mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-24 05:25:12 +00:00
288 lines
8.2 KiB
C
288 lines
8.2 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* Real-input (r2c) DFTs of rank >= 2, for the case where we are distributed
|
||
|
across the first dimension only, and the output is transposed both
|
||
|
in data distribution and in ordering (for the first 2 dimensions).
|
||
|
|
||
|
Conversely, real-output (c2r) DFTs where the input is transposed.
|
||
|
|
||
|
We don't currently support transposed-input r2c or transposed-output
|
||
|
c2r transforms. */
|
||
|
|
||
|
#include "mpi-rdft2.h"
|
||
|
#include "mpi-transpose.h"
|
||
|
#include "rdft/rdft.h"
|
||
|
#include "dft/dft.h"
|
||
|
|
||
|
typedef struct {
|
||
|
solver super;
|
||
|
int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
|
||
|
} S;
|
||
|
|
||
|
typedef struct {
|
||
|
plan_mpi_rdft2 super;
|
||
|
|
||
|
plan *cld1, *cldt, *cld2;
|
||
|
INT vn;
|
||
|
int preserve_input;
|
||
|
} P;
|
||
|
|
||
|
static void apply_r2c(const plan *ego_, R *I, R *O)
|
||
|
{
|
||
|
const P *ego = (const P *) ego_;
|
||
|
plan_rdft2 *cld1;
|
||
|
plan_dft *cld2;
|
||
|
plan_rdft *cldt;
|
||
|
|
||
|
/* RDFT2 local dimensions */
|
||
|
cld1 = (plan_rdft2 *) ego->cld1;
|
||
|
if (ego->preserve_input) {
|
||
|
cld1->apply(ego->cld1, I, I+ego->vn, O, O+1);
|
||
|
I = O;
|
||
|
}
|
||
|
else
|
||
|
cld1->apply(ego->cld1, I, I+ego->vn, I, I+1);
|
||
|
|
||
|
/* global transpose */
|
||
|
cldt = (plan_rdft *) ego->cldt;
|
||
|
cldt->apply(ego->cldt, I, O);
|
||
|
|
||
|
/* DFT final local dimension */
|
||
|
cld2 = (plan_dft *) ego->cld2;
|
||
|
cld2->apply(ego->cld2, O, O+1, O, O+1);
|
||
|
}
|
||
|
|
||
|
static void apply_c2r(const plan *ego_, R *I, R *O)
|
||
|
{
|
||
|
const P *ego = (const P *) ego_;
|
||
|
plan_rdft2 *cld1;
|
||
|
plan_dft *cld2;
|
||
|
plan_rdft *cldt;
|
||
|
|
||
|
/* IDFT local dimensions */
|
||
|
cld2 = (plan_dft *) ego->cld2;
|
||
|
if (ego->preserve_input) {
|
||
|
cld2->apply(ego->cld2, I+1, I, O+1, O);
|
||
|
I = O;
|
||
|
}
|
||
|
else
|
||
|
cld2->apply(ego->cld2, I+1, I, I+1, I);
|
||
|
|
||
|
/* global transpose */
|
||
|
cldt = (plan_rdft *) ego->cldt;
|
||
|
cldt->apply(ego->cldt, I, O);
|
||
|
|
||
|
/* RDFT2 final local dimension */
|
||
|
cld1 = (plan_rdft2 *) ego->cld1;
|
||
|
cld1->apply(ego->cld1, O, O+ego->vn, O, O+1);
|
||
|
}
|
||
|
|
||
|
static int applicable(const S *ego, const problem *p_,
|
||
|
const planner *plnr)
|
||
|
{
|
||
|
const problem_mpi_rdft2 *p = (const problem_mpi_rdft2 *) p_;
|
||
|
return (1
|
||
|
&& p->sz->rnk > 1
|
||
|
&& (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
|
||
|
&& p->I != p->O))
|
||
|
&& ((p->flags == TRANSPOSED_OUT && p->kind == R2HC
|
||
|
&& XM(is_local_after)(1, p->sz, IB)
|
||
|
&& XM(is_local_after)(2, p->sz, OB)
|
||
|
&& XM(num_blocks)(p->sz->dims[0].n,
|
||
|
p->sz->dims[0].b[OB]) == 1)
|
||
|
||
|
||
|
(p->flags == TRANSPOSED_IN && p->kind == HC2R
|
||
|
&& XM(is_local_after)(1, p->sz, OB)
|
||
|
&& XM(is_local_after)(2, p->sz, IB)
|
||
|
&& XM(num_blocks)(p->sz->dims[0].n,
|
||
|
p->sz->dims[0].b[IB]) == 1))
|
||
|
&& (!NO_SLOWP(plnr) /* slow if rdft2-serial is applicable */
|
||
|
|| !XM(rdft2_serial_applicable)(p))
|
||
|
);
|
||
|
}
|
||
|
|
||
|
static void awake(plan *ego_, enum wakefulness wakefulness)
|
||
|
{
|
||
|
P *ego = (P *) ego_;
|
||
|
X(plan_awake)(ego->cld1, wakefulness);
|
||
|
X(plan_awake)(ego->cldt, wakefulness);
|
||
|
X(plan_awake)(ego->cld2, wakefulness);
|
||
|
}
|
||
|
|
||
|
static void destroy(plan *ego_)
|
||
|
{
|
||
|
P *ego = (P *) ego_;
|
||
|
X(plan_destroy_internal)(ego->cld2);
|
||
|
X(plan_destroy_internal)(ego->cldt);
|
||
|
X(plan_destroy_internal)(ego->cld1);
|
||
|
}
|
||
|
|
||
|
static void print(const plan *ego_, printer *p)
|
||
|
{
|
||
|
const P *ego = (const P *) ego_;
|
||
|
p->print(p, "(mpi-rdft2-rank-geq2-transposed%s%(%p%)%(%p%)%(%p%))",
|
||
|
ego->preserve_input==2 ?"/p":"",
|
||
|
ego->cld1, ego->cldt, ego->cld2);
|
||
|
}
|
||
|
|
||
|
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
||
|
{
|
||
|
const S *ego = (const S *) ego_;
|
||
|
const problem_mpi_rdft2 *p;
|
||
|
P *pln;
|
||
|
plan *cld1 = 0, *cldt = 0, *cld2 = 0;
|
||
|
R *r0, *r1, *cr, *ci, *ri, *ii, *ro, *io, *I, *O;
|
||
|
tensor *sz;
|
||
|
int i, my_pe, n_pes;
|
||
|
INT nrest, n1, b1;
|
||
|
static const plan_adt padt = {
|
||
|
XM(rdft2_solve), awake, print, destroy
|
||
|
};
|
||
|
block_kind k1, k2;
|
||
|
|
||
|
UNUSED(ego);
|
||
|
|
||
|
if (!applicable(ego, p_, plnr))
|
||
|
return (plan *) 0;
|
||
|
|
||
|
p = (const problem_mpi_rdft2 *) p_;
|
||
|
|
||
|
I = p->I; O = p->O;
|
||
|
if (p->kind == R2HC) {
|
||
|
k1 = IB; k2 = OB;
|
||
|
r1 = (r0 = I) + p->vn;
|
||
|
if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) {
|
||
|
ci = (cr = O) + 1;
|
||
|
I = O;
|
||
|
}
|
||
|
else
|
||
|
ci = (cr = I) + 1;
|
||
|
io = ii = (ro = ri = O) + 1;
|
||
|
}
|
||
|
else {
|
||
|
k1 = OB; k2 = IB;
|
||
|
r1 = (r0 = O) + p->vn;
|
||
|
ci = (cr = O) + 1;
|
||
|
if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) {
|
||
|
ri = (ii = I) + 1;
|
||
|
ro = (io = O) + 1;
|
||
|
I = O;
|
||
|
}
|
||
|
else
|
||
|
ro = ri = (io = ii = I) + 1;
|
||
|
}
|
||
|
|
||
|
MPI_Comm_rank(p->comm, &my_pe);
|
||
|
MPI_Comm_size(p->comm, &n_pes);
|
||
|
|
||
|
sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */
|
||
|
i = p->sz->rnk - 2; A(i >= 0);
|
||
|
sz->dims[i].n = p->sz->dims[i+1].n / 2 + 1;
|
||
|
sz->dims[i].is = sz->dims[i].os = 2 * p->vn;
|
||
|
for (--i; i >= 0; --i) {
|
||
|
sz->dims[i].n = p->sz->dims[i+1].n;
|
||
|
sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is;
|
||
|
}
|
||
|
nrest = 1; for (i = 1; i < sz->rnk; ++i) nrest *= sz->dims[i].n;
|
||
|
{
|
||
|
INT ivs = 1 + (p->kind == HC2R), ovs = 1 + (p->kind == R2HC);
|
||
|
INT is = sz->dims[0].n * sz->dims[0].is;
|
||
|
INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[k1], my_pe);
|
||
|
sz->dims[p->sz->rnk - 2].n = p->sz->dims[p->sz->rnk - 1].n;
|
||
|
cld1 = X(mkplan_d)(plnr,
|
||
|
X(mkproblem_rdft2_d)(sz,
|
||
|
X(mktensor_2d)(b, is, is,
|
||
|
p->vn,ivs,ovs),
|
||
|
r0, r1, cr, ci, p->kind));
|
||
|
if (XM(any_true)(!cld1, p->comm)) goto nada;
|
||
|
}
|
||
|
|
||
|
nrest *= p->vn;
|
||
|
n1 = p->sz->dims[1].n;
|
||
|
b1 = p->sz->dims[1].b[k2];
|
||
|
if (p->sz->rnk == 2) { /* n1 dimension is cut in ~half */
|
||
|
n1 = n1 / 2 + 1;
|
||
|
b1 = b1 == p->sz->dims[1].n ? n1 : b1;
|
||
|
}
|
||
|
|
||
|
if (p->kind == R2HC)
|
||
|
cldt = X(mkplan_d)(plnr,
|
||
|
XM(mkproblem_transpose)(
|
||
|
p->sz->dims[0].n, n1, nrest * 2,
|
||
|
I, O,
|
||
|
p->sz->dims[0].b[IB], b1,
|
||
|
p->comm, 0));
|
||
|
else
|
||
|
cldt = X(mkplan_d)(plnr,
|
||
|
XM(mkproblem_transpose)(
|
||
|
n1, p->sz->dims[0].n, nrest * 2,
|
||
|
I, O,
|
||
|
b1, p->sz->dims[0].b[OB],
|
||
|
p->comm, 0));
|
||
|
if (XM(any_true)(!cldt, p->comm)) goto nada;
|
||
|
|
||
|
{
|
||
|
INT is = p->sz->dims[0].n * nrest * 2;
|
||
|
INT b = XM(block)(n1, b1, my_pe);
|
||
|
cld2 = X(mkplan_d)(plnr,
|
||
|
X(mkproblem_dft_d)(X(mktensor_1d)(
|
||
|
p->sz->dims[0].n,
|
||
|
nrest * 2, nrest * 2),
|
||
|
X(mktensor_2d)(b, is, is,
|
||
|
nrest, 2, 2),
|
||
|
ri, ii, ro, io));
|
||
|
if (XM(any_true)(!cld2, p->comm)) goto nada;
|
||
|
}
|
||
|
|
||
|
pln = MKPLAN_MPI_RDFT2(P, &padt, p->kind == R2HC ? apply_r2c : apply_c2r);
|
||
|
pln->cld1 = cld1;
|
||
|
pln->cldt = cldt;
|
||
|
pln->cld2 = cld2;
|
||
|
pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
|
||
|
pln->vn = p->vn;
|
||
|
|
||
|
X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
|
||
|
X(ops_add2)(&cldt->ops, &pln->super.super.ops);
|
||
|
|
||
|
return &(pln->super.super);
|
||
|
|
||
|
nada:
|
||
|
X(plan_destroy_internal)(cld2);
|
||
|
X(plan_destroy_internal)(cldt);
|
||
|
X(plan_destroy_internal)(cld1);
|
||
|
return (plan *) 0;
|
||
|
}
|
||
|
|
||
|
static solver *mksolver(int preserve_input)
|
||
|
{
|
||
|
static const solver_adt sadt = { PROBLEM_MPI_RDFT2, mkplan, 0 };
|
||
|
S *slv = MKSOLVER(S, &sadt);
|
||
|
slv->preserve_input = preserve_input;
|
||
|
return &(slv->super);
|
||
|
}
|
||
|
|
||
|
void XM(rdft2_rank_geq2_transposed_register)(planner *p)
|
||
|
{
|
||
|
int preserve_input;
|
||
|
for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
|
||
|
REGISTER_SOLVER(p, mksolver(preserve_input));
|
||
|
}
|