mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-17 01:55:10 +00:00
993 lines
27 KiB
C
993 lines
27 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:44:41 EDT 2021 */
|
||
|
|
||
|
#include "dft/codelet-dft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 5 -name q1_5 -include dft/scalar/q.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 200 FP additions, 170 FP multiplications,
|
||
|
* (or, 70 additions, 40 multiplications, 130 fused multiply/add),
|
||
|
* 75 stack variables, 4 constants, and 100 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/q.h"
|
||
|
|
||
|
static void q1_5(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
||
|
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
||
|
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
||
|
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + (mb * 8); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
|
||
|
E T1, Tb, TM, Tw, T8, Ta, Tn, Tj, TH, Ts, Tq, Tr, TV, T15, T1G;
|
||
|
E T1q, T12, T14, T1h, T1d, T1B, T1m, T1k, T1l, T1P, T1Z, T2A, T2k, T1W, T1Y;
|
||
|
E T2b, T27, T2v, T2g, T2e, T2f, T3Z, T3V, T4j, T44, T42, T43, T3D, T3N, T4o;
|
||
|
E T48, T3K, T3M, T2J, T2T, T3u, T3e, T2Q, T2S, T35, T31, T3p, T3a, T38, T39;
|
||
|
{
|
||
|
E T7, Tv, T4, Tu;
|
||
|
T1 = rio[0];
|
||
|
{
|
||
|
E T5, T6, T2, T3;
|
||
|
T5 = rio[WS(rs, 2)];
|
||
|
T6 = rio[WS(rs, 3)];
|
||
|
T7 = T5 + T6;
|
||
|
Tv = T5 - T6;
|
||
|
T2 = rio[WS(rs, 1)];
|
||
|
T3 = rio[WS(rs, 4)];
|
||
|
T4 = T2 + T3;
|
||
|
Tu = T2 - T3;
|
||
|
}
|
||
|
Tb = T4 - T7;
|
||
|
TM = FNMS(KP618033988, Tu, Tv);
|
||
|
Tw = FMA(KP618033988, Tv, Tu);
|
||
|
T8 = T4 + T7;
|
||
|
Ta = FNMS(KP250000000, T8, T1);
|
||
|
}
|
||
|
{
|
||
|
E Ti, Tp, Tf, To;
|
||
|
Tn = iio[0];
|
||
|
{
|
||
|
E Tg, Th, Td, Te;
|
||
|
Tg = iio[WS(rs, 2)];
|
||
|
Th = iio[WS(rs, 3)];
|
||
|
Ti = Tg - Th;
|
||
|
Tp = Tg + Th;
|
||
|
Td = iio[WS(rs, 1)];
|
||
|
Te = iio[WS(rs, 4)];
|
||
|
Tf = Td - Te;
|
||
|
To = Td + Te;
|
||
|
}
|
||
|
Tj = FMA(KP618033988, Ti, Tf);
|
||
|
TH = FNMS(KP618033988, Tf, Ti);
|
||
|
Ts = To - Tp;
|
||
|
Tq = To + Tp;
|
||
|
Tr = FNMS(KP250000000, Tq, Tn);
|
||
|
}
|
||
|
{
|
||
|
E T11, T1p, TY, T1o;
|
||
|
TV = rio[WS(vs, 1)];
|
||
|
{
|
||
|
E TZ, T10, TW, TX;
|
||
|
TZ = rio[WS(vs, 1) + WS(rs, 2)];
|
||
|
T10 = rio[WS(vs, 1) + WS(rs, 3)];
|
||
|
T11 = TZ + T10;
|
||
|
T1p = TZ - T10;
|
||
|
TW = rio[WS(vs, 1) + WS(rs, 1)];
|
||
|
TX = rio[WS(vs, 1) + WS(rs, 4)];
|
||
|
TY = TW + TX;
|
||
|
T1o = TW - TX;
|
||
|
}
|
||
|
T15 = TY - T11;
|
||
|
T1G = FNMS(KP618033988, T1o, T1p);
|
||
|
T1q = FMA(KP618033988, T1p, T1o);
|
||
|
T12 = TY + T11;
|
||
|
T14 = FNMS(KP250000000, T12, TV);
|
||
|
}
|
||
|
{
|
||
|
E T1c, T1j, T19, T1i;
|
||
|
T1h = iio[WS(vs, 1)];
|
||
|
{
|
||
|
E T1a, T1b, T17, T18;
|
||
|
T1a = iio[WS(vs, 1) + WS(rs, 2)];
|
||
|
T1b = iio[WS(vs, 1) + WS(rs, 3)];
|
||
|
T1c = T1a - T1b;
|
||
|
T1j = T1a + T1b;
|
||
|
T17 = iio[WS(vs, 1) + WS(rs, 1)];
|
||
|
T18 = iio[WS(vs, 1) + WS(rs, 4)];
|
||
|
T19 = T17 - T18;
|
||
|
T1i = T17 + T18;
|
||
|
}
|
||
|
T1d = FMA(KP618033988, T1c, T19);
|
||
|
T1B = FNMS(KP618033988, T19, T1c);
|
||
|
T1m = T1i - T1j;
|
||
|
T1k = T1i + T1j;
|
||
|
T1l = FNMS(KP250000000, T1k, T1h);
|
||
|
}
|
||
|
{
|
||
|
E T1V, T2j, T1S, T2i;
|
||
|
T1P = rio[WS(vs, 2)];
|
||
|
{
|
||
|
E T1T, T1U, T1Q, T1R;
|
||
|
T1T = rio[WS(vs, 2) + WS(rs, 2)];
|
||
|
T1U = rio[WS(vs, 2) + WS(rs, 3)];
|
||
|
T1V = T1T + T1U;
|
||
|
T2j = T1T - T1U;
|
||
|
T1Q = rio[WS(vs, 2) + WS(rs, 1)];
|
||
|
T1R = rio[WS(vs, 2) + WS(rs, 4)];
|
||
|
T1S = T1Q + T1R;
|
||
|
T2i = T1Q - T1R;
|
||
|
}
|
||
|
T1Z = T1S - T1V;
|
||
|
T2A = FNMS(KP618033988, T2i, T2j);
|
||
|
T2k = FMA(KP618033988, T2j, T2i);
|
||
|
T1W = T1S + T1V;
|
||
|
T1Y = FNMS(KP250000000, T1W, T1P);
|
||
|
}
|
||
|
{
|
||
|
E T26, T2d, T23, T2c;
|
||
|
T2b = iio[WS(vs, 2)];
|
||
|
{
|
||
|
E T24, T25, T21, T22;
|
||
|
T24 = iio[WS(vs, 2) + WS(rs, 2)];
|
||
|
T25 = iio[WS(vs, 2) + WS(rs, 3)];
|
||
|
T26 = T24 - T25;
|
||
|
T2d = T24 + T25;
|
||
|
T21 = iio[WS(vs, 2) + WS(rs, 1)];
|
||
|
T22 = iio[WS(vs, 2) + WS(rs, 4)];
|
||
|
T23 = T21 - T22;
|
||
|
T2c = T21 + T22;
|
||
|
}
|
||
|
T27 = FMA(KP618033988, T26, T23);
|
||
|
T2v = FNMS(KP618033988, T23, T26);
|
||
|
T2g = T2c - T2d;
|
||
|
T2e = T2c + T2d;
|
||
|
T2f = FNMS(KP250000000, T2e, T2b);
|
||
|
}
|
||
|
{
|
||
|
E T3U, T41, T3R, T40;
|
||
|
T3Z = iio[WS(vs, 4)];
|
||
|
{
|
||
|
E T3S, T3T, T3P, T3Q;
|
||
|
T3S = iio[WS(vs, 4) + WS(rs, 2)];
|
||
|
T3T = iio[WS(vs, 4) + WS(rs, 3)];
|
||
|
T3U = T3S - T3T;
|
||
|
T41 = T3S + T3T;
|
||
|
T3P = iio[WS(vs, 4) + WS(rs, 1)];
|
||
|
T3Q = iio[WS(vs, 4) + WS(rs, 4)];
|
||
|
T3R = T3P - T3Q;
|
||
|
T40 = T3P + T3Q;
|
||
|
}
|
||
|
T3V = FMA(KP618033988, T3U, T3R);
|
||
|
T4j = FNMS(KP618033988, T3R, T3U);
|
||
|
T44 = T40 - T41;
|
||
|
T42 = T40 + T41;
|
||
|
T43 = FNMS(KP250000000, T42, T3Z);
|
||
|
}
|
||
|
{
|
||
|
E T3J, T47, T3G, T46;
|
||
|
T3D = rio[WS(vs, 4)];
|
||
|
{
|
||
|
E T3H, T3I, T3E, T3F;
|
||
|
T3H = rio[WS(vs, 4) + WS(rs, 2)];
|
||
|
T3I = rio[WS(vs, 4) + WS(rs, 3)];
|
||
|
T3J = T3H + T3I;
|
||
|
T47 = T3H - T3I;
|
||
|
T3E = rio[WS(vs, 4) + WS(rs, 1)];
|
||
|
T3F = rio[WS(vs, 4) + WS(rs, 4)];
|
||
|
T3G = T3E + T3F;
|
||
|
T46 = T3E - T3F;
|
||
|
}
|
||
|
T3N = T3G - T3J;
|
||
|
T4o = FNMS(KP618033988, T46, T47);
|
||
|
T48 = FMA(KP618033988, T47, T46);
|
||
|
T3K = T3G + T3J;
|
||
|
T3M = FNMS(KP250000000, T3K, T3D);
|
||
|
}
|
||
|
{
|
||
|
E T2P, T3d, T2M, T3c;
|
||
|
T2J = rio[WS(vs, 3)];
|
||
|
{
|
||
|
E T2N, T2O, T2K, T2L;
|
||
|
T2N = rio[WS(vs, 3) + WS(rs, 2)];
|
||
|
T2O = rio[WS(vs, 3) + WS(rs, 3)];
|
||
|
T2P = T2N + T2O;
|
||
|
T3d = T2N - T2O;
|
||
|
T2K = rio[WS(vs, 3) + WS(rs, 1)];
|
||
|
T2L = rio[WS(vs, 3) + WS(rs, 4)];
|
||
|
T2M = T2K + T2L;
|
||
|
T3c = T2K - T2L;
|
||
|
}
|
||
|
T2T = T2M - T2P;
|
||
|
T3u = FNMS(KP618033988, T3c, T3d);
|
||
|
T3e = FMA(KP618033988, T3d, T3c);
|
||
|
T2Q = T2M + T2P;
|
||
|
T2S = FNMS(KP250000000, T2Q, T2J);
|
||
|
}
|
||
|
{
|
||
|
E T30, T37, T2X, T36;
|
||
|
T35 = iio[WS(vs, 3)];
|
||
|
{
|
||
|
E T2Y, T2Z, T2V, T2W;
|
||
|
T2Y = iio[WS(vs, 3) + WS(rs, 2)];
|
||
|
T2Z = iio[WS(vs, 3) + WS(rs, 3)];
|
||
|
T30 = T2Y - T2Z;
|
||
|
T37 = T2Y + T2Z;
|
||
|
T2V = iio[WS(vs, 3) + WS(rs, 1)];
|
||
|
T2W = iio[WS(vs, 3) + WS(rs, 4)];
|
||
|
T2X = T2V - T2W;
|
||
|
T36 = T2V + T2W;
|
||
|
}
|
||
|
T31 = FMA(KP618033988, T30, T2X);
|
||
|
T3p = FNMS(KP618033988, T2X, T30);
|
||
|
T3a = T36 - T37;
|
||
|
T38 = T36 + T37;
|
||
|
T39 = FNMS(KP250000000, T38, T35);
|
||
|
}
|
||
|
rio[0] = T1 + T8;
|
||
|
iio[0] = Tn + Tq;
|
||
|
rio[WS(rs, 1)] = TV + T12;
|
||
|
iio[WS(rs, 1)] = T1h + T1k;
|
||
|
rio[WS(rs, 2)] = T1P + T1W;
|
||
|
iio[WS(rs, 2)] = T2b + T2e;
|
||
|
iio[WS(rs, 4)] = T3Z + T42;
|
||
|
rio[WS(rs, 4)] = T3D + T3K;
|
||
|
rio[WS(rs, 3)] = T2J + T2Q;
|
||
|
iio[WS(rs, 3)] = T35 + T38;
|
||
|
{
|
||
|
E Tk, TA, Tx, TD, Tc, Tt;
|
||
|
Tc = FMA(KP559016994, Tb, Ta);
|
||
|
Tk = FMA(KP951056516, Tj, Tc);
|
||
|
TA = FNMS(KP951056516, Tj, Tc);
|
||
|
Tt = FMA(KP559016994, Ts, Tr);
|
||
|
Tx = FNMS(KP951056516, Tw, Tt);
|
||
|
TD = FMA(KP951056516, Tw, Tt);
|
||
|
{
|
||
|
E Tl, Ty, T9, Tm;
|
||
|
T9 = W[0];
|
||
|
Tl = T9 * Tk;
|
||
|
Ty = T9 * Tx;
|
||
|
Tm = W[1];
|
||
|
rio[WS(vs, 1)] = FMA(Tm, Tx, Tl);
|
||
|
iio[WS(vs, 1)] = FNMS(Tm, Tk, Ty);
|
||
|
}
|
||
|
{
|
||
|
E TB, TE, Tz, TC;
|
||
|
Tz = W[6];
|
||
|
TB = Tz * TA;
|
||
|
TE = Tz * TD;
|
||
|
TC = W[7];
|
||
|
rio[WS(vs, 4)] = FMA(TC, TD, TB);
|
||
|
iio[WS(vs, 4)] = FNMS(TC, TA, TE);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E TI, TQ, TN, TT, TG, TL;
|
||
|
TG = FNMS(KP559016994, Tb, Ta);
|
||
|
TI = FNMS(KP951056516, TH, TG);
|
||
|
TQ = FMA(KP951056516, TH, TG);
|
||
|
TL = FNMS(KP559016994, Ts, Tr);
|
||
|
TN = FMA(KP951056516, TM, TL);
|
||
|
TT = FNMS(KP951056516, TM, TL);
|
||
|
{
|
||
|
E TJ, TO, TF, TK;
|
||
|
TF = W[2];
|
||
|
TJ = TF * TI;
|
||
|
TO = TF * TN;
|
||
|
TK = W[3];
|
||
|
rio[WS(vs, 2)] = FMA(TK, TN, TJ);
|
||
|
iio[WS(vs, 2)] = FNMS(TK, TI, TO);
|
||
|
}
|
||
|
{
|
||
|
E TR, TU, TP, TS;
|
||
|
TP = W[4];
|
||
|
TR = TP * TQ;
|
||
|
TU = TP * TT;
|
||
|
TS = W[5];
|
||
|
rio[WS(vs, 3)] = FMA(TS, TT, TR);
|
||
|
iio[WS(vs, 3)] = FNMS(TS, TQ, TU);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T2w, T2E, T2B, T2H, T2u, T2z;
|
||
|
T2u = FNMS(KP559016994, T1Z, T1Y);
|
||
|
T2w = FNMS(KP951056516, T2v, T2u);
|
||
|
T2E = FMA(KP951056516, T2v, T2u);
|
||
|
T2z = FNMS(KP559016994, T2g, T2f);
|
||
|
T2B = FMA(KP951056516, T2A, T2z);
|
||
|
T2H = FNMS(KP951056516, T2A, T2z);
|
||
|
{
|
||
|
E T2x, T2C, T2t, T2y;
|
||
|
T2t = W[2];
|
||
|
T2x = T2t * T2w;
|
||
|
T2C = T2t * T2B;
|
||
|
T2y = W[3];
|
||
|
rio[WS(vs, 2) + WS(rs, 2)] = FMA(T2y, T2B, T2x);
|
||
|
iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T2y, T2w, T2C);
|
||
|
}
|
||
|
{
|
||
|
E T2F, T2I, T2D, T2G;
|
||
|
T2D = W[4];
|
||
|
T2F = T2D * T2E;
|
||
|
T2I = T2D * T2H;
|
||
|
T2G = W[5];
|
||
|
rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2G, T2H, T2F);
|
||
|
iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2G, T2E, T2I);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T4k, T4s, T4p, T4v, T4i, T4n;
|
||
|
T4i = FNMS(KP559016994, T3N, T3M);
|
||
|
T4k = FNMS(KP951056516, T4j, T4i);
|
||
|
T4s = FMA(KP951056516, T4j, T4i);
|
||
|
T4n = FNMS(KP559016994, T44, T43);
|
||
|
T4p = FMA(KP951056516, T4o, T4n);
|
||
|
T4v = FNMS(KP951056516, T4o, T4n);
|
||
|
{
|
||
|
E T4l, T4q, T4h, T4m;
|
||
|
T4h = W[2];
|
||
|
T4l = T4h * T4k;
|
||
|
T4q = T4h * T4p;
|
||
|
T4m = W[3];
|
||
|
rio[WS(vs, 2) + WS(rs, 4)] = FMA(T4m, T4p, T4l);
|
||
|
iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T4m, T4k, T4q);
|
||
|
}
|
||
|
{
|
||
|
E T4t, T4w, T4r, T4u;
|
||
|
T4r = W[4];
|
||
|
T4t = T4r * T4s;
|
||
|
T4w = T4r * T4v;
|
||
|
T4u = W[5];
|
||
|
rio[WS(vs, 3) + WS(rs, 4)] = FMA(T4u, T4v, T4t);
|
||
|
iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T4u, T4s, T4w);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T28, T2o, T2l, T2r, T20, T2h;
|
||
|
T20 = FMA(KP559016994, T1Z, T1Y);
|
||
|
T28 = FMA(KP951056516, T27, T20);
|
||
|
T2o = FNMS(KP951056516, T27, T20);
|
||
|
T2h = FMA(KP559016994, T2g, T2f);
|
||
|
T2l = FNMS(KP951056516, T2k, T2h);
|
||
|
T2r = FMA(KP951056516, T2k, T2h);
|
||
|
{
|
||
|
E T29, T2m, T1X, T2a;
|
||
|
T1X = W[0];
|
||
|
T29 = T1X * T28;
|
||
|
T2m = T1X * T2l;
|
||
|
T2a = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 2)] = FMA(T2a, T2l, T29);
|
||
|
iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T2a, T28, T2m);
|
||
|
}
|
||
|
{
|
||
|
E T2p, T2s, T2n, T2q;
|
||
|
T2n = W[6];
|
||
|
T2p = T2n * T2o;
|
||
|
T2s = T2n * T2r;
|
||
|
T2q = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 2)] = FMA(T2q, T2r, T2p);
|
||
|
iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T2q, T2o, T2s);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T32, T3i, T3f, T3l, T2U, T3b;
|
||
|
T2U = FMA(KP559016994, T2T, T2S);
|
||
|
T32 = FMA(KP951056516, T31, T2U);
|
||
|
T3i = FNMS(KP951056516, T31, T2U);
|
||
|
T3b = FMA(KP559016994, T3a, T39);
|
||
|
T3f = FNMS(KP951056516, T3e, T3b);
|
||
|
T3l = FMA(KP951056516, T3e, T3b);
|
||
|
{
|
||
|
E T33, T3g, T2R, T34;
|
||
|
T2R = W[0];
|
||
|
T33 = T2R * T32;
|
||
|
T3g = T2R * T3f;
|
||
|
T34 = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 3)] = FMA(T34, T3f, T33);
|
||
|
iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T34, T32, T3g);
|
||
|
}
|
||
|
{
|
||
|
E T3j, T3m, T3h, T3k;
|
||
|
T3h = W[6];
|
||
|
T3j = T3h * T3i;
|
||
|
T3m = T3h * T3l;
|
||
|
T3k = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 3)] = FMA(T3k, T3l, T3j);
|
||
|
iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T3k, T3i, T3m);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T3q, T3y, T3v, T3B, T3o, T3t;
|
||
|
T3o = FNMS(KP559016994, T2T, T2S);
|
||
|
T3q = FNMS(KP951056516, T3p, T3o);
|
||
|
T3y = FMA(KP951056516, T3p, T3o);
|
||
|
T3t = FNMS(KP559016994, T3a, T39);
|
||
|
T3v = FMA(KP951056516, T3u, T3t);
|
||
|
T3B = FNMS(KP951056516, T3u, T3t);
|
||
|
{
|
||
|
E T3r, T3w, T3n, T3s;
|
||
|
T3n = W[2];
|
||
|
T3r = T3n * T3q;
|
||
|
T3w = T3n * T3v;
|
||
|
T3s = W[3];
|
||
|
rio[WS(vs, 2) + WS(rs, 3)] = FMA(T3s, T3v, T3r);
|
||
|
iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T3s, T3q, T3w);
|
||
|
}
|
||
|
{
|
||
|
E T3z, T3C, T3x, T3A;
|
||
|
T3x = W[4];
|
||
|
T3z = T3x * T3y;
|
||
|
T3C = T3x * T3B;
|
||
|
T3A = W[5];
|
||
|
rio[WS(vs, 3) + WS(rs, 3)] = FMA(T3A, T3B, T3z);
|
||
|
iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T3A, T3y, T3C);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T3W, T4c, T49, T4f, T3O, T45;
|
||
|
T3O = FMA(KP559016994, T3N, T3M);
|
||
|
T3W = FMA(KP951056516, T3V, T3O);
|
||
|
T4c = FNMS(KP951056516, T3V, T3O);
|
||
|
T45 = FMA(KP559016994, T44, T43);
|
||
|
T49 = FNMS(KP951056516, T48, T45);
|
||
|
T4f = FMA(KP951056516, T48, T45);
|
||
|
{
|
||
|
E T3X, T4a, T3L, T3Y;
|
||
|
T3L = W[0];
|
||
|
T3X = T3L * T3W;
|
||
|
T4a = T3L * T49;
|
||
|
T3Y = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 4)] = FMA(T3Y, T49, T3X);
|
||
|
iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T3Y, T3W, T4a);
|
||
|
}
|
||
|
{
|
||
|
E T4d, T4g, T4b, T4e;
|
||
|
T4b = W[6];
|
||
|
T4d = T4b * T4c;
|
||
|
T4g = T4b * T4f;
|
||
|
T4e = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 4)] = FMA(T4e, T4f, T4d);
|
||
|
iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T4e, T4c, T4g);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1C, T1K, T1H, T1N, T1A, T1F;
|
||
|
T1A = FNMS(KP559016994, T15, T14);
|
||
|
T1C = FNMS(KP951056516, T1B, T1A);
|
||
|
T1K = FMA(KP951056516, T1B, T1A);
|
||
|
T1F = FNMS(KP559016994, T1m, T1l);
|
||
|
T1H = FMA(KP951056516, T1G, T1F);
|
||
|
T1N = FNMS(KP951056516, T1G, T1F);
|
||
|
{
|
||
|
E T1D, T1I, T1z, T1E;
|
||
|
T1z = W[2];
|
||
|
T1D = T1z * T1C;
|
||
|
T1I = T1z * T1H;
|
||
|
T1E = W[3];
|
||
|
rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1E, T1H, T1D);
|
||
|
iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1E, T1C, T1I);
|
||
|
}
|
||
|
{
|
||
|
E T1L, T1O, T1J, T1M;
|
||
|
T1J = W[4];
|
||
|
T1L = T1J * T1K;
|
||
|
T1O = T1J * T1N;
|
||
|
T1M = W[5];
|
||
|
rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1M, T1N, T1L);
|
||
|
iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1M, T1K, T1O);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1e, T1u, T1r, T1x, T16, T1n;
|
||
|
T16 = FMA(KP559016994, T15, T14);
|
||
|
T1e = FMA(KP951056516, T1d, T16);
|
||
|
T1u = FNMS(KP951056516, T1d, T16);
|
||
|
T1n = FMA(KP559016994, T1m, T1l);
|
||
|
T1r = FNMS(KP951056516, T1q, T1n);
|
||
|
T1x = FMA(KP951056516, T1q, T1n);
|
||
|
{
|
||
|
E T1f, T1s, T13, T1g;
|
||
|
T13 = W[0];
|
||
|
T1f = T13 * T1e;
|
||
|
T1s = T13 * T1r;
|
||
|
T1g = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 1)] = FMA(T1g, T1r, T1f);
|
||
|
iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T1g, T1e, T1s);
|
||
|
}
|
||
|
{
|
||
|
E T1v, T1y, T1t, T1w;
|
||
|
T1t = W[6];
|
||
|
T1v = T1t * T1u;
|
||
|
T1y = T1t * T1x;
|
||
|
T1w = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 1)] = FMA(T1w, T1x, T1v);
|
||
|
iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T1w, T1u, T1y);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 0, 5 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 5, "q1_5", twinstr, &GENUS, { 70, 40, 130, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_q1_5) (planner *p) {
|
||
|
X(kdft_difsq_register) (p, q1_5, &desc);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 5 -name q1_5 -include dft/scalar/q.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 200 FP additions, 140 FP multiplications,
|
||
|
* (or, 130 additions, 70 multiplications, 70 fused multiply/add),
|
||
|
* 75 stack variables, 4 constants, and 100 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/q.h"
|
||
|
|
||
|
static void q1_5(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
||
|
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
||
|
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
||
|
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + (mb * 8); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
|
||
|
E T1, Ta, TG, Tv, T8, Tb, Tp, Tj, TD, To, Tq, Tr, TN, TW, T1s;
|
||
|
E T1h, TU, TX, T1b, T15, T1p, T1a, T1c, T1d, T1z, T1I, T2e, T23, T1G, T1J;
|
||
|
E T1X, T1R, T2b, T1W, T1Y, T1Z, T3v, T3p, T3J, T3u, T3w, T3x, T37, T3g, T3M;
|
||
|
E T3B, T3e, T3h, T2l, T2u, T30, T2P, T2s, T2v, T2J, T2D, T2X, T2I, T2K, T2L;
|
||
|
{
|
||
|
E T7, Tu, T4, Tt;
|
||
|
T1 = rio[0];
|
||
|
{
|
||
|
E T5, T6, T2, T3;
|
||
|
T5 = rio[WS(rs, 2)];
|
||
|
T6 = rio[WS(rs, 3)];
|
||
|
T7 = T5 + T6;
|
||
|
Tu = T5 - T6;
|
||
|
T2 = rio[WS(rs, 1)];
|
||
|
T3 = rio[WS(rs, 4)];
|
||
|
T4 = T2 + T3;
|
||
|
Tt = T2 - T3;
|
||
|
}
|
||
|
Ta = KP559016994 * (T4 - T7);
|
||
|
TG = FNMS(KP587785252, Tt, KP951056516 * Tu);
|
||
|
Tv = FMA(KP951056516, Tt, KP587785252 * Tu);
|
||
|
T8 = T4 + T7;
|
||
|
Tb = FNMS(KP250000000, T8, T1);
|
||
|
}
|
||
|
{
|
||
|
E Ti, Tn, Tf, Tm;
|
||
|
Tp = iio[0];
|
||
|
{
|
||
|
E Tg, Th, Td, Te;
|
||
|
Tg = iio[WS(rs, 2)];
|
||
|
Th = iio[WS(rs, 3)];
|
||
|
Ti = Tg - Th;
|
||
|
Tn = Tg + Th;
|
||
|
Td = iio[WS(rs, 1)];
|
||
|
Te = iio[WS(rs, 4)];
|
||
|
Tf = Td - Te;
|
||
|
Tm = Td + Te;
|
||
|
}
|
||
|
Tj = FMA(KP951056516, Tf, KP587785252 * Ti);
|
||
|
TD = FNMS(KP587785252, Tf, KP951056516 * Ti);
|
||
|
To = KP559016994 * (Tm - Tn);
|
||
|
Tq = Tm + Tn;
|
||
|
Tr = FNMS(KP250000000, Tq, Tp);
|
||
|
}
|
||
|
{
|
||
|
E TT, T1g, TQ, T1f;
|
||
|
TN = rio[WS(vs, 1)];
|
||
|
{
|
||
|
E TR, TS, TO, TP;
|
||
|
TR = rio[WS(vs, 1) + WS(rs, 2)];
|
||
|
TS = rio[WS(vs, 1) + WS(rs, 3)];
|
||
|
TT = TR + TS;
|
||
|
T1g = TR - TS;
|
||
|
TO = rio[WS(vs, 1) + WS(rs, 1)];
|
||
|
TP = rio[WS(vs, 1) + WS(rs, 4)];
|
||
|
TQ = TO + TP;
|
||
|
T1f = TO - TP;
|
||
|
}
|
||
|
TW = KP559016994 * (TQ - TT);
|
||
|
T1s = FNMS(KP587785252, T1f, KP951056516 * T1g);
|
||
|
T1h = FMA(KP951056516, T1f, KP587785252 * T1g);
|
||
|
TU = TQ + TT;
|
||
|
TX = FNMS(KP250000000, TU, TN);
|
||
|
}
|
||
|
{
|
||
|
E T14, T19, T11, T18;
|
||
|
T1b = iio[WS(vs, 1)];
|
||
|
{
|
||
|
E T12, T13, TZ, T10;
|
||
|
T12 = iio[WS(vs, 1) + WS(rs, 2)];
|
||
|
T13 = iio[WS(vs, 1) + WS(rs, 3)];
|
||
|
T14 = T12 - T13;
|
||
|
T19 = T12 + T13;
|
||
|
TZ = iio[WS(vs, 1) + WS(rs, 1)];
|
||
|
T10 = iio[WS(vs, 1) + WS(rs, 4)];
|
||
|
T11 = TZ - T10;
|
||
|
T18 = TZ + T10;
|
||
|
}
|
||
|
T15 = FMA(KP951056516, T11, KP587785252 * T14);
|
||
|
T1p = FNMS(KP587785252, T11, KP951056516 * T14);
|
||
|
T1a = KP559016994 * (T18 - T19);
|
||
|
T1c = T18 + T19;
|
||
|
T1d = FNMS(KP250000000, T1c, T1b);
|
||
|
}
|
||
|
{
|
||
|
E T1F, T22, T1C, T21;
|
||
|
T1z = rio[WS(vs, 2)];
|
||
|
{
|
||
|
E T1D, T1E, T1A, T1B;
|
||
|
T1D = rio[WS(vs, 2) + WS(rs, 2)];
|
||
|
T1E = rio[WS(vs, 2) + WS(rs, 3)];
|
||
|
T1F = T1D + T1E;
|
||
|
T22 = T1D - T1E;
|
||
|
T1A = rio[WS(vs, 2) + WS(rs, 1)];
|
||
|
T1B = rio[WS(vs, 2) + WS(rs, 4)];
|
||
|
T1C = T1A + T1B;
|
||
|
T21 = T1A - T1B;
|
||
|
}
|
||
|
T1I = KP559016994 * (T1C - T1F);
|
||
|
T2e = FNMS(KP587785252, T21, KP951056516 * T22);
|
||
|
T23 = FMA(KP951056516, T21, KP587785252 * T22);
|
||
|
T1G = T1C + T1F;
|
||
|
T1J = FNMS(KP250000000, T1G, T1z);
|
||
|
}
|
||
|
{
|
||
|
E T1Q, T1V, T1N, T1U;
|
||
|
T1X = iio[WS(vs, 2)];
|
||
|
{
|
||
|
E T1O, T1P, T1L, T1M;
|
||
|
T1O = iio[WS(vs, 2) + WS(rs, 2)];
|
||
|
T1P = iio[WS(vs, 2) + WS(rs, 3)];
|
||
|
T1Q = T1O - T1P;
|
||
|
T1V = T1O + T1P;
|
||
|
T1L = iio[WS(vs, 2) + WS(rs, 1)];
|
||
|
T1M = iio[WS(vs, 2) + WS(rs, 4)];
|
||
|
T1N = T1L - T1M;
|
||
|
T1U = T1L + T1M;
|
||
|
}
|
||
|
T1R = FMA(KP951056516, T1N, KP587785252 * T1Q);
|
||
|
T2b = FNMS(KP587785252, T1N, KP951056516 * T1Q);
|
||
|
T1W = KP559016994 * (T1U - T1V);
|
||
|
T1Y = T1U + T1V;
|
||
|
T1Z = FNMS(KP250000000, T1Y, T1X);
|
||
|
}
|
||
|
{
|
||
|
E T3o, T3t, T3l, T3s;
|
||
|
T3v = iio[WS(vs, 4)];
|
||
|
{
|
||
|
E T3m, T3n, T3j, T3k;
|
||
|
T3m = iio[WS(vs, 4) + WS(rs, 2)];
|
||
|
T3n = iio[WS(vs, 4) + WS(rs, 3)];
|
||
|
T3o = T3m - T3n;
|
||
|
T3t = T3m + T3n;
|
||
|
T3j = iio[WS(vs, 4) + WS(rs, 1)];
|
||
|
T3k = iio[WS(vs, 4) + WS(rs, 4)];
|
||
|
T3l = T3j - T3k;
|
||
|
T3s = T3j + T3k;
|
||
|
}
|
||
|
T3p = FMA(KP951056516, T3l, KP587785252 * T3o);
|
||
|
T3J = FNMS(KP587785252, T3l, KP951056516 * T3o);
|
||
|
T3u = KP559016994 * (T3s - T3t);
|
||
|
T3w = T3s + T3t;
|
||
|
T3x = FNMS(KP250000000, T3w, T3v);
|
||
|
}
|
||
|
{
|
||
|
E T3d, T3A, T3a, T3z;
|
||
|
T37 = rio[WS(vs, 4)];
|
||
|
{
|
||
|
E T3b, T3c, T38, T39;
|
||
|
T3b = rio[WS(vs, 4) + WS(rs, 2)];
|
||
|
T3c = rio[WS(vs, 4) + WS(rs, 3)];
|
||
|
T3d = T3b + T3c;
|
||
|
T3A = T3b - T3c;
|
||
|
T38 = rio[WS(vs, 4) + WS(rs, 1)];
|
||
|
T39 = rio[WS(vs, 4) + WS(rs, 4)];
|
||
|
T3a = T38 + T39;
|
||
|
T3z = T38 - T39;
|
||
|
}
|
||
|
T3g = KP559016994 * (T3a - T3d);
|
||
|
T3M = FNMS(KP587785252, T3z, KP951056516 * T3A);
|
||
|
T3B = FMA(KP951056516, T3z, KP587785252 * T3A);
|
||
|
T3e = T3a + T3d;
|
||
|
T3h = FNMS(KP250000000, T3e, T37);
|
||
|
}
|
||
|
{
|
||
|
E T2r, T2O, T2o, T2N;
|
||
|
T2l = rio[WS(vs, 3)];
|
||
|
{
|
||
|
E T2p, T2q, T2m, T2n;
|
||
|
T2p = rio[WS(vs, 3) + WS(rs, 2)];
|
||
|
T2q = rio[WS(vs, 3) + WS(rs, 3)];
|
||
|
T2r = T2p + T2q;
|
||
|
T2O = T2p - T2q;
|
||
|
T2m = rio[WS(vs, 3) + WS(rs, 1)];
|
||
|
T2n = rio[WS(vs, 3) + WS(rs, 4)];
|
||
|
T2o = T2m + T2n;
|
||
|
T2N = T2m - T2n;
|
||
|
}
|
||
|
T2u = KP559016994 * (T2o - T2r);
|
||
|
T30 = FNMS(KP587785252, T2N, KP951056516 * T2O);
|
||
|
T2P = FMA(KP951056516, T2N, KP587785252 * T2O);
|
||
|
T2s = T2o + T2r;
|
||
|
T2v = FNMS(KP250000000, T2s, T2l);
|
||
|
}
|
||
|
{
|
||
|
E T2C, T2H, T2z, T2G;
|
||
|
T2J = iio[WS(vs, 3)];
|
||
|
{
|
||
|
E T2A, T2B, T2x, T2y;
|
||
|
T2A = iio[WS(vs, 3) + WS(rs, 2)];
|
||
|
T2B = iio[WS(vs, 3) + WS(rs, 3)];
|
||
|
T2C = T2A - T2B;
|
||
|
T2H = T2A + T2B;
|
||
|
T2x = iio[WS(vs, 3) + WS(rs, 1)];
|
||
|
T2y = iio[WS(vs, 3) + WS(rs, 4)];
|
||
|
T2z = T2x - T2y;
|
||
|
T2G = T2x + T2y;
|
||
|
}
|
||
|
T2D = FMA(KP951056516, T2z, KP587785252 * T2C);
|
||
|
T2X = FNMS(KP587785252, T2z, KP951056516 * T2C);
|
||
|
T2I = KP559016994 * (T2G - T2H);
|
||
|
T2K = T2G + T2H;
|
||
|
T2L = FNMS(KP250000000, T2K, T2J);
|
||
|
}
|
||
|
rio[0] = T1 + T8;
|
||
|
iio[0] = Tp + Tq;
|
||
|
rio[WS(rs, 1)] = TN + TU;
|
||
|
iio[WS(rs, 1)] = T1b + T1c;
|
||
|
rio[WS(rs, 2)] = T1z + T1G;
|
||
|
iio[WS(rs, 2)] = T1X + T1Y;
|
||
|
iio[WS(rs, 4)] = T3v + T3w;
|
||
|
rio[WS(rs, 4)] = T37 + T3e;
|
||
|
rio[WS(rs, 3)] = T2l + T2s;
|
||
|
iio[WS(rs, 3)] = T2J + T2K;
|
||
|
{
|
||
|
E Tk, Ty, Tw, TA, Tc, Ts;
|
||
|
Tc = Ta + Tb;
|
||
|
Tk = Tc + Tj;
|
||
|
Ty = Tc - Tj;
|
||
|
Ts = To + Tr;
|
||
|
Tw = Ts - Tv;
|
||
|
TA = Tv + Ts;
|
||
|
{
|
||
|
E T9, Tl, Tx, Tz;
|
||
|
T9 = W[0];
|
||
|
Tl = W[1];
|
||
|
rio[WS(vs, 1)] = FMA(T9, Tk, Tl * Tw);
|
||
|
iio[WS(vs, 1)] = FNMS(Tl, Tk, T9 * Tw);
|
||
|
Tx = W[6];
|
||
|
Tz = W[7];
|
||
|
rio[WS(vs, 4)] = FMA(Tx, Ty, Tz * TA);
|
||
|
iio[WS(vs, 4)] = FNMS(Tz, Ty, Tx * TA);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E TE, TK, TI, TM, TC, TH;
|
||
|
TC = Tb - Ta;
|
||
|
TE = TC - TD;
|
||
|
TK = TC + TD;
|
||
|
TH = Tr - To;
|
||
|
TI = TG + TH;
|
||
|
TM = TH - TG;
|
||
|
{
|
||
|
E TB, TF, TJ, TL;
|
||
|
TB = W[2];
|
||
|
TF = W[3];
|
||
|
rio[WS(vs, 2)] = FMA(TB, TE, TF * TI);
|
||
|
iio[WS(vs, 2)] = FNMS(TF, TE, TB * TI);
|
||
|
TJ = W[4];
|
||
|
TL = W[5];
|
||
|
rio[WS(vs, 3)] = FMA(TJ, TK, TL * TM);
|
||
|
iio[WS(vs, 3)] = FNMS(TL, TK, TJ * TM);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T2c, T2i, T2g, T2k, T2a, T2f;
|
||
|
T2a = T1J - T1I;
|
||
|
T2c = T2a - T2b;
|
||
|
T2i = T2a + T2b;
|
||
|
T2f = T1Z - T1W;
|
||
|
T2g = T2e + T2f;
|
||
|
T2k = T2f - T2e;
|
||
|
{
|
||
|
E T29, T2d, T2h, T2j;
|
||
|
T29 = W[2];
|
||
|
T2d = W[3];
|
||
|
rio[WS(vs, 2) + WS(rs, 2)] = FMA(T29, T2c, T2d * T2g);
|
||
|
iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T2d, T2c, T29 * T2g);
|
||
|
T2h = W[4];
|
||
|
T2j = W[5];
|
||
|
rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2h, T2i, T2j * T2k);
|
||
|
iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2j, T2i, T2h * T2k);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T3K, T3Q, T3O, T3S, T3I, T3N;
|
||
|
T3I = T3h - T3g;
|
||
|
T3K = T3I - T3J;
|
||
|
T3Q = T3I + T3J;
|
||
|
T3N = T3x - T3u;
|
||
|
T3O = T3M + T3N;
|
||
|
T3S = T3N - T3M;
|
||
|
{
|
||
|
E T3H, T3L, T3P, T3R;
|
||
|
T3H = W[2];
|
||
|
T3L = W[3];
|
||
|
rio[WS(vs, 2) + WS(rs, 4)] = FMA(T3H, T3K, T3L * T3O);
|
||
|
iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T3L, T3K, T3H * T3O);
|
||
|
T3P = W[4];
|
||
|
T3R = W[5];
|
||
|
rio[WS(vs, 3) + WS(rs, 4)] = FMA(T3P, T3Q, T3R * T3S);
|
||
|
iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T3R, T3Q, T3P * T3S);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1S, T26, T24, T28, T1K, T20;
|
||
|
T1K = T1I + T1J;
|
||
|
T1S = T1K + T1R;
|
||
|
T26 = T1K - T1R;
|
||
|
T20 = T1W + T1Z;
|
||
|
T24 = T20 - T23;
|
||
|
T28 = T23 + T20;
|
||
|
{
|
||
|
E T1H, T1T, T25, T27;
|
||
|
T1H = W[0];
|
||
|
T1T = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1H, T1S, T1T * T24);
|
||
|
iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1T, T1S, T1H * T24);
|
||
|
T25 = W[6];
|
||
|
T27 = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 2)] = FMA(T25, T26, T27 * T28);
|
||
|
iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T27, T26, T25 * T28);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T2E, T2S, T2Q, T2U, T2w, T2M;
|
||
|
T2w = T2u + T2v;
|
||
|
T2E = T2w + T2D;
|
||
|
T2S = T2w - T2D;
|
||
|
T2M = T2I + T2L;
|
||
|
T2Q = T2M - T2P;
|
||
|
T2U = T2P + T2M;
|
||
|
{
|
||
|
E T2t, T2F, T2R, T2T;
|
||
|
T2t = W[0];
|
||
|
T2F = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 3)] = FMA(T2t, T2E, T2F * T2Q);
|
||
|
iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T2F, T2E, T2t * T2Q);
|
||
|
T2R = W[6];
|
||
|
T2T = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 3)] = FMA(T2R, T2S, T2T * T2U);
|
||
|
iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T2T, T2S, T2R * T2U);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T2Y, T34, T32, T36, T2W, T31;
|
||
|
T2W = T2v - T2u;
|
||
|
T2Y = T2W - T2X;
|
||
|
T34 = T2W + T2X;
|
||
|
T31 = T2L - T2I;
|
||
|
T32 = T30 + T31;
|
||
|
T36 = T31 - T30;
|
||
|
{
|
||
|
E T2V, T2Z, T33, T35;
|
||
|
T2V = W[2];
|
||
|
T2Z = W[3];
|
||
|
rio[WS(vs, 2) + WS(rs, 3)] = FMA(T2V, T2Y, T2Z * T32);
|
||
|
iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T2Z, T2Y, T2V * T32);
|
||
|
T33 = W[4];
|
||
|
T35 = W[5];
|
||
|
rio[WS(vs, 3) + WS(rs, 3)] = FMA(T33, T34, T35 * T36);
|
||
|
iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T35, T34, T33 * T36);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T3q, T3E, T3C, T3G, T3i, T3y;
|
||
|
T3i = T3g + T3h;
|
||
|
T3q = T3i + T3p;
|
||
|
T3E = T3i - T3p;
|
||
|
T3y = T3u + T3x;
|
||
|
T3C = T3y - T3B;
|
||
|
T3G = T3B + T3y;
|
||
|
{
|
||
|
E T3f, T3r, T3D, T3F;
|
||
|
T3f = W[0];
|
||
|
T3r = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 4)] = FMA(T3f, T3q, T3r * T3C);
|
||
|
iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T3r, T3q, T3f * T3C);
|
||
|
T3D = W[6];
|
||
|
T3F = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 4)] = FMA(T3D, T3E, T3F * T3G);
|
||
|
iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T3F, T3E, T3D * T3G);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1q, T1w, T1u, T1y, T1o, T1t;
|
||
|
T1o = TX - TW;
|
||
|
T1q = T1o - T1p;
|
||
|
T1w = T1o + T1p;
|
||
|
T1t = T1d - T1a;
|
||
|
T1u = T1s + T1t;
|
||
|
T1y = T1t - T1s;
|
||
|
{
|
||
|
E T1n, T1r, T1v, T1x;
|
||
|
T1n = W[2];
|
||
|
T1r = W[3];
|
||
|
rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1n, T1q, T1r * T1u);
|
||
|
iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1r, T1q, T1n * T1u);
|
||
|
T1v = W[4];
|
||
|
T1x = W[5];
|
||
|
rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1v, T1w, T1x * T1y);
|
||
|
iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1x, T1w, T1v * T1y);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T16, T1k, T1i, T1m, TY, T1e;
|
||
|
TY = TW + TX;
|
||
|
T16 = TY + T15;
|
||
|
T1k = TY - T15;
|
||
|
T1e = T1a + T1d;
|
||
|
T1i = T1e - T1h;
|
||
|
T1m = T1h + T1e;
|
||
|
{
|
||
|
E TV, T17, T1j, T1l;
|
||
|
TV = W[0];
|
||
|
T17 = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 1)] = FMA(TV, T16, T17 * T1i);
|
||
|
iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T17, T16, TV * T1i);
|
||
|
T1j = W[6];
|
||
|
T1l = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 1)] = FMA(T1j, T1k, T1l * T1m);
|
||
|
iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T1l, T1k, T1j * T1m);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 0, 5 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 5, "q1_5", twinstr, &GENUS, { 130, 70, 70, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_q1_5) (planner *p) {
|
||
|
X(kdft_difsq_register) (p, q1_5, &desc);
|
||
|
}
|
||
|
#endif
|