furnace/extern/fftw/dft/scalar/codelets/n1_6.c

211 lines
6.1 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:44:24 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 6 -name n1_6 -include dft/scalar/n.h */
/*
* This function contains 36 FP additions, 12 FP multiplications,
* (or, 24 additions, 0 multiplications, 12 fused multiply/add),
* 23 stack variables, 2 constants, and 24 memory accesses
*/
#include "dft/scalar/n.h"
static void n1_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT i;
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
E T3, Tb, Tp, Tx, T6, Tc, T9, Td, Ta, Te, Ti, Tu, Tl, Tv, Tq;
E Ty;
{
E T1, T2, Tn, To;
T1 = ri[0];
T2 = ri[WS(is, 3)];
T3 = T1 - T2;
Tb = T1 + T2;
Tn = ii[0];
To = ii[WS(is, 3)];
Tp = Tn - To;
Tx = Tn + To;
}
{
E T4, T5, T7, T8;
T4 = ri[WS(is, 2)];
T5 = ri[WS(is, 5)];
T6 = T4 - T5;
Tc = T4 + T5;
T7 = ri[WS(is, 4)];
T8 = ri[WS(is, 1)];
T9 = T7 - T8;
Td = T7 + T8;
}
Ta = T6 + T9;
Te = Tc + Td;
{
E Tg, Th, Tj, Tk;
Tg = ii[WS(is, 2)];
Th = ii[WS(is, 5)];
Ti = Tg - Th;
Tu = Tg + Th;
Tj = ii[WS(is, 4)];
Tk = ii[WS(is, 1)];
Tl = Tj - Tk;
Tv = Tj + Tk;
}
Tq = Ti + Tl;
Ty = Tu + Tv;
ro[WS(os, 3)] = T3 + Ta;
io[WS(os, 3)] = Tp + Tq;
ro[0] = Tb + Te;
io[0] = Tx + Ty;
{
E Tf, Tm, Tr, Ts;
Tf = FNMS(KP500000000, Ta, T3);
Tm = Ti - Tl;
ro[WS(os, 5)] = FNMS(KP866025403, Tm, Tf);
ro[WS(os, 1)] = FMA(KP866025403, Tm, Tf);
Tr = FNMS(KP500000000, Tq, Tp);
Ts = T9 - T6;
io[WS(os, 1)] = FMA(KP866025403, Ts, Tr);
io[WS(os, 5)] = FNMS(KP866025403, Ts, Tr);
}
{
E Tt, Tw, Tz, TA;
Tt = FNMS(KP500000000, Te, Tb);
Tw = Tu - Tv;
ro[WS(os, 2)] = FNMS(KP866025403, Tw, Tt);
ro[WS(os, 4)] = FMA(KP866025403, Tw, Tt);
Tz = FNMS(KP500000000, Ty, Tx);
TA = Td - Tc;
io[WS(os, 2)] = FNMS(KP866025403, TA, Tz);
io[WS(os, 4)] = FMA(KP866025403, TA, Tz);
}
}
}
}
static const kdft_desc desc = { 6, "n1_6", { 24, 0, 12, 0 }, &GENUS, 0, 0, 0, 0 };
void X(codelet_n1_6) (planner *p) { X(kdft_register) (p, n1_6, &desc);
}
#else
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 6 -name n1_6 -include dft/scalar/n.h */
/*
* This function contains 36 FP additions, 8 FP multiplications,
* (or, 32 additions, 4 multiplications, 4 fused multiply/add),
* 23 stack variables, 2 constants, and 24 memory accesses
*/
#include "dft/scalar/n.h"
static void n1_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT i;
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
E T3, Tb, Tq, Tx, T6, Tc, T9, Td, Ta, Te, Ti, Tu, Tl, Tv, Tr;
E Ty;
{
E T1, T2, To, Tp;
T1 = ri[0];
T2 = ri[WS(is, 3)];
T3 = T1 - T2;
Tb = T1 + T2;
To = ii[0];
Tp = ii[WS(is, 3)];
Tq = To - Tp;
Tx = To + Tp;
}
{
E T4, T5, T7, T8;
T4 = ri[WS(is, 2)];
T5 = ri[WS(is, 5)];
T6 = T4 - T5;
Tc = T4 + T5;
T7 = ri[WS(is, 4)];
T8 = ri[WS(is, 1)];
T9 = T7 - T8;
Td = T7 + T8;
}
Ta = T6 + T9;
Te = Tc + Td;
{
E Tg, Th, Tj, Tk;
Tg = ii[WS(is, 2)];
Th = ii[WS(is, 5)];
Ti = Tg - Th;
Tu = Tg + Th;
Tj = ii[WS(is, 4)];
Tk = ii[WS(is, 1)];
Tl = Tj - Tk;
Tv = Tj + Tk;
}
Tr = Ti + Tl;
Ty = Tu + Tv;
ro[WS(os, 3)] = T3 + Ta;
io[WS(os, 3)] = Tq + Tr;
ro[0] = Tb + Te;
io[0] = Tx + Ty;
{
E Tf, Tm, Tn, Ts;
Tf = FNMS(KP500000000, Ta, T3);
Tm = KP866025403 * (Ti - Tl);
ro[WS(os, 5)] = Tf - Tm;
ro[WS(os, 1)] = Tf + Tm;
Tn = KP866025403 * (T9 - T6);
Ts = FNMS(KP500000000, Tr, Tq);
io[WS(os, 1)] = Tn + Ts;
io[WS(os, 5)] = Ts - Tn;
}
{
E Tt, Tw, Tz, TA;
Tt = FNMS(KP500000000, Te, Tb);
Tw = KP866025403 * (Tu - Tv);
ro[WS(os, 2)] = Tt - Tw;
ro[WS(os, 4)] = Tt + Tw;
Tz = FNMS(KP500000000, Ty, Tx);
TA = KP866025403 * (Td - Tc);
io[WS(os, 2)] = Tz - TA;
io[WS(os, 4)] = TA + Tz;
}
}
}
}
static const kdft_desc desc = { 6, "n1_6", { 32, 4, 4, 0 }, &GENUS, 0, 0, 0, 0 };
void X(codelet_n1_6) (planner *p) { X(kdft_register) (p, n1_6, &desc);
}
#endif