|
T6U = T6S - T6T;
|
||
|
}
|
||
|
T1Q = T1E + T1P;
|
||
|
T2d = T21 + T2c;
|
||
|
Tfx = T1Q - T2d;
|
||
|
Tfu = Td2 + Td3;
|
||
|
Tfv = Td8 + Td9;
|
||
|
Tfw = Tfu - Tfv;
|
||
|
{
|
||
|
E T6O, T6P, Td7, Tda;
|
||
|
T6O = T6M - T6N;
|
||
|
T6P = T1J - T1O;
|
||
|
T6Q = T6O + T6P;
|
||
|
TaM = T6O - T6P;
|
||
|
Td7 = T1E - T1P;
|
||
|
Tda = Td8 - Td9;
|
||
|
Tdb = Td7 - Tda;
|
||
|
TeJ = Td7 + Tda;
|
||
|
}
|
||
|
{
|
||
|
E T6V, T70, T78, T79;
|
||
|
T6V = T6R - T6U;
|
||
|
T70 = T6W + T6Z;
|
||
|
T71 = KP707106781 * (T6V - T70);
|
||
|
TaQ = KP707106781 * (T70 + T6V);
|
||
|
T78 = T6Z - T6W;
|
||
|
T79 = T6R + T6U;
|
||
|
T7a = KP707106781 * (T78 - T79);
|
||
|
TaN = KP707106781 * (T78 + T79);
|
||
|
}
|
||
|
{
|
||
|
E Td4, Td5, T73, T76;
|
||
|
Td4 = Td2 - Td3;
|
||
|
Td5 = T2c - T21;
|
||
|
Td6 = Td4 - Td5;
|
||
|
TeI = Td4 + Td5;
|
||
|
T73 = T1y - T1D;
|
||
|
T76 = T74 - T75;
|
||
|
T77 = T73 - T76;
|
||
|
TaP = T73 + T76;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T2j, T7d, T2o, T7e, T2p, Tdd, T2u, T7v, T2z, T7w, T2A, Tde, T2M, Tdj, T7n;
|
||
|
E T7q, T2X, Tdk, T7i, T7l;
|
||
|
{
|
||
|
E T2g, T2i, T2f, T2h;
|
||
|
T2g = ri[WS(rs, 62)];
|
||
|
T2i = ii[WS(rs, 62)];
|
||
|
T2f = W[122];
|
||
|
T2h = W[123];
|
||
|
T2j = FMA(T2f, T2g, T2h * T2i);
|
||
|
T7d = FNMS(T2h, T2g, T2f * T2i);
|
||
|
}
|
||
|
{
|
||
|
E T2l, T2n, T2k, T2m;
|
||
|
T2l = ri[WS(rs, 30)];
|
||
|
T2n = ii[WS(rs, 30)];
|
||
|
T2k = W[58];
|
||
|
T2m = W[59];
|
||
|
T2o = FMA(T2k, T2l, T2m * T2n);
|
||
|
T7e = FNMS(T2m, T2l, T2k * T2n);
|
||
|
}
|
||
|
T2p = T2j + T2o;
|
||
|
Tdd = T7d + T7e;
|
||
|
{
|
||
|
E T2r, T2t, T2q, T2s;
|
||
|
T2r = ri[WS(rs, 14)];
|
||
|
T2t = ii[WS(rs, 14)];
|
||
|
T2q = W[26];
|
||
|
T2s = W[27];
|
||
|
T2u = FMA(T2q, T2r, T2s * T2t);
|
||
|
T7v = FNMS(T2s, T2r, T2q * T2t);
|
||
|
}
|
||
|
{
|
||
|
E T2w, T2y, T2v, T2x;
|
||
|
T2w = ri[WS(rs, 46)];
|
||
|
T2y = ii[WS(rs, 46)];
|
||
|
T2v = W[90];
|
||
|
T2x = W[91];
|
||
|
T2z = FMA(T2v, T2w, T2x * T2y);
|
||
|
T7w = FNMS(T2x, T2w, T2v * T2y);
|
||
|
}
|
||
|
T2A = T2u + T2z;
|
||
|
Tde = T7v + T7w;
|
||
|
{
|
||
|
E T2G, T7o, T2L, T7p;
|
||
|
{
|
||
|
E T2D, T2F, T2C, T2E;
|
||
|
T2D = ri[WS(rs, 6)];
|
||
|
T2F = ii[WS(rs, 6)];
|
||
|
T2C = W[10];
|
||
|
T2E = W[11];
|
||
|
T2G = FMA(T2C, T2D, T2E * T2F);
|
||
|
T7o = FNMS(T2E, T2D, T2C * T2F);
|
||
|
}
|
||
|
{
|
||
|
E T2I, T2K, T2H, T2J;
|
||
|
T2I = ri[WS(rs, 38)];
|
||
|
T2K = ii[WS(rs, 38)];
|
||
|
T2H = W[74];
|
||
|
T2J = W[75];
|
||
|
T2L = FMA(T2H, T2I, T2J * T2K);
|
||
|
T7p = FNMS(T2J, T2I, T2H * T2K);
|
||
|
}
|
||
|
T2M = T2G + T2L;
|
||
|
Tdj = T7o + T7p;
|
||
|
T7n = T2G - T2L;
|
||
|
T7q = T7o - T7p;
|
||
|
}
|
||
|
{
|
||
|
E T2R, T7j, T2W, T7k;
|
||
|
{
|
||
|
E T2O, T2Q, T2N, T2P;
|
||
|
T2O = ri[WS(rs, 54)];
|
||
|
T2Q = ii[WS(rs, 54)];
|
||
|
T2N = W[106];
|
||
|
T2P = W[107];
|
||
|
T2R = FMA(T2N, T2O, T2P * T2Q);
|
||
|
T7j = FNMS(T2P, T2O, T2N * T2Q);
|
||
|
}
|
||
|
{
|
||
|
E T2T, T2V, T2S, T2U;
|
||
|
T2T = ri[WS(rs, 22)];
|
||
|
T2V = ii[WS(rs, 22)];
|
||
|
T2S = W[42];
|
||
|
T2U = W[43];
|
||
|
T2W = FMA(T2S, T2T, T2U * T2V);
|
||
|
T7k = FNMS(T2U, T2T, T2S * T2V);
|
||
|
}
|
||
|
T2X = T2R + T2W;
|
||
|
Tdk = T7j + T7k;
|
||
|
T7i = T2R - T2W;
|
||
|
T7l = T7j - T7k;
|
||
|
}
|
||
|
T2B = T2p + T2A;
|
||
|
T2Y = T2M + T2X;
|
||
|
Tfz = T2B - T2Y;
|
||
|
TfA = Tdd + Tde;
|
||
|
TfB = Tdj + Tdk;
|
||
|
TfC = TfA - TfB;
|
||
|
{
|
||
|
E T7f, T7g, Tdi, Tdl;
|
||
|
T7f = T7d - T7e;
|
||
|
T7g = T2u - T2z;
|
||
|
T7h = T7f + T7g;
|
||
|
TaW = T7f - T7g;
|
||
|
Tdi = T2p - T2A;
|
||
|
Tdl = Tdj - Tdk;
|
||
|
Tdm = Tdi - Tdl;
|
||
|
TeM = Tdi + Tdl;
|
||
|
}
|
||
|
{
|
||
|
E T7m, T7r, T7z, T7A;
|
||
|
T7m = T7i - T7l;
|
||
|
T7r = T7n + T7q;
|
||
|
T7s = KP707106781 * (T7m - T7r);
|
||
|
TaU = KP707106781 * (T7r + T7m);
|
||
|
T7z = T7q - T7n;
|
||
|
T7A = T7i + T7l;
|
||
|
T7B = KP707106781 * (T7z - T7A);
|
||
|
TaX = KP707106781 * (T7z + T7A);
|
||
|
}
|
||
|
{
|
||
|
E Tdf, Tdg, T7u, T7x;
|
||
|
Tdf = Tdd - Tde;
|
||
|
Tdg = T2X - T2M;
|
||
|
Tdh = Tdf - Tdg;
|
||
|
TeL = Tdf + Tdg;
|
||
|
T7u = T2j - T2o;
|
||
|
T7x = T7v - T7w;
|
||
|
T7y = T7u - T7x;
|
||
|
TaT = T7u + T7x;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T4D, T9e, T4I, T9f, T4J, Te8, T4O, T8A, T4T, T8B, T4U, Te9, T56, TdS, T8G;
|
||
|
E T8H, T5h, TdT, T8J, T8M;
|
||
|
{
|
||
|
E T4A, T4C, T4z, T4B;
|
||
|
T4A = ri[WS(rs, 63)];
|
||
|
T4C = ii[WS(rs, 63)];
|
||
|
T4z = W[124];
|
||
|
T4B = W[125];
|
||
|
T4D = FMA(T4z, T4A, T4B * T4C);
|
||
|
T9e = FNMS(T4B, T4A, T4z * T4C);
|
||
|
}
|
||
|
{
|
||
|
E T4F, T4H, T4E, T4G;
|
||
|
T4F = ri[WS(rs, 31)];
|
||
|
T4H = ii[WS(rs, 31)];
|
||
|
T4E = W[60];
|
||
|
T4G = W[61];
|
||
|
T4I = FMA(T4E, T4F, T4G * T4H);
|
||
|
T9f = FNMS(T4G, T4F, T4E * T4H);
|
||
|
}
|
||
|
T4J = T4D + T4I;
|
||
|
Te8 = T9e + T9f;
|
||
|
{
|
||
|
E T4L, T4N, T4K, T4M;
|
||
|
T4L = ri[WS(rs, 15)];
|
||
|
T4N = ii[WS(rs, 15)];
|
||
|
T4K = W[28];
|
||
|
T4M = W[29];
|
||
|
T4O = FMA(T4K, T4L, T4M * T4N);
|
||
|
T8A = FNMS(T4M, T4L, T4K * T4N);
|
||
|
}
|
||
|
{
|
||
|
E T4Q, T4S, T4P, T4R;
|
||
|
T4Q = ri[WS(rs, 47)];
|
||
|
T4S = ii[WS(rs, 47)];
|
||
|
T4P = W[92];
|
||
|
T4R = W[93];
|
||
|
T4T = FMA(T4P, T4Q, T4R * T4S);
|
||
|
T8B = FNMS(T4R, T4Q, T4P * T4S);
|
||
|
}
|
||
|
T4U = T4O + T4T;
|
||
|
Te9 = T8A + T8B;
|
||
|
{
|
||
|
E T50, T8E, T55, T8F;
|
||
|
{
|
||
|
E T4X, T4Z, T4W, T4Y;
|
||
|
T4X = ri[WS(rs, 7)];
|
||
|
T4Z = ii[WS(rs, 7)];
|
||
|
T4W = W[12];
|
||
|
T4Y = W[13];
|
||
|
T50 = FMA(T4W, T4X, T4Y * T4Z);
|
||
|
T8E = FNMS(T4Y, T4X, T4W * T4Z);
|
||
|
}
|
||
|
{
|
||
|
E T52, T54, T51, T53;
|
||
|
T52 = ri[WS(rs, 39)];
|
||
|
T54 = ii[WS(rs, 39)];
|
||
|
T51 = W[76];
|
||
|
T53 = W[77];
|
||
|
T55 = FMA(T51, T52, T53 * T54);
|
||
|
T8F = FNMS(T53, T52, T51 * T54);
|
||
|
}
|
||
|
T56 = T50 + T55;
|
||
|
TdS = T8E + T8F;
|
||
|
T8G = T8E - T8F;
|
||
|
T8H = T50 - T55;
|
||
|
}
|
||
|
{
|
||
|
E T5b, T8K, T5g, T8L;
|
||
|
{
|
||
|
E T58, T5a, T57, T59;
|
||
|
T58 = ri[WS(rs, 55)];
|
||
|
T5a = ii[WS(rs, 55)];
|
||
|
T57 = W[108];
|
||
|
T59 = W[109];
|
||
|
T5b = FMA(T57, T58, T59 * T5a);
|
||
|
T8K = FNMS(T59, T58, T57 * T5a);
|
||
|
}
|
||
|
{
|
||
|
E T5d, T5f, T5c, T5e;
|
||
|
T5d = ri[WS(rs, 23)];
|
||
|
T5f = ii[WS(rs, 23)];
|
||
|
T5c = W[44];
|
||
|
T5e = W[45];
|
||
|
T5g = FMA(T5c, T5d, T5e * T5f);
|
||
|
T8L = FNMS(T5e, T5d, T5c * T5f);
|
||
|
}
|
||
|
T5h = T5b + T5g;
|
||
|
TdT = T8K + T8L;
|
||
|
T8J = T5b - T5g;
|
||
|
T8M = T8K - T8L;
|
||
|
}
|
||
|
{
|
||
|
E T4V, T5i, Tea, Teb;
|
||
|
T4V = T4J + T4U;
|
||
|
T5i = T56 + T5h;
|
||
|
T5j = T4V + T5i;
|
||
|
TfR = T4V - T5i;
|
||
|
Tea = Te8 - Te9;
|
||
|
Teb = T5h - T56;
|
||
|
Tec = Tea - Teb;
|
||
|
Tf0 = Tea + Teb;
|
||
|
}
|
||
|
{
|
||
|
E TfW, TfX, T8z, T8C;
|
||
|
TfW = Te8 + Te9;
|
||
|
TfX = TdS + TdT;
|
||
|
TfY = TfW - TfX;
|
||
|
Tgy = TfW + TfX;
|
||
|
T8z = T4D - T4I;
|
||
|
T8C = T8A - T8B;
|
||
|
T8D = T8z - T8C;
|
||
|
Tbl = T8z + T8C;
|
||
|
}
|
||
|
{
|
||
|
E T8I, T8N, T9j, T9k;
|
||
|
T8I = T8G - T8H;
|
||
|
T8N = T8J + T8M;
|
||
|
T8O = KP707106781 * (T8I - T8N);
|
||
|
Tbx = KP707106781 * (T8I + T8N);
|
||
|
T9j = T8J - T8M;
|
||
|
T9k = T8H + T8G;
|
||
|
T9l = KP707106781 * (T9j - T9k);
|
||
|
Tbm = KP707106781 * (T9k + T9j);
|
||
|
}
|
||
|
{
|
||
|
E TdR, TdU, T9g, T9h;
|
||
|
TdR = T4J - T4U;
|
||
|
TdU = TdS - TdT;
|
||
|
TdV = TdR - TdU;
|
||
|
TeX = TdR + TdU;
|
||
|
T9g = T9e - T9f;
|
||
|
T9h = T4O - T4T;
|
||
|
T9i = T9g + T9h;
|
||
|
Tbw = T9g - T9h;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T36, T7G, T3b, T7H, T3c, Tdq, T3h, T8m, T3m, T8n, T3n, Tdr, T3z, TdI, T7Q;
|
||
|
E T7T, T3K, TdJ, T7L, T7O;
|
||
|
{
|
||
|
E T33, T35, T32, T34;
|
||
|
T33 = ri[WS(rs, 1)];
|
||
|
T35 = ii[WS(rs, 1)];
|
||
|
T32 = W[0];
|
||
|
T34 = W[1];
|
||
|
T36 = FMA(T32, T33, T34 * T35);
|
||
|
T7G = FNMS(T34, T33, T32 * T35);
|
||
|
}
|
||
|
{
|
||
|
E T38, T3a, T37, T39;
|
||
|
T38 = ri[WS(rs, 33)];
|
||
|
T3a = ii[WS(rs, 33)];
|
||
|
T37 = W[64];
|
||
|
T39 = W[65];
|
||
|
T3b = FMA(T37, T38, T39 * T3a);
|
||
|
T7H = FNMS(T39, T38, T37 * T3a);
|
||
|
}
|
||
|
T3c = T36 + T3b;
|
||
|
Tdq = T7G + T7H;
|
||
|
{
|
||
|
E T3e, T3g, T3d, T3f;
|
||
|
T3e = ri[WS(rs, 17)];
|
||
|
T3g = ii[WS(rs, 17)];
|
||
|
T3d = W[32];
|
||
|
T3f = W[33];
|
||
|
T3h = FMA(T3d, T3e, T3f * T3g);
|
||
|
T8m = FNMS(T3f, T3e, T3d * T3g);
|
||
|
}
|
||
|
{
|
||
|
E T3j, T3l, T3i, T3k;
|
||
|
T3j = ri[WS(rs, 49)];
|
||
|
T3l = ii[WS(rs, 49)];
|
||
|
T3i = W[96];
|
||
|
T3k = W[97];
|
||
|
T3m = FMA(T3i, T3j, T3k * T3l);
|
||
|
T8n = FNMS(T3k, T3j, T3i * T3l);
|
||
|
}
|
||
|
T3n = T3h + T3m;
|
||
|
Tdr = T8m + T8n;
|
||
|
{
|
||
|
E T3t, T7R, T3y, T7S;
|
||
|
{
|
||
|
E T3q, T3s, T3p, T3r;
|
||
|
T3q = ri[WS(rs, 9)];
|
||
|
T3s = ii[WS(rs, 9)];
|
||
|
T3p = W[16];
|
||
|
T3r = W[17];
|
||
|
T3t = FMA(T3p, T3q, T3r * T3s);
|
||
|
T7R = FNMS(T3r, T3q, T3p * T3s);
|
||
|
}
|
||
|
{
|
||
|
E T3v, T3x, T3u, T3w;
|
||
|
T3v = ri[WS(rs, 41)];
|
||
|
T3x = ii[WS(rs, 41)];
|
||
|
T3u = W[80];
|
||
|
T3w = W[81];
|
||
|
T3y = FMA(T3u, T3v, T3w * T3x);
|
||
|
T7S = FNMS(T3w, T3v, T3u * T3x);
|
||
|
}
|
||
|
T3z = T3t + T3y;
|
||
|
TdI = T7R + T7S;
|
||
|
T7Q = T3t - T3y;
|
||
|
T7T = T7R - T7S;
|
||
|
}
|
||
|
{
|
||
|
E T3E, T7M, T3J, T7N;
|
||
|
{
|
||
|
E T3B, T3D, T3A, T3C;
|
||
|
T3B = ri[WS(rs, 57)];
|
||
|
T3D = ii[WS(rs, 57)];
|
||
|
T3A = W[112];
|
||
|
T3C = W[113];
|
||
|
T3E = FMA(T3A, T3B, T3C * T3D);
|
||
|
T7M = FNMS(T3C, T3B, T3A * T3D);
|
||
|
}
|
||
|
{
|
||
|
E T3G, T3I, T3F, T3H;
|
||
|
T3G = ri[WS(rs, 25)];
|
||
|
T3I = ii[WS(rs, 25)];
|
||
|
T3F = W[48];
|
||
|
T3H = W[49];
|
||
|
T3J = FMA(T3F, T3G, T3H * T3I);
|
||
|
T7N = FNMS(T3H, T3G, T3F * T3I);
|
||
|
}
|
||
|
T3K = T3E + T3J;
|
||
|
TdJ = T7M + T7N;
|
||
|
T7L = T3E - T3J;
|
||
|
T7O = T7M - T7N;
|
||
|
}
|
||
|
{
|
||
|
E T3o, T3L, TdH, TdK;
|
||
|
T3o = T3c + T3n;
|
||
|
T3L = T3z + T3K;
|
||
|
T3M = T3o + T3L;
|
||
|
TfL = T3o - T3L;
|
||
|
TdH = T3c - T3n;
|
||
|
TdK = TdI - TdJ;
|
||
|
TdL = TdH - TdK;
|
||
|
TeQ = TdH + TdK;
|
||
|
}
|
||
|
{
|
||
|
E TfG, TfH, T7I, T7J;
|
||
|
TfG = Tdq + Tdr;
|
||
|
TfH = TdI + TdJ;
|
||
|
TfI = TfG - TfH;
|
||
|
Tgt = TfG + TfH;
|
||
|
T7I = T7G - T7H;
|
||
|
T7J = T3h - T3m;
|
||
|
T7K = T7I + T7J;
|
||
|
Tb2 = T7I - T7J;
|
||
|
}
|
||
|
{
|
||
|
E T7P, T7U, T8q, T8r;
|
||
|
T7P = T7L - T7O;
|
||
|
T7U = T7Q + T7T;
|
||
|
T7V = KP707106781 * (T7P - T7U);
|
||
|
Tbe = KP707106781 * (T7U + T7P);
|
||
|
T8q = T7T - T7Q;
|
||
|
T8r = T7L + T7O;
|
||
|
T8s = KP707106781 * (T8q - T8r);
|
||
|
Tb3 = KP707106781 * (T8q + T8r);
|
||
|
}
|
||
|
{
|
||
|
E Tds, Tdt, T8l, T8o;
|
||
|
Tds = Tdq - Tdr;
|
||
|
Tdt = T3K - T3z;
|
||
|
Tdu = Tds - Tdt;
|
||
|
TeT = Tds + Tdt;
|
||
|
T8l = T36 - T3b;
|
||
|
T8o = T8m - T8n;
|
||
|
T8p = T8l - T8o;
|
||
|
Tbd = T8l + T8o;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T3X, TdB, T8a, T8d, T4v, Tdx, T80, T85, T48, TdC, T8b, T8g, T4k, Tdw, T7X;
|
||
|
E T84;
|
||
|
{
|
||
|
E T3R, T88, T3W, T89;
|
||
|
{
|
||
|
E T3O, T3Q, T3N, T3P;
|
||
|
T3O = ri[WS(rs, 5)];
|
||
|
T3Q = ii[WS(rs, 5)];
|
||
|
T3N = W[8];
|
||
|
T3P = W[9];
|
||
|
T3R = FMA(T3N, T3O, T3P * T3Q);
|
||
|
T88 = FNMS(T3P, T3O, T3N * T3Q);
|
||
|
}
|
||
|
{
|
||
|
E T3T, T3V, T3S, T3U;
|
||
|
T3T = ri[WS(rs, 37)];
|
||
|
T3V = ii[WS(rs, 37)];
|
||
|
T3S = W[72];
|
||
|
T3U = W[73];
|
||
|
T3W = FMA(T3S, T3T, T3U * T3V);
|
||
|
T89 = FNMS(T3U, T3T, T3S * T3V);
|
||
|
}
|
||
|
T3X = T3R + T3W;
|
||
|
TdB = T88 + T89;
|
||
|
T8a = T88 - T89;
|
||
|
T8d = T3R - T3W;
|
||
|
}
|
||
|
{
|
||
|
E T4p, T7Y, T4u, T7Z;
|
||
|
{
|
||
|
E T4m, T4o, T4l, T4n;
|
||
|
T4m = ri[WS(rs, 13)];
|
||
|
T4o = ii[WS(rs, 13)];
|
||
|
T4l = W[24];
|
||
|
T4n = W[25];
|
||
|
T4p = FMA(T4l, T4m, T4n * T4o);
|
||
|
T7Y = FNMS(T4n, T4m, T4l * T4o);
|
||
|
}
|
||
|
{
|
||
|
E T4r, T4t, T4q, T4s;
|
||
|
T4r = ri[WS(rs, 45)];
|
||
|
T4t = ii[WS(rs, 45)];
|
||
|
T4q = W[88];
|
||
|
T4s = W[89];
|
||
|
T4u = FMA(T4q, T4r, T4s * T4t);
|
||
|
T7Z = FNMS(T4s, T4r, T4q * T4t);
|
||
|
}
|
||
|
T4v = T4p + T4u;
|
||
|
Tdx = T7Y + T7Z;
|
||
|
T80 = T7Y - T7Z;
|
||
|
T85 = T4p - T4u;
|
||
|
}
|
||
|
{
|
||
|
E T42, T8e, T47, T8f;
|
||
|
{
|
||
|
E T3Z, T41, T3Y, T40;
|
||
|
T3Z = ri[WS(rs, 21)];
|
||
|
T41 = ii[WS(rs, 21)];
|
||
|
T3Y = W[40];
|
||
|
T40 = W[41];
|
||
|
T42 = FMA(T3Y, T3Z, T40 * T41);
|
||
|
T8e = FNMS(T40, T3Z, T3Y * T41);
|
||
|
}
|
||
|
{
|
||
|
E T44, T46, T43, T45;
|
||
|
T44 = ri[WS(rs, 53)];
|
||
|
T46 = ii[WS(rs, 53)];
|
||
|
T43 = W[104];
|
||
|
T45 = W[105];
|
||
|
T47 = FMA(T43, T44, T45 * T46);
|
||
|
T8f = FNMS(T45, T44, T43 * T46);
|
||
|
}
|
||
|
T48 = T42 + T47;
|
||
|
TdC = T8e + T8f;
|
||
|
T8b = T42 - T47;
|
||
|
T8g = T8e - T8f;
|
||
|
}
|
||
|
{
|
||
|
E T4e, T82, T4j, T83;
|
||
|
{
|
||
|
E T4b, T4d, T4a, T4c;
|
||
|
T4b = ri[WS(rs, 61)];
|
||
|
T4d = ii[WS(rs, 61)];
|
||
|
T4a = W[120];
|
||
|
T4c = W[121];
|
||
|
T4e = FMA(T4a, T4b, T4c * T4d);
|
||
|
T82 = FNMS(T4c, T4b, T4a * T4d);
|
||
|
}
|
||
|
{
|
||
|
E T4g, T4i, T4f, T4h;
|
||
|
T4g = ri[WS(rs, 29)];
|
||
|
T4i = ii[WS(rs, 29)];
|
||
|
T4f = W[56];
|
||
|
T4h = W[57];
|
||
|
T4j = FMA(T4f, T4g, T4h * T4i);
|
||
|
T83 = FNMS(T4h, T4g, T4f * T4i);
|
||
|
}
|
||
|
T4k = T4e + T4j;
|
||
|
Tdw = T82 + T83;
|
||
|
T7X = T4e - T4j;
|
||
|
T84 = T82 - T83;
|
||
|
}
|
||
|
{
|
||
|
E T49, T4w, TdA, TdD;
|
||
|
T49 = T3X + T48;
|
||
|
T4w = T4k + T4v;
|
||
|
T4x = T49 + T4w;
|
||
|
TfJ = T4w - T49;
|
||
|
TdA = T3X - T48;
|
||
|
TdD = TdB - TdC;
|
||
|
TdE = TdA + TdD;
|
||
|
TdM = TdD - TdA;
|
||
|
}
|
||
|
{
|
||
|
E TfM, TfN, T81, T86;
|
||
|
TfM = TdB + TdC;
|
||
|
TfN = Tdw + Tdx;
|
||
|
TfO = TfM - TfN;
|
||
|
Tgu = TfM + TfN;
|
||
|
T81 = T7X - T80;
|
||
|
T86 = T84 + T85;
|
||
|
T87 = FNMS(KP923879532, T86, KP382683432 * T81);
|
||
|
T8v = FMA(KP382683432, T86, KP923879532 * T81);
|
||
|
}
|
||
|
{
|
||
|
E T8c, T8h, Tb8, Tb9;
|
||
|
T8c = T8a + T8b;
|
||
|
T8h = T8d - T8g;
|
||
|
T8i = FMA(KP923879532, T8c, KP382683432 * T8h);
|
||
|
T8u = FNMS(KP923879532, T8h, KP382683432 * T8c);
|
||
|
Tb8 = T8a - T8b;
|
||
|
Tb9 = T8d + T8g;
|
||
|
Tba = FMA(KP382683432, Tb8, KP923879532 * Tb9);
|
||
|
Tbg = FNMS(KP382683432, Tb9, KP923879532 * Tb8);
|
||
|
}
|
||
|
{
|
||
|
E Tdv, Tdy, Tb5, Tb6;
|
||
|
Tdv = T4k - T4v;
|
||
|
Tdy = Tdw - Tdx;
|
||
|
Tdz = Tdv - Tdy;
|
||
|
TdN = Tdv + Tdy;
|
||
|
Tb5 = T7X + T80;
|
||
|
Tb6 = T84 - T85;
|
||
|
Tb7 = FNMS(KP382683432, Tb6, KP923879532 * Tb5);
|
||
|
Tbh = FMA(KP923879532, Tb6, KP382683432 * Tb5);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T5u, TdW, T8S, T8V, T62, Te3, T94, T99, T5F, TdX, T8T, T8Y, T5R, Te2, T93;
|
||
|
E T96;
|
||
|
{
|
||
|
E T5o, T8Q, T5t, T8R;
|
||
|
{
|
||
|
E T5l, T5n, T5k, T5m;
|
||
|
T5l = ri[WS(rs, 3)];
|
||
|
T5n = ii[WS(rs, 3)];
|
||
|
T5k = W[4];
|
||
|
T5m = W[5];
|
||
|
T5o = FMA(T5k, T5l, T5m * T5n);
|
||
|
T8Q = FNMS(T5m, T5l, T5k * T5n);
|
||
|
}
|
||
|
{
|
||
|
E T5q, T5s, T5p, T5r;
|
||
|
T5q = ri[WS(rs, 35)];
|
||
|
T5s = ii[WS(rs, 35)];
|
||
|
T5p = W[68];
|
||
|
T5r = W[69];
|
||
|
T5t = FMA(T5p, T5q, T5r * T5s);
|
||
|
T8R = FNMS(T5r, T5q, T5p * T5s);
|
||
|
}
|
||
|
T5u = T5o + T5t;
|
||
|
TdW = T8Q + T8R;
|
||
|
T8S = T8Q - T8R;
|
||
|
T8V = T5o - T5t;
|
||
|
}
|
||
|
{
|
||
|
E T5W, T97, T61, T98;
|
||
|
{
|
||
|
E T5T, T5V, T5S, T5U;
|
||
|
T5T = ri[WS(rs, 11)];
|
||
|
T5V = ii[WS(rs, 11)];
|
||
|
T5S = W[20];
|
||
|
T5U = W[21];
|
||
|
T5W = FMA(T5S, T5T, T5U * T5V);
|
||
|
T97 = FNMS(T5U, T5T, T5S * T5V);
|
||
|
}
|
||
|
{
|
||
|
E T5Y, T60, T5X, T5Z;
|
||
|
T5Y = ri[WS(rs, 43)];
|
||
|
T60 = ii[WS(rs, 43)];
|
||
|
T5X = W[84];
|
||
|
T5Z = W[85];
|
||
|
T61 = FMA(T5X, T5Y, T5Z * T60);
|
||
|
T98 = FNMS(T5Z, T5Y, T5X * T60);
|
||
|
}
|
||
|
T62 = T5W + T61;
|
||
|
Te3 = T97 + T98;
|
||
|
T94 = T5W - T61;
|
||
|
T99 = T97 - T98;
|
||
|
}
|
||
|
{
|
||
|
E T5z, T8W, T5E, T8X;
|
||
|
{
|
||
|
E T5w, T5y, T5v, T5x;
|
||
|
T5w = ri[WS(rs, 19)];
|
||
|
T5y = ii[WS(rs, 19)];
|
||
|
T5v = W[36];
|
||
|
T5x = W[37];
|
||
|
T5z = FMA(T5v, T5w, T5x * T5y);
|
||
|
T8W = FNMS(T5x, T5w, T5v * T5y);
|
||
|
}
|
||
|
{
|
||
|
E T5B, T5D, T5A, T5C;
|
||
|
T5B = ri[WS(rs, 51)];
|
||
|
T5D = ii[WS(rs, 51)];
|
||
|
T5A = W[100];
|
||
|
T5C = W[101];
|
||
|
T5E = FMA(T5A, T5B, T5C * T5D);
|
||
|
T8X = FNMS(T5C, T5B, T5A * T5D);
|
||
|
}
|
||
|
T5F = T5z + T5E;
|
||
|
TdX = T8W + T8X;
|
||
|
T8T = T5z - T5E;
|
||
|
T8Y = T8W - T8X;
|
||
|
}
|
||
|
{
|
||
|
E T5L, T91, T5Q, T92;
|
||
|
{
|
||
|
E T5I, T5K, T5H, T5J;
|
||
|
T5I = ri[WS(rs, 59)];
|
||
|
T5K = ii[WS(rs, 59)];
|
||
|
T5H = W[116];
|
||
|
T5J = W[117];
|
||
|
T5L = FMA(T5H, T5I, T5J * T5K);
|
||
|
T91 = FNMS(T5J, T5I, T5H * T5K);
|
||
|
}
|
||
|
{
|
||
|
E T5N, T5P, T5M, T5O;
|
||
|
T5N = ri[WS(rs, 27)];
|
||
|
T5P = ii[WS(rs, 27)];
|
||
|
T5M = W[52];
|
||
|
T5O = W[53];
|
||
|
T5Q = FMA(T5M, T5N, T5O * T5P);
|
||
|
T92 = FNMS(T5O, T5N, T5M * T5P);
|
||
|
}
|
||
|
T5R = T5L + T5Q;
|
||
|
Te2 = T91 + T92;
|
||
|
T93 = T91 - T92;
|
||
|
T96 = T5L - T5Q;
|
||
|
}
|
||
|
{
|
||
|
E T5G, T63, Te1, Te4;
|
||
|
T5G = T5u + T5F;
|
||
|
T63 = T5R + T62;
|
||
|
T64 = T5G + T63;
|
||
|
TfZ = T63 - T5G;
|
||
|
Te1 = T5R - T62;
|
||
|
Te4 = Te2 - Te3;
|
||
|
Te5 = Te1 + Te4;
|
||
|
Ted = Te1 - Te4;
|
||
|
}
|
||
|
{
|
||
|
E TfS, TfT, T8U, T8Z;
|
||
|
TfS = TdW + TdX;
|
||
|
TfT = Te2 + Te3;
|
||
|
TfU = TfS - TfT;
|
||
|
Tgz = TfS + TfT;
|
||
|
T8U = T8S + T8T;
|
||
|
T8Z = T8V - T8Y;
|
||
|
T90 = FNMS(KP923879532, T8Z, KP382683432 * T8U);
|
||
|
T9o = FMA(KP923879532, T8U, KP382683432 * T8Z);
|
||
|
}
|
||
|
{
|
||
|
E T95, T9a, Tbr, Tbs;
|
||
|
T95 = T93 + T94;
|
||
|
T9a = T96 - T99;
|
||
|
T9b = FMA(KP382683432, T95, KP923879532 * T9a);
|
||
|
T9n = FNMS(KP923879532, T95, KP382683432 * T9a);
|
||
|
Tbr = T93 - T94;
|
||
|
Tbs = T96 + T99;
|
||
|
Tbt = FMA(KP923879532, Tbr, KP382683432 * Tbs);
|
||
|
Tbz = FNMS(KP382683432, Tbr, KP923879532 * Tbs);
|
||
|
}
|
||
|
{
|
||
|
E TdY, TdZ, Tbo, Tbp;
|
||
|
TdY = TdW - TdX;
|
||
|
TdZ = T5u - T5F;
|
||
|
Te0 = TdY - TdZ;
|
||
|
Tee = TdZ + TdY;
|
||
|
Tbo = T8S - T8T;
|
||
|
Tbp = T8V + T8Y;
|
||
|
Tbq = FNMS(KP382683432, Tbp, KP923879532 * Tbo);
|
||
|
TbA = FMA(KP382683432, Tbo, KP923879532 * Tbp);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq;
|
||
|
E TgM;
|
||
|
{
|
||
|
E TH, T1s, TgI, TgJ;
|
||
|
TH = Tj + TG;
|
||
|
T1s = T14 + T1r;
|
||
|
T1t = TH + T1s;
|
||
|
Tgn = TH - T1s;
|
||
|
TgI = Tgt + Tgu;
|
||
|
TgJ = Tgy + Tgz;
|
||
|
TgK = TgI - TgJ;
|
||
|
TgL = TgI + TgJ;
|
||
|
}
|
||
|
{
|
||
|
E TgN, TgU, T2e, T2Z;
|
||
|
TgN = Tfq + Tfr;
|
||
|
TgU = TgO + TgT;
|
||
|
TgV = TgN + TgU;
|
||
|
Th1 = TgU - TgN;
|
||
|
T2e = T1Q + T2d;
|
||
|
T2Z = T2B + T2Y;
|
||
|
T30 = T2e + T2Z;
|
||
|
Th0 = T2Z - T2e;
|
||
|
}
|
||
|
{
|
||
|
E T4y, T65, Tgs, Tgv;
|
||
|
T4y = T3M + T4x;
|
||
|
T65 = T5j + T64;
|
||
|
T66 = T4y + T65;
|
||
|
TgX = T65 - T4y;
|
||
|
Tgs = T3M - T4x;
|
||
|
Tgv = Tgt - Tgu;
|
||
|
Tgw = Tgs + Tgv;
|
||
|
TgE = Tgv - Tgs;
|
||
|
}
|
||
|
{
|
||
|
E Tgx, TgA, Tgo, Tgp;
|
||
|
Tgx = T5j - T64;
|
||
|
TgA = Tgy - Tgz;
|
||
|
TgB = Tgx - TgA;
|
||
|
TgF = Tgx + TgA;
|
||
|
Tgo = Tfu + Tfv;
|
||
|
Tgp = TfA + TfB;
|
||
|
Tgq = Tgo - Tgp;
|
||
|
TgM = Tgo + Tgp;
|
||
|
}
|
||
|
{
|
||
|
E T31, TgW, TgH, TgY;
|
||
|
T31 = T1t + T30;
|
||
|
ri[WS(rs, 32)] = T31 - T66;
|
||
|
ri[0] = T31 + T66;
|
||
|
TgW = TgM + TgV;
|
||
|
ii[0] = TgL + TgW;
|
||
|
ii[WS(rs, 32)] = TgW - TgL;
|
||
|
TgH = T1t - T30;
|
||
|
ri[WS(rs, 48)] = TgH - TgK;
|
||
|
ri[WS(rs, 16)] = TgH + TgK;
|
||
|
TgY = TgV - TgM;
|
||
|
ii[WS(rs, 16)] = TgX + TgY;
|
||
|
ii[WS(rs, 48)] = TgY - TgX;
|
||
|
}
|
||
|
{
|
||
|
E Tgr, TgC, TgZ, Th2;
|
||
|
Tgr = Tgn + Tgq;
|
||
|
TgC = KP707106781 * (Tgw + TgB);
|
||
|
ri[WS(rs, 40)] = Tgr - TgC;
|
||
|
ri[WS(rs, 8)] = Tgr + TgC;
|
||
|
TgZ = KP707106781 * (TgE + TgF);
|
||
|
Th2 = Th0 + Th1;
|
||
|
ii[WS(rs, 8)] = TgZ + Th2;
|
||
|
ii[WS(rs, 40)] = Th2 - TgZ;
|
||
|
}
|
||
|
{
|
||
|
E TgD, TgG, Th3, Th4;
|
||
|
TgD = Tgn - Tgq;
|
||
|
TgG = KP707106781 * (TgE - TgF);
|
||
|
ri[WS(rs, 56)] = TgD - TgG;
|
||
|
ri[WS(rs, 24)] = TgD + TgG;
|
||
|
Th3 = KP707106781 * (TgB - Tgw);
|
||
|
Th4 = Th1 - Th0;
|
||
|
ii[WS(rs, 24)] = Th3 + Th4;
|
||
|
ii[WS(rs, 56)] = Th4 - Th3;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1;
|
||
|
E Tg5;
|
||
|
{
|
||
|
E Tfp, Tfs, Tgf, Tgg;
|
||
|
Tfp = Tj - TG;
|
||
|
Tfs = Tfq - Tfr;
|
||
|
Tft = Tfp - Tfs;
|
||
|
Tg7 = Tfp + Tfs;
|
||
|
Tgf = TfR + TfU;
|
||
|
Tgg = TfY + TfZ;
|
||
|
Tgh = FNMS(KP382683432, Tgg, KP923879532 * Tgf);
|
||
|
Tgl = FMA(KP923879532, Tgg, KP382683432 * Tgf);
|
||
|
}
|
||
|
{
|
||
|
E Th7, Th8, Tfy, TfD;
|
||
|
Th7 = T1r - T14;
|
||
|
Th8 = TgT - TgO;
|
||
|
Th9 = Th7 + Th8;
|
||
|
Thf = Th8 - Th7;
|
||
|
Tfy = Tfw - Tfx;
|
||
|
TfD = Tfz + TfC;
|
||
|
TfE = KP707106781 * (Tfy - TfD);
|
||
|
Th6 = KP707106781 * (Tfy + TfD);
|
||
|
}
|
||
|
{
|
||
|
E TfK, TfP, Tg8, Tg9;
|
||
|
TfK = TfI - TfJ;
|
||
|
TfP = TfL - TfO;
|
||
|
TfQ = FMA(KP923879532, TfK, KP382683432 * TfP);
|
||
|
Tg4 = FNMS(KP923879532, TfP, KP382683432 * TfK);
|
||
|
Tg8 = Tfx + Tfw;
|
||
|
Tg9 = Tfz - TfC;
|
||
|
Tga = KP707106781 * (Tg8 + Tg9);
|
||
|
The = KP707106781 * (Tg9 - Tg8);
|
||
|
}
|
||
|
{
|
||
|
E Tgc, Tgd, TfV, Tg0;
|
||
|
Tgc = TfI + TfJ;
|
||
|
Tgd = TfL + TfO;
|
||
|
Tge = FMA(KP382683432, Tgc, KP923879532 * Tgd);
|
||
|
Tgk = FNMS(KP382683432, Tgd, KP923879532 * Tgc);
|
||
|
TfV = TfR - TfU;
|
||
|
Tg0 = TfY - TfZ;
|
||
|
Tg1 = FNMS(KP923879532, Tg0, KP382683432 * TfV);
|
||
|
Tg5 = FMA(KP382683432, Tg0, KP923879532 * TfV);
|
||
|
}
|
||
|
{
|
||
|
E TfF, Tg2, Thd, Thg;
|
||
|
TfF = Tft + TfE;
|
||
|
Tg2 = TfQ + Tg1;
|
||
|
ri[WS(rs, 44)] = TfF - Tg2;
|
||
|
ri[WS(rs, 12)] = TfF + Tg2;
|
||
|
Thd = Tg4 + Tg5;
|
||
|
Thg = The + Thf;
|
||
|
ii[WS(rs, 12)] = Thd + Thg;
|
||
|
ii[WS(rs, 44)] = Thg - Thd;
|
||
|
}
|
||
|
{
|
||
|
E Tg3, Tg6, Thh, Thi;
|
||
|
Tg3 = Tft - TfE;
|
||
|
Tg6 = Tg4 - Tg5;
|
||
|
ri[WS(rs, 60)] = Tg3 - Tg6;
|
||
|
ri[WS(rs, 28)] = Tg3 + Tg6;
|
||
|
Thh = Tg1 - TfQ;
|
||
|
Thi = Thf - The;
|
||
|
ii[WS(rs, 28)] = Thh + Thi;
|
||
|
ii[WS(rs, 60)] = Thi - Thh;
|
||
|
}
|
||
|
{
|
||
|
E Tgb, Tgi, Th5, Tha;
|
||
|
Tgb = Tg7 + Tga;
|
||
|
Tgi = Tge + Tgh;
|
||
|
ri[WS(rs, 36)] = Tgb - Tgi;
|
||
|
ri[WS(rs, 4)] = Tgb + Tgi;
|
||
|
Th5 = Tgk + Tgl;
|
||
|
Tha = Th6 + Th9;
|
||
|
ii[WS(rs, 4)] = Th5 + Tha;
|
||
|
ii[WS(rs, 36)] = Tha - Th5;
|
||
|
}
|
||
|
{
|
||
|
E Tgj, Tgm, Thb, Thc;
|
||
|
Tgj = Tg7 - Tga;
|
||
|
Tgm = Tgk - Tgl;
|
||
|
ri[WS(rs, 52)] = Tgj - Tgm;
|
||
|
ri[WS(rs, 20)] = Tgj + Tgm;
|
||
|
Thb = Tgh - Tge;
|
||
|
Thc = Th9 - Th6;
|
||
|
ii[WS(rs, 20)] = Thb + Thc;
|
||
|
ii[WS(rs, 52)] = Thc - Thb;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek;
|
||
|
E Teu;
|
||
|
{
|
||
|
E TcP, Td0, Teo, Tep;
|
||
|
TcP = TcL - TcO;
|
||
|
Td0 = KP707106781 * (TcU - TcZ);
|
||
|
Td1 = TcP - Td0;
|
||
|
Ten = TcP + Td0;
|
||
|
{
|
||
|
E Tdc, Tdn, ThB, ThC;
|
||
|
Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6);
|
||
|
Tdn = FMA(KP382683432, Tdh, KP923879532 * Tdm);
|
||
|
Tdo = Tdc - Tdn;
|
||
|
ThA = Tdc + Tdn;
|
||
|
ThB = KP707106781 * (TeF - TeE);
|
||
|
ThC = Thn - Thm;
|
||
|
ThD = ThB + ThC;
|
||
|
ThJ = ThC - ThB;
|
||
|
}
|
||
|
Teo = FMA(KP923879532, Td6, KP382683432 * Tdb);
|
||
|
Tep = FNMS(KP923879532, Tdh, KP382683432 * Tdm);
|
||
|
Teq = Teo + Tep;
|
||
|
ThI = Tep - Teo;
|
||
|
{
|
||
|
E Te7, Tev, Teg, Tew, Te6, Tef;
|
||
|
Te6 = KP707106781 * (Te0 - Te5);
|
||
|
Te7 = TdV - Te6;
|
||
|
Tev = TdV + Te6;
|
||
|
Tef = KP707106781 * (Ted - Tee);
|
||
|
Teg = Tec - Tef;
|
||
|
Tew = Tec + Tef;
|
||
|
Teh = FNMS(KP980785280, Teg, KP195090322 * Te7);
|
||
|
TeB = FMA(KP831469612, Tew, KP555570233 * Tev);
|
||
|
Tel = FMA(KP195090322, Teg, KP980785280 * Te7);
|
||
|
Tex = FNMS(KP555570233, Tew, KP831469612 * Tev);
|
||
|
}
|
||
|
{
|
||
|
E TdG, Tes, TdP, Tet, TdF, TdO;
|
||
|
TdF = KP707106781 * (Tdz - TdE);
|
||
|
TdG = Tdu - TdF;
|
||
|
Tes = Tdu + TdF;
|
||
|
TdO = KP707106781 * (TdM - TdN);
|
||
|
TdP = TdL - TdO;
|
||
|
Tet = TdL + TdO;
|
||
|
TdQ = FMA(KP980785280, TdG, KP195090322 * TdP);
|
||
|
TeA = FNMS(KP555570233, Tet, KP831469612 * Tes);
|
||
|
Tek = FNMS(KP980785280, TdP, KP195090322 * TdG);
|
||
|
Teu = FMA(KP555570233, Tes, KP831469612 * Tet);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Tdp, Tei, ThH, ThK;
|
||
|
Tdp = Td1 + Tdo;
|
||
|
Tei = TdQ + Teh;
|
||
|
ri[WS(rs, 46)] = Tdp - Tei;
|
||
|
ri[WS(rs, 14)] = Tdp + Tei;
|
||
|
ThH = Tek + Tel;
|
||
|
ThK = ThI + ThJ;
|
||
|
ii[WS(rs, 14)] = ThH + ThK;
|
||
|
ii[WS(rs, 46)] = ThK - ThH;
|
||
|
}
|
||
|
{
|
||
|
E Tej, Tem, ThL, ThM;
|
||
|
Tej = Td1 - Tdo;
|
||
|
Tem = Tek - Tel;
|
||
|
ri[WS(rs, 62)] = Tej - Tem;
|
||
|
ri[WS(rs, 30)] = Tej + Tem;
|
||
|
ThL = Teh - TdQ;
|
||
|
ThM = ThJ - ThI;
|
||
|
ii[WS(rs, 30)] = ThL + ThM;
|
||
|
ii[WS(rs, 62)] = ThM - ThL;
|
||
|
}
|
||
|
{
|
||
|
E Ter, Tey, Thz, ThE;
|
||
|
Ter = Ten + Teq;
|
||
|
Tey = Teu + Tex;
|
||
|
ri[WS(rs, 38)] = Ter - Tey;
|
||
|
ri[WS(rs, 6)] = Ter + Tey;
|
||
|
Thz = TeA + TeB;
|
||
|
ThE = ThA + ThD;
|
||
|
ii[WS(rs, 6)] = Thz + ThE;
|
||
|
ii[WS(rs, 38)] = ThE - Thz;
|
||
|
}
|
||
|
{
|
||
|
E Tez, TeC, ThF, ThG;
|
||
|
Tez = Ten - Teq;
|
||
|
TeC = TeA - TeB;
|
||
|
ri[WS(rs, 54)] = Tez - TeC;
|
||
|
ri[WS(rs, 22)] = Tez + TeC;
|
||
|
ThF = Tex - Teu;
|
||
|
ThG = ThD - ThA;
|
||
|
ii[WS(rs, 22)] = ThF + ThG;
|
||
|
ii[WS(rs, 54)] = ThG - ThF;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6;
|
||
|
E Tfg;
|
||
|
{
|
||
|
E TeD, TeG, Tfa, Tfb;
|
||
|
TeD = TcL + TcO;
|
||
|
TeG = KP707106781 * (TeE + TeF);
|
||
|
TeH = TeD - TeG;
|
||
|
Tf9 = TeD + TeG;
|
||
|
{
|
||
|
E TeK, TeN, Thl, Tho;
|
||
|
TeK = FNMS(KP382683432, TeJ, KP923879532 * TeI);
|
||
|
TeN = FMA(KP923879532, TeL, KP382683432 * TeM);
|
||
|
TeO = TeK - TeN;
|
||
|
Thk = TeK + TeN;
|
||
|
Thl = KP707106781 * (TcU + TcZ);
|
||
|
Tho = Thm + Thn;
|
||
|
Thp = Thl + Tho;
|
||
|
Thv = Tho - Thl;
|
||
|
}
|
||
|
Tfa = FMA(KP382683432, TeI, KP923879532 * TeJ);
|
||
|
Tfb = FNMS(KP382683432, TeL, KP923879532 * TeM);
|
||
|
Tfc = Tfa + Tfb;
|
||
|
Thu = Tfb - Tfa;
|
||
|
{
|
||
|
E TeZ, Tfh, Tf2, Tfi, TeY, Tf1;
|
||
|
TeY = KP707106781 * (Tee + Ted);
|
||
|
TeZ = TeX - TeY;
|
||
|
Tfh = TeX + TeY;
|
||
|
Tf1 = KP707106781 * (Te0 + Te5);
|
||
|
Tf2 = Tf0 - Tf1;
|
||
|
Tfi = Tf0 + Tf1;
|
||
|
Tf3 = FNMS(KP831469612, Tf2, KP555570233 * TeZ);
|
||
|
Tfn = FMA(KP195090322, Tfh, KP980785280 * Tfi);
|
||
|
Tf7 = FMA(KP831469612, TeZ, KP555570233 * Tf2);
|
||
|
Tfj = FNMS(KP195090322, Tfi, KP980785280 * Tfh);
|
||
|
}
|
||
|
{
|
||
|
E TeS, Tfe, TeV, Tff, TeR, TeU;
|
||
|
TeR = KP707106781 * (TdE + Tdz);
|
||
|
TeS = TeQ - TeR;
|
||
|
Tfe = TeQ + TeR;
|
||
|
TeU = KP707106781 * (TdM + TdN);
|
||
|
TeV = TeT - TeU;
|
||
|
Tff = TeT + TeU;
|
||
|
TeW = FMA(KP555570233, TeS, KP831469612 * TeV);
|
||
|
Tfm = FNMS(KP195090322, Tfe, KP980785280 * Tff);
|
||
|
Tf6 = FNMS(KP831469612, TeS, KP555570233 * TeV);
|
||
|
Tfg = FMA(KP980785280, Tfe, KP195090322 * Tff);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E TeP, Tf4, Tht, Thw;
|
||
|
TeP = TeH + TeO;
|
||
|
Tf4 = TeW + Tf3;
|
||
|
ri[WS(rs, 42)] = TeP - Tf4;
|
||
|
ri[WS(rs, 10)] = TeP + Tf4;
|
||
|
Tht = Tf6 + Tf7;
|
||
|
Thw = Thu + Thv;
|
||
|
ii[WS(rs, 10)] = Tht + Thw;
|
||
|
ii[WS(rs, 42)] = Thw - Tht;
|
||
|
}
|
||
|
{
|
||
|
E Tf5, Tf8, Thx, Thy;
|
||
|
Tf5 = TeH - TeO;
|
||
|
Tf8 = Tf6 - Tf7;
|
||
|
ri[WS(rs, 58)] = Tf5 - Tf8;
|
||
|
ri[WS(rs, 26)] = Tf5 + Tf8;
|
||
|
Thx = Tf3 - TeW;
|
||
|
Thy = Thv - Thu;
|
||
|
ii[WS(rs, 26)] = Thx + Thy;
|
||
|
ii[WS(rs, 58)] = Thy - Thx;
|
||
|
}
|
||
|
{
|
||
|
E Tfd, Tfk, Thj, Thq;
|
||
|
Tfd = Tf9 + Tfc;
|
||
|
Tfk = Tfg + Tfj;
|
||
|
ri[WS(rs, 34)] = Tfd - Tfk;
|
||
|
ri[WS(rs, 2)] = Tfd + Tfk;
|
||
|
Thj = Tfm + Tfn;
|
||
|
Thq = Thk + Thp;
|
||
|
ii[WS(rs, 2)] = Thj + Thq;
|
||
|
ii[WS(rs, 34)] = Thq - Thj;
|
||
|
}
|
||
|
{
|
||
|
E Tfl, Tfo, Thr, Ths;
|
||
|
Tfl = Tf9 - Tfc;
|
||
|
Tfo = Tfm - Tfn;
|
||
|
ri[WS(rs, 50)] = Tfl - Tfo;
|
||
|
ri[WS(rs, 18)] = Tfl + Tfo;
|
||
|
Thr = Tfj - Tfg;
|
||
|
Ths = Thp - Thk;
|
||
|
ii[WS(rs, 18)] = Thr + Ths;
|
||
|
ii[WS(rs, 50)] = Ths - Thr;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T6L, T9x, TiD, TiJ, T7E, TiI, T9A, TiA, T8y, T9K, T9u, T9E, T9r, T9L, T9v;
|
||
|
E T9H;
|
||
|
{
|
||
|
E T6n, T6K, TiB, TiC;
|
||
|
T6n = T6b - T6m;
|
||
|
T6K = T6y - T6J;
|
||
|
T6L = T6n - T6K;
|
||
|
T9x = T6n + T6K;
|
||
|
TiB = T9P - T9O;
|
||
|
TiC = Tin - Tim;
|
||
|
TiD = TiB + TiC;
|
||
|
TiJ = TiC - TiB;
|
||
|
}
|
||
|
{
|
||
|
E T7c, T9y, T7D, T9z;
|
||
|
{
|
||
|
E T72, T7b, T7t, T7C;
|
||
|
T72 = T6Q - T71;
|
||
|
T7b = T77 - T7a;
|
||
|
T7c = FNMS(KP980785280, T7b, KP195090322 * T72);
|
||
|
T9y = FMA(KP980785280, T72, KP195090322 * T7b);
|
||
|
T7t = T7h - T7s;
|
||
|
T7C = T7y - T7B;
|
||
|
T7D = FMA(KP195090322, T7t, KP980785280 * T7C);
|
||
|
T9z = FNMS(KP980785280, T7t, KP195090322 * T7C);
|
||
|
}
|
||
|
T7E = T7c - T7D;
|
||
|
TiI = T9z - T9y;
|
||
|
T9A = T9y + T9z;
|
||
|
TiA = T7c + T7D;
|
||
|
}
|
||
|
{
|
||
|
E T8k, T9C, T8x, T9D;
|
||
|
{
|
||
|
E T7W, T8j, T8t, T8w;
|
||
|
T7W = T7K - T7V;
|
||
|
T8j = T87 - T8i;
|
||
|
T8k = T7W - T8j;
|
||
|
T9C = T7W + T8j;
|
||
|
T8t = T8p - T8s;
|
||
|
T8w = T8u - T8v;
|
||
|
T8x = T8t - T8w;
|
||
|
T9D = T8t + T8w;
|
||
|
}
|
||
|
T8y = FMA(KP995184726, T8k, KP098017140 * T8x);
|
||
|
T9K = FNMS(KP634393284, T9D, KP773010453 * T9C);
|
||
|
T9u = FNMS(KP995184726, T8x, KP098017140 * T8k);
|
||
|
T9E = FMA(KP634393284, T9C, KP773010453 * T9D);
|
||
|
}
|
||
|
{
|
||
|
E T9d, T9F, T9q, T9G;
|
||
|
{
|
||
|
E T8P, T9c, T9m, T9p;
|
||
|
T8P = T8D - T8O;
|
||
|
T9c = T90 - T9b;
|
||
|
T9d = T8P - T9c;
|
||
|
T9F = T8P + T9c;
|
||
|
T9m = T9i - T9l;
|
||
|
T9p = T9n - T9o;
|
||
|
T9q = T9m - T9p;
|
||
|
T9G = T9m + T9p;
|
||
|
}
|
||
|
T9r = FNMS(KP995184726, T9q, KP098017140 * T9d);
|
||
|
T9L = FMA(KP773010453, T9G, KP634393284 * T9F);
|
||
|
T9v = FMA(KP098017140, T9q, KP995184726 * T9d);
|
||
|
T9H = FNMS(KP634393284, T9G, KP773010453 * T9F);
|
||
|
}
|
||
|
{
|
||
|
E T7F, T9s, TiH, TiK;
|
||
|
T7F = T6L + T7E;
|
||
|
T9s = T8y + T9r;
|
||
|
ri[WS(rs, 47)] = T7F - T9s;
|
||
|
ri[WS(rs, 15)] = T7F + T9s;
|
||
|
TiH = T9u + T9v;
|
||
|
TiK = TiI + TiJ;
|
||
|
ii[WS(rs, 15)] = TiH + TiK;
|
||
|
ii[WS(rs, 47)] = TiK - TiH;
|
||
|
}
|
||
|
{
|
||
|
E T9t, T9w, TiL, TiM;
|
||
|
T9t = T6L - T7E;
|
||
|
T9w = T9u - T9v;
|
||
|
ri[WS(rs, 63)] = T9t - T9w;
|
||
|
ri[WS(rs, 31)] = T9t + T9w;
|
||
|
TiL = T9r - T8y;
|
||
|
TiM = TiJ - TiI;
|
||
|
ii[WS(rs, 31)] = TiL + TiM;
|
||
|
ii[WS(rs, 63)] = TiM - TiL;
|
||
|
}
|
||
|
{
|
||
|
E T9B, T9I, Tiz, TiE;
|
||
|
T9B = T9x + T9A;
|
||
|
T9I = T9E + T9H;
|
||
|
ri[WS(rs, 39)] = T9B - T9I;
|
||
|
ri[WS(rs, 7)] = T9B + T9I;
|
||
|
Tiz = T9K + T9L;
|
||
|
TiE = TiA + TiD;
|
||
|
ii[WS(rs, 7)] = Tiz + TiE;
|
||
|
ii[WS(rs, 39)] = TiE - Tiz;
|
||
|
}
|
||
|
{
|
||
|
E T9J, T9M, TiF, TiG;
|
||
|
T9J = T9x - T9A;
|
||
|
T9M = T9K - T9L;
|
||
|
ri[WS(rs, 55)] = T9J - T9M;
|
||
|
ri[WS(rs, 23)] = T9J + T9M;
|
||
|
TiF = T9H - T9E;
|
||
|
TiG = TiD - TiA;
|
||
|
ii[WS(rs, 23)] = TiF + TiG;
|
||
|
ii[WS(rs, 55)] = TiG - TiF;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E TaL, TbJ, Ti9, Tif, Tb0, Tie, TbM, Ti6, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH;
|
||
|
E TbT;
|
||
|
{
|
||
|
E TaD, TaK, Ti7, Ti8;
|
||
|
TaD = Taz - TaC;
|
||
|
TaK = TaG - TaJ;
|
||
|
TaL = TaD - TaK;
|
||
|
TbJ = TaD + TaK;
|
||
|
Ti7 = Tc1 - Tc0;
|
||
|
Ti8 = ThT - ThQ;
|
||
|
Ti9 = Ti7 + Ti8;
|
||
|
Tif = Ti8 - Ti7;
|
||
|
}
|
||
|
{
|
||
|
E TaS, TbK, TaZ, TbL;
|
||
|
{
|
||
|
E TaO, TaR, TaV, TaY;
|
||
|
TaO = TaM - TaN;
|
||
|
TaR = TaP - TaQ;
|
||
|
TaS = FNMS(KP831469612, TaR, KP555570233 * TaO);
|
||
|
TbK = FMA(KP555570233, TaR, KP831469612 * TaO);
|
||
|
TaV = TaT - TaU;
|
||
|
TaY = TaW - TaX;
|
||
|
TaZ = FMA(KP831469612, TaV, KP555570233 * TaY);
|
||
|
TbL = FNMS(KP831469612, TaY, KP555570233 * TaV);
|
||
|
}
|
||
|
Tb0 = TaS - TaZ;
|
||
|
Tie = TbL - TbK;
|
||
|
TbM = TbK + TbL;
|
||
|
Ti6 = TaS + TaZ;
|
||
|
}
|
||
|
{
|
||
|
E Tbc, TbO, Tbj, TbP;
|
||
|
{
|
||
|
E Tb4, Tbb, Tbf, Tbi;
|
||
|
Tb4 = Tb2 - Tb3;
|
||
|
Tbb = Tb7 - Tba;
|
||
|
Tbc = Tb4 - Tbb;
|
||
|
TbO = Tb4 + Tbb;
|
||
|
Tbf = Tbd - Tbe;
|
||
|
Tbi = Tbg - Tbh;
|
||
|
Tbj = Tbf - Tbi;
|
||
|
TbP = Tbf + Tbi;
|
||
|
}
|
||
|
Tbk = FMA(KP956940335, Tbc, KP290284677 * Tbj);
|
||
|
TbW = FNMS(KP471396736, TbP, KP881921264 * TbO);
|
||
|
TbG = FNMS(KP956940335, Tbj, KP290284677 * Tbc);
|
||
|
TbQ = FMA(KP471396736, TbO, KP881921264 * TbP);
|
||
|
}
|
||
|
{
|
||
|
E Tbv, TbR, TbC, TbS;
|
||
|
{
|
||
|
E Tbn, Tbu, Tby, TbB;
|
||
|
Tbn = Tbl - Tbm;
|
||
|
Tbu = Tbq - Tbt;
|
||
|
Tbv = Tbn - Tbu;
|
||
|
TbR = Tbn + Tbu;
|
||
|
Tby = Tbw - Tbx;
|
||
|
TbB = Tbz - TbA;
|
||
|
TbC = Tby - TbB;
|
||
|
TbS = Tby + TbB;
|
||
|
}
|
||
|
TbD = FNMS(KP956940335, TbC, KP290284677 * Tbv);
|
||
|
TbX = FMA(KP881921264, TbS, KP471396736 * TbR);
|
||
|
TbH = FMA(KP290284677, TbC, KP956940335 * Tbv);
|
||
|
TbT = FNMS(KP471396736, TbS, KP881921264 * TbR);
|
||
|
}
|
||
|
{
|
||
|
E Tb1, TbE, Tid, Tig;
|
||
|
Tb1 = TaL + Tb0;
|
||
|
TbE = Tbk + TbD;
|
||
|
ri[WS(rs, 45)] = Tb1 - TbE;
|
||
|
ri[WS(rs, 13)] = Tb1 + TbE;
|
||
|
Tid = TbG + TbH;
|
||
|
Tig = Tie + Tif;
|
||
|
ii[WS(rs, 13)] = Tid + Tig;
|
||
|
ii[WS(rs, 45)] = Tig - Tid;
|
||
|
}
|
||
|
{
|
||
|
E TbF, TbI, Tih, Tii;
|
||
|
TbF = TaL - Tb0;
|
||
|
TbI = TbG - TbH;
|
||
|
ri[WS(rs, 61)] = TbF - TbI;
|
||
|
ri[WS(rs, 29)] = TbF + TbI;
|
||
|
Tih = TbD - Tbk;
|
||
|
Tii = Tif - Tie;
|
||
|
ii[WS(rs, 29)] = Tih + Tii;
|
||
|
ii[WS(rs, 61)] = Tii - Tih;
|
||
|
}
|
||
|
{
|
||
|
E TbN, TbU, Ti5, Tia;
|
||
|
TbN = TbJ + TbM;
|
||
|
TbU = TbQ + TbT;
|
||
|
ri[WS(rs, 37)] = TbN - TbU;
|
||
|
ri[WS(rs, 5)] = TbN + TbU;
|
||
|
Ti5 = TbW + TbX;
|
||
|
Tia = Ti6 + Ti9;
|
||
|
ii[WS(rs, 5)] = Ti5 + Tia;
|
||
|
ii[WS(rs, 37)] = Tia - Ti5;
|
||
|
}
|
||
|
{
|
||
|
E TbV, TbY, Tib, Tic;
|
||
|
TbV = TbJ - TbM;
|
||
|
TbY = TbW - TbX;
|
||
|
ri[WS(rs, 53)] = TbV - TbY;
|
||
|
ri[WS(rs, 21)] = TbV + TbY;
|
||
|
Tib = TbT - TbQ;
|
||
|
Tic = Ti9 - Ti6;
|
||
|
ii[WS(rs, 21)] = Tib + Tic;
|
||
|
ii[WS(rs, 53)] = Tic - Tib;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Tc3, Tcv, ThV, Ti1, Tca, Ti0, Tcy, ThO, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct;
|
||
|
E TcF;
|
||
|
{
|
||
|
E TbZ, Tc2, ThP, ThU;
|
||
|
TbZ = Taz + TaC;
|
||
|
Tc2 = Tc0 + Tc1;
|
||
|
Tc3 = TbZ - Tc2;
|
||
|
Tcv = TbZ + Tc2;
|
||
|
ThP = TaG + TaJ;
|
||
|
ThU = ThQ + ThT;
|
||
|
ThV = ThP + ThU;
|
||
|
Ti1 = ThU - ThP;
|
||
|
}
|
||
|
{
|
||
|
E Tc6, Tcw, Tc9, Tcx;
|
||
|
{
|
||
|
E Tc4, Tc5, Tc7, Tc8;
|
||
|
Tc4 = TaM + TaN;
|
||
|
Tc5 = TaP + TaQ;
|
||
|
Tc6 = FNMS(KP195090322, Tc5, KP980785280 * Tc4);
|
||
|
Tcw = FMA(KP980785280, Tc5, KP195090322 * Tc4);
|
||
|
Tc7 = TaT + TaU;
|
||
|
Tc8 = TaW + TaX;
|
||
|
Tc9 = FMA(KP195090322, Tc7, KP980785280 * Tc8);
|
||
|
Tcx = FNMS(KP195090322, Tc8, KP980785280 * Tc7);
|
||
|
}
|
||
|
Tca = Tc6 - Tc9;
|
||
|
Ti0 = Tcx - Tcw;
|
||
|
Tcy = Tcw + Tcx;
|
||
|
ThO = Tc6 + Tc9;
|
||
|
}
|
||
|
{
|
||
|
E Tce, TcA, Tch, TcB;
|
||
|
{
|
||
|
E Tcc, Tcd, Tcf, Tcg;
|
||
|
Tcc = Tbd + Tbe;
|
||
|
Tcd = Tba + Tb7;
|
||
|
Tce = Tcc - Tcd;
|
||
|
TcA = Tcc + Tcd;
|
||
|
Tcf = Tb2 + Tb3;
|
||
|
Tcg = Tbg + Tbh;
|
||
|
Tch = Tcf - Tcg;
|
||
|
TcB = Tcf + Tcg;
|
||
|
}
|
||
|
Tci = FMA(KP634393284, Tce, KP773010453 * Tch);
|
||
|
TcI = FNMS(KP098017140, TcA, KP995184726 * TcB);
|
||
|
Tcs = FNMS(KP773010453, Tce, KP634393284 * Tch);
|
||
|
TcC = FMA(KP995184726, TcA, KP098017140 * TcB);
|
||
|
}
|
||
|
{
|
||
|
E Tcl, TcD, Tco, TcE;
|
||
|
{
|
||
|
E Tcj, Tck, Tcm, Tcn;
|
||
|
Tcj = Tbl + Tbm;
|
||
|
Tck = TbA + Tbz;
|
||
|
Tcl = Tcj - Tck;
|
||
|
TcD = Tcj + Tck;
|
||
|
Tcm = Tbw + Tbx;
|
||
|
Tcn = Tbq + Tbt;
|
||
|
Tco = Tcm - Tcn;
|
||
|
TcE = Tcm + Tcn;
|
||
|
}
|
||
|
Tcp = FNMS(KP773010453, Tco, KP634393284 * Tcl);
|
||
|
TcJ = FMA(KP098017140, TcD, KP995184726 * TcE);
|
||
|
Tct = FMA(KP773010453, Tcl, KP634393284 * Tco);
|
||
|
TcF = FNMS(KP098017140, TcE, KP995184726 * TcD);
|
||
|
}
|
||
|
{
|
||
|
E Tcb, Tcq, ThZ, Ti2;
|
||
|
Tcb = Tc3 + Tca;
|
||
|
Tcq = Tci + Tcp;
|
||
|
ri[WS(rs, 41)] = Tcb - Tcq;
|
||
|
ri[WS(rs, 9)] = Tcb + Tcq;
|
||
|
ThZ = Tcs + Tct;
|
||
|
Ti2 = Ti0 + Ti1;
|
||
|
ii[WS(rs, 9)] = ThZ + Ti2;
|
||
|
ii[WS(rs, 41)] = Ti2 - ThZ;
|
||
|
}
|
||
|
{
|
||
|
E Tcr, Tcu, Ti3, Ti4;
|
||
|
Tcr = Tc3 - Tca;
|
||
|
Tcu = Tcs - Tct;
|
||
|
ri[WS(rs, 57)] = Tcr - Tcu;
|
||
|
ri[WS(rs, 25)] = Tcr + Tcu;
|
||
|
Ti3 = Tcp - Tci;
|
||
|
Ti4 = Ti1 - Ti0;
|
||
|
ii[WS(rs, 25)] = Ti3 + Ti4;
|
||
|
ii[WS(rs, 57)] = Ti4 - Ti3;
|
||
|
}
|
||
|
{
|
||
|
E Tcz, TcG, ThN, ThW;
|
||
|
Tcz = Tcv + Tcy;
|
||
|
TcG = TcC + TcF;
|
||
|
ri[WS(rs, 33)] = Tcz - TcG;
|
||
|
ri[WS(rs, 1)] = Tcz + TcG;
|
||
|
ThN = TcI + TcJ;
|
||
|
ThW = ThO + ThV;
|
||
|
ii[WS(rs, 1)] = ThN + ThW;
|
||
|
ii[WS(rs, 33)] = ThW - ThN;
|
||
|
}
|
||
|
{
|
||
|
E TcH, TcK, ThX, ThY;
|
||
|
TcH = Tcv - Tcy;
|
||
|
TcK = TcI - TcJ;
|
||
|
ri[WS(rs, 49)] = TcH - TcK;
|
||
|
ri[WS(rs, 17)] = TcH + TcK;
|
||
|
ThX = TcF - TcC;
|
||
|
ThY = ThV - ThO;
|
||
|
ii[WS(rs, 17)] = ThX + ThY;
|
||
|
ii[WS(rs, 49)] = ThY - ThX;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T9R, Taj, Tip, Tiv, T9Y, Tiu, Tam, Tik, Ta6, Taw, Tag, Taq, Tad, Tax, Tah;
|
||
|
E Tat;
|
||
|
{
|
||
|
E T9N, T9Q, Til, Tio;
|
||
|
T9N = T6b + T6m;
|
||
|
T9Q = T9O + T9P;
|
||
|
T9R = T9N - T9Q;
|
||
|
Taj = T9N + T9Q;
|
||
|
Til = T6y + T6J;
|
||
|
Tio = Tim + Tin;
|
||
|
Tip = Til + Tio;
|
||
|
Tiv = Tio - Til;
|
||
|
}
|
||
|
{
|
||
|
E T9U, Tak, T9X, Tal;
|
||
|
{
|
||
|
E T9S, T9T, T9V, T9W;
|
||
|
T9S = T6Q + T71;
|
||
|
T9T = T77 + T7a;
|
||
|
T9U = FNMS(KP555570233, T9T, KP831469612 * T9S);
|
||
|
Tak = FMA(KP555570233, T9S, KP831469612 * T9T);
|
||
|
T9V = T7h + T7s;
|
||
|
T9W = T7y + T7B;
|
||
|
T9X = FMA(KP831469612, T9V, KP555570233 * T9W);
|
||
|
Tal = FNMS(KP555570233, T9V, KP831469612 * T9W);
|
||
|
}
|
||
|
T9Y = T9U - T9X;
|
||
|
Tiu = Tal - Tak;
|
||
|
Tam = Tak + Tal;
|
||
|
Tik = T9U + T9X;
|
||
|
}
|
||
|
{
|
||
|
E Ta2, Tao, Ta5, Tap;
|
||
|
{
|
||
|
E Ta0, Ta1, Ta3, Ta4;
|
||
|
Ta0 = T8p + T8s;
|
||
|
Ta1 = T8i + T87;
|
||
|
Ta2 = Ta0 - Ta1;
|
||
|
Tao = Ta0 + Ta1;
|
||
|
Ta3 = T7K + T7V;
|
||
|
Ta4 = T8u + T8v;
|
||
|
Ta5 = Ta3 - Ta4;
|
||
|
Tap = Ta3 + Ta4;
|
||
|
}
|
||
|
Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5);
|
||
|
Taw = FNMS(KP290284677, Tao, KP956940335 * Tap);
|
||
|
Tag = FNMS(KP881921264, Ta2, KP471396736 * Ta5);
|
||
|
Taq = FMA(KP956940335, Tao, KP290284677 * Tap);
|
||
|
}
|
||
|
{
|
||
|
E Ta9, Tar, Tac, Tas;
|
||
|
{
|
||
|
E Ta7, Ta8, Taa, Tab;
|
||
|
Ta7 = T8D + T8O;
|
||
|
Ta8 = T9o + T9n;
|
||
|
Ta9 = Ta7 - Ta8;
|
||
|
Tar = Ta7 + Ta8;
|
||
|
Taa = T9i + T9l;
|
||
|
Tab = T90 + T9b;
|
||
|
Tac = Taa - Tab;
|
||
|
Tas = Taa + Tab;
|
||
|
}
|
||
|
Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9);
|
||
|
Tax = FMA(KP290284677, Tar, KP956940335 * Tas);
|
||
|
Tah = FMA(KP881921264, Ta9, KP471396736 * Tac);
|
||
|
Tat = FNMS(KP290284677, Tas, KP956940335 * Tar);
|
||
|
}
|
||
|
{
|
||
|
E T9Z, Tae, Tit, Tiw;
|
||
|
T9Z = T9R + T9Y;
|
||
|
Tae = Ta6 + Tad;
|
||
|
ri[WS(rs, 43)] = T9Z - Tae;
|
||
|
ri[WS(rs, 11)] = T9Z + Tae;
|
||
|
Tit = Tag + Tah;
|
||
|
Tiw = Tiu + Tiv;
|
||
|
ii[WS(rs, 11)] = Tit + Tiw;
|
||
|
ii[WS(rs, 43)] = Tiw - Tit;
|
||
|
}
|
||
|
{
|
||
|
E Taf, Tai, Tix, Tiy;
|
||
|
Taf = T9R - T9Y;
|
||
|
Tai = Tag - Tah;
|
||
|
ri[WS(rs, 59)] = Taf - Tai;
|
||
|
ri[WS(rs, 27)] = Taf + Tai;
|
||
|
Tix = Tad - Ta6;
|
||
|
Tiy = Tiv - Tiu;
|
||
|
ii[WS(rs, 27)] = Tix + Tiy;
|
||
|
ii[WS(rs, 59)] = Tiy - Tix;
|
||
|
}
|
||
|
{
|
||
|
E Tan, Tau, Tij, Tiq;
|
||
|
Tan = Taj + Tam;
|
||
|
Tau = Taq + Tat;
|
||
|
ri[WS(rs, 35)] = Tan - Tau;
|
||
|
ri[WS(rs, 3)] = Tan + Tau;
|
||
|
Tij = Taw + Tax;
|
||
|
Tiq = Tik + Tip;
|
||
|
ii[WS(rs, 3)] = Tij + Tiq;
|
||
|
ii[WS(rs, 35)] = Tiq - Tij;
|
||
|
}
|
||
|
{
|
||
|
E Tav, Tay, Tir, Tis;
|
||
|
Tav = Taj - Tam;
|
||
|
Tay = Taw - Tax;
|
||
|
ri[WS(rs, 51)] = Tav - Tay;
|
||
|
ri[WS(rs, 19)] = Tav + Tay;
|
||
|
Tir = Tat - Taq;
|
||
|
Tis = Tip - Tik;
|
||
|
ii[WS(rs, 19)] = Tir + Tis;
|
||
|
ii[WS(rs, 51)] = Tis - Tir;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 0, 64 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, { 808, 270, 230, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_t1_64) (planner *p) {
|
||
|
X(kdft_dit_register) (p, t1_64, &desc);
|
||
|
}
|
||
|
#endif
|