mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-04 18:27:25 +00:00
582 lines
14 KiB
C
582 lines
14 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:44:28 EDT 2021 */
|
||
|
|
||
|
#include "dft/codelet-dft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -name t1_12 -include dft/scalar/t.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 118 FP additions, 68 FP multiplications,
|
||
|
* (or, 72 additions, 22 multiplications, 46 fused multiply/add),
|
||
|
* 47 stack variables, 2 constants, and 48 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/t.h"
|
||
|
|
||
|
static void t1_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + (mb * 22); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) {
|
||
|
E T1, T2i, Tl, T2e, T10, T1Y, TG, T1S, Ty, T2r, T1s, T2f, T1d, T21, T1H;
|
||
|
E T1Z, Te, T2o, T1l, T2h, TT, T1V, T1A, T1T;
|
||
|
T1 = ri[0];
|
||
|
T2i = ii[0];
|
||
|
{
|
||
|
E Th, Tk, Ti, T2d, Tg, Tj;
|
||
|
Th = ri[WS(rs, 6)];
|
||
|
Tk = ii[WS(rs, 6)];
|
||
|
Tg = W[10];
|
||
|
Ti = Tg * Th;
|
||
|
T2d = Tg * Tk;
|
||
|
Tj = W[11];
|
||
|
Tl = FMA(Tj, Tk, Ti);
|
||
|
T2e = FNMS(Tj, Th, T2d);
|
||
|
}
|
||
|
{
|
||
|
E TW, TZ, TX, T1X, TV, TY;
|
||
|
TW = ri[WS(rs, 9)];
|
||
|
TZ = ii[WS(rs, 9)];
|
||
|
TV = W[16];
|
||
|
TX = TV * TW;
|
||
|
T1X = TV * TZ;
|
||
|
TY = W[17];
|
||
|
T10 = FMA(TY, TZ, TX);
|
||
|
T1Y = FNMS(TY, TW, T1X);
|
||
|
}
|
||
|
{
|
||
|
E TC, TF, TD, T1R, TB, TE;
|
||
|
TC = ri[WS(rs, 3)];
|
||
|
TF = ii[WS(rs, 3)];
|
||
|
TB = W[4];
|
||
|
TD = TB * TC;
|
||
|
T1R = TB * TF;
|
||
|
TE = W[5];
|
||
|
TG = FMA(TE, TF, TD);
|
||
|
T1S = FNMS(TE, TC, T1R);
|
||
|
}
|
||
|
{
|
||
|
E Tn, Tq, To, T1o, Tt, Tw, Tu, T1q, Tm, Ts;
|
||
|
Tn = ri[WS(rs, 10)];
|
||
|
Tq = ii[WS(rs, 10)];
|
||
|
Tm = W[18];
|
||
|
To = Tm * Tn;
|
||
|
T1o = Tm * Tq;
|
||
|
Tt = ri[WS(rs, 2)];
|
||
|
Tw = ii[WS(rs, 2)];
|
||
|
Ts = W[2];
|
||
|
Tu = Ts * Tt;
|
||
|
T1q = Ts * Tw;
|
||
|
{
|
||
|
E Tr, T1p, Tx, T1r, Tp, Tv;
|
||
|
Tp = W[19];
|
||
|
Tr = FMA(Tp, Tq, To);
|
||
|
T1p = FNMS(Tp, Tn, T1o);
|
||
|
Tv = W[3];
|
||
|
Tx = FMA(Tv, Tw, Tu);
|
||
|
T1r = FNMS(Tv, Tt, T1q);
|
||
|
Ty = Tr + Tx;
|
||
|
T2r = Tx - Tr;
|
||
|
T1s = T1p - T1r;
|
||
|
T2f = T1p + T1r;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T12, T15, T13, T1D, T18, T1b, T19, T1F, T11, T17;
|
||
|
T12 = ri[WS(rs, 1)];
|
||
|
T15 = ii[WS(rs, 1)];
|
||
|
T11 = W[0];
|
||
|
T13 = T11 * T12;
|
||
|
T1D = T11 * T15;
|
||
|
T18 = ri[WS(rs, 5)];
|
||
|
T1b = ii[WS(rs, 5)];
|
||
|
T17 = W[8];
|
||
|
T19 = T17 * T18;
|
||
|
T1F = T17 * T1b;
|
||
|
{
|
||
|
E T16, T1E, T1c, T1G, T14, T1a;
|
||
|
T14 = W[1];
|
||
|
T16 = FMA(T14, T15, T13);
|
||
|
T1E = FNMS(T14, T12, T1D);
|
||
|
T1a = W[9];
|
||
|
T1c = FMA(T1a, T1b, T19);
|
||
|
T1G = FNMS(T1a, T18, T1F);
|
||
|
T1d = T16 + T1c;
|
||
|
T21 = T1c - T16;
|
||
|
T1H = T1E - T1G;
|
||
|
T1Z = T1E + T1G;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T3, T6, T4, T1h, T9, Tc, Ta, T1j, T2, T8;
|
||
|
T3 = ri[WS(rs, 4)];
|
||
|
T6 = ii[WS(rs, 4)];
|
||
|
T2 = W[6];
|
||
|
T4 = T2 * T3;
|
||
|
T1h = T2 * T6;
|
||
|
T9 = ri[WS(rs, 8)];
|
||
|
Tc = ii[WS(rs, 8)];
|
||
|
T8 = W[14];
|
||
|
Ta = T8 * T9;
|
||
|
T1j = T8 * Tc;
|
||
|
{
|
||
|
E T7, T1i, Td, T1k, T5, Tb;
|
||
|
T5 = W[7];
|
||
|
T7 = FMA(T5, T6, T4);
|
||
|
T1i = FNMS(T5, T3, T1h);
|
||
|
Tb = W[15];
|
||
|
Td = FMA(Tb, Tc, Ta);
|
||
|
T1k = FNMS(Tb, T9, T1j);
|
||
|
Te = T7 + Td;
|
||
|
T2o = Td - T7;
|
||
|
T1l = T1i - T1k;
|
||
|
T2h = T1i + T1k;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E TI, TL, TJ, T1w, TO, TR, TP, T1y, TH, TN;
|
||
|
TI = ri[WS(rs, 7)];
|
||
|
TL = ii[WS(rs, 7)];
|
||
|
TH = W[12];
|
||
|
TJ = TH * TI;
|
||
|
T1w = TH * TL;
|
||
|
TO = ri[WS(rs, 11)];
|
||
|
TR = ii[WS(rs, 11)];
|
||
|
TN = W[20];
|
||
|
TP = TN * TO;
|
||
|
T1y = TN * TR;
|
||
|
{
|
||
|
E TM, T1x, TS, T1z, TK, TQ;
|
||
|
TK = W[13];
|
||
|
TM = FMA(TK, TL, TJ);
|
||
|
T1x = FNMS(TK, TI, T1w);
|
||
|
TQ = W[21];
|
||
|
TS = FMA(TQ, TR, TP);
|
||
|
T1z = FNMS(TQ, TO, T1y);
|
||
|
TT = TM + TS;
|
||
|
T1V = TS - TM;
|
||
|
T1A = T1x - T1z;
|
||
|
T1T = T1x + T1z;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E TA, T28, T2k, T2m, T1f, T2l, T2b, T2c;
|
||
|
{
|
||
|
E Tf, Tz, T2g, T2j;
|
||
|
Tf = T1 + Te;
|
||
|
Tz = Tl + Ty;
|
||
|
TA = Tf + Tz;
|
||
|
T28 = Tf - Tz;
|
||
|
T2g = T2e + T2f;
|
||
|
T2j = T2h + T2i;
|
||
|
T2k = T2g + T2j;
|
||
|
T2m = T2j - T2g;
|
||
|
}
|
||
|
{
|
||
|
E TU, T1e, T29, T2a;
|
||
|
TU = TG + TT;
|
||
|
T1e = T10 + T1d;
|
||
|
T1f = TU + T1e;
|
||
|
T2l = TU - T1e;
|
||
|
T29 = T1S + T1T;
|
||
|
T2a = T1Y + T1Z;
|
||
|
T2b = T29 - T2a;
|
||
|
T2c = T29 + T2a;
|
||
|
}
|
||
|
ri[WS(rs, 6)] = TA - T1f;
|
||
|
ii[WS(rs, 6)] = T2k - T2c;
|
||
|
ri[0] = TA + T1f;
|
||
|
ii[0] = T2c + T2k;
|
||
|
ri[WS(rs, 3)] = T28 - T2b;
|
||
|
ii[WS(rs, 3)] = T2l + T2m;
|
||
|
ri[WS(rs, 9)] = T28 + T2b;
|
||
|
ii[WS(rs, 9)] = T2m - T2l;
|
||
|
}
|
||
|
{
|
||
|
E T1m, T1K, T2p, T2y, T2s, T2x, T1t, T1L, T1B, T1N, T1W, T25, T22, T26, T1I;
|
||
|
E T1O;
|
||
|
{
|
||
|
E T1g, T2n, T2q, T1n;
|
||
|
T1g = FNMS(KP500000000, Te, T1);
|
||
|
T1m = FNMS(KP866025403, T1l, T1g);
|
||
|
T1K = FMA(KP866025403, T1l, T1g);
|
||
|
T2n = FNMS(KP500000000, T2h, T2i);
|
||
|
T2p = FMA(KP866025403, T2o, T2n);
|
||
|
T2y = FNMS(KP866025403, T2o, T2n);
|
||
|
T2q = FNMS(KP500000000, T2f, T2e);
|
||
|
T2s = FMA(KP866025403, T2r, T2q);
|
||
|
T2x = FNMS(KP866025403, T2r, T2q);
|
||
|
T1n = FNMS(KP500000000, Ty, Tl);
|
||
|
T1t = FNMS(KP866025403, T1s, T1n);
|
||
|
T1L = FMA(KP866025403, T1s, T1n);
|
||
|
}
|
||
|
{
|
||
|
E T1v, T1U, T20, T1C;
|
||
|
T1v = FNMS(KP500000000, TT, TG);
|
||
|
T1B = FNMS(KP866025403, T1A, T1v);
|
||
|
T1N = FMA(KP866025403, T1A, T1v);
|
||
|
T1U = FNMS(KP500000000, T1T, T1S);
|
||
|
T1W = FMA(KP866025403, T1V, T1U);
|
||
|
T25 = FNMS(KP866025403, T1V, T1U);
|
||
|
T20 = FNMS(KP500000000, T1Z, T1Y);
|
||
|
T22 = FMA(KP866025403, T21, T20);
|
||
|
T26 = FNMS(KP866025403, T21, T20);
|
||
|
T1C = FNMS(KP500000000, T1d, T10);
|
||
|
T1I = FNMS(KP866025403, T1H, T1C);
|
||
|
T1O = FMA(KP866025403, T1H, T1C);
|
||
|
}
|
||
|
{
|
||
|
E T1u, T1J, T2z, T2A;
|
||
|
T1u = T1m + T1t;
|
||
|
T1J = T1B + T1I;
|
||
|
ri[WS(rs, 2)] = T1u - T1J;
|
||
|
ri[WS(rs, 8)] = T1u + T1J;
|
||
|
T2z = T2x + T2y;
|
||
|
T2A = T25 + T26;
|
||
|
ii[WS(rs, 2)] = T2z - T2A;
|
||
|
ii[WS(rs, 8)] = T2A + T2z;
|
||
|
}
|
||
|
{
|
||
|
E T1M, T1P, T2v, T2w;
|
||
|
T1M = T1K + T1L;
|
||
|
T1P = T1N + T1O;
|
||
|
ri[WS(rs, 10)] = T1M - T1P;
|
||
|
ri[WS(rs, 4)] = T1M + T1P;
|
||
|
T2v = T1W + T22;
|
||
|
T2w = T2s + T2p;
|
||
|
ii[WS(rs, 4)] = T2v + T2w;
|
||
|
ii[WS(rs, 10)] = T2w - T2v;
|
||
|
}
|
||
|
{
|
||
|
E T1Q, T23, T2t, T2u;
|
||
|
T1Q = T1K - T1L;
|
||
|
T23 = T1W - T22;
|
||
|
ri[WS(rs, 7)] = T1Q - T23;
|
||
|
ri[WS(rs, 1)] = T1Q + T23;
|
||
|
T2t = T2p - T2s;
|
||
|
T2u = T1N - T1O;
|
||
|
ii[WS(rs, 1)] = T2t - T2u;
|
||
|
ii[WS(rs, 7)] = T2u + T2t;
|
||
|
}
|
||
|
{
|
||
|
E T24, T27, T2B, T2C;
|
||
|
T24 = T1m - T1t;
|
||
|
T27 = T25 - T26;
|
||
|
ri[WS(rs, 11)] = T24 - T27;
|
||
|
ri[WS(rs, 5)] = T24 + T27;
|
||
|
T2B = T2y - T2x;
|
||
|
T2C = T1B - T1I;
|
||
|
ii[WS(rs, 5)] = T2B - T2C;
|
||
|
ii[WS(rs, 11)] = T2C + T2B;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 0, 12 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 12, "t1_12", twinstr, &GENUS, { 72, 22, 46, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_t1_12) (planner *p) {
|
||
|
X(kdft_dit_register) (p, t1_12, &desc);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 12 -name t1_12 -include dft/scalar/t.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 118 FP additions, 60 FP multiplications,
|
||
|
* (or, 88 additions, 30 multiplications, 30 fused multiply/add),
|
||
|
* 47 stack variables, 2 constants, and 48 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/t.h"
|
||
|
|
||
|
static void t1_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + (mb * 22); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) {
|
||
|
E T1, T1W, T18, T21, Tc, T15, T1V, T22, TR, T1E, T1o, T1D, T12, T1l, T1F;
|
||
|
E T1G, Ti, T1S, T1d, T24, Tt, T1a, T1T, T25, TA, T1z, T1j, T1y, TL, T1g;
|
||
|
E T1A, T1B;
|
||
|
{
|
||
|
E T6, T16, Tb, T17;
|
||
|
T1 = ri[0];
|
||
|
T1W = ii[0];
|
||
|
{
|
||
|
E T3, T5, T2, T4;
|
||
|
T3 = ri[WS(rs, 4)];
|
||
|
T5 = ii[WS(rs, 4)];
|
||
|
T2 = W[6];
|
||
|
T4 = W[7];
|
||
|
T6 = FMA(T2, T3, T4 * T5);
|
||
|
T16 = FNMS(T4, T3, T2 * T5);
|
||
|
}
|
||
|
{
|
||
|
E T8, Ta, T7, T9;
|
||
|
T8 = ri[WS(rs, 8)];
|
||
|
Ta = ii[WS(rs, 8)];
|
||
|
T7 = W[14];
|
||
|
T9 = W[15];
|
||
|
Tb = FMA(T7, T8, T9 * Ta);
|
||
|
T17 = FNMS(T9, T8, T7 * Ta);
|
||
|
}
|
||
|
T18 = KP866025403 * (T16 - T17);
|
||
|
T21 = KP866025403 * (Tb - T6);
|
||
|
Tc = T6 + Tb;
|
||
|
T15 = FNMS(KP500000000, Tc, T1);
|
||
|
T1V = T16 + T17;
|
||
|
T22 = FNMS(KP500000000, T1V, T1W);
|
||
|
}
|
||
|
{
|
||
|
E T11, T1n, TW, T1m;
|
||
|
{
|
||
|
E TO, TQ, TN, TP;
|
||
|
TO = ri[WS(rs, 9)];
|
||
|
TQ = ii[WS(rs, 9)];
|
||
|
TN = W[16];
|
||
|
TP = W[17];
|
||
|
TR = FMA(TN, TO, TP * TQ);
|
||
|
T1E = FNMS(TP, TO, TN * TQ);
|
||
|
}
|
||
|
{
|
||
|
E TY, T10, TX, TZ;
|
||
|
TY = ri[WS(rs, 5)];
|
||
|
T10 = ii[WS(rs, 5)];
|
||
|
TX = W[8];
|
||
|
TZ = W[9];
|
||
|
T11 = FMA(TX, TY, TZ * T10);
|
||
|
T1n = FNMS(TZ, TY, TX * T10);
|
||
|
}
|
||
|
{
|
||
|
E TT, TV, TS, TU;
|
||
|
TT = ri[WS(rs, 1)];
|
||
|
TV = ii[WS(rs, 1)];
|
||
|
TS = W[0];
|
||
|
TU = W[1];
|
||
|
TW = FMA(TS, TT, TU * TV);
|
||
|
T1m = FNMS(TU, TT, TS * TV);
|
||
|
}
|
||
|
T1o = KP866025403 * (T1m - T1n);
|
||
|
T1D = KP866025403 * (T11 - TW);
|
||
|
T12 = TW + T11;
|
||
|
T1l = FNMS(KP500000000, T12, TR);
|
||
|
T1F = T1m + T1n;
|
||
|
T1G = FNMS(KP500000000, T1F, T1E);
|
||
|
}
|
||
|
{
|
||
|
E Ts, T1c, Tn, T1b;
|
||
|
{
|
||
|
E Tf, Th, Te, Tg;
|
||
|
Tf = ri[WS(rs, 6)];
|
||
|
Th = ii[WS(rs, 6)];
|
||
|
Te = W[10];
|
||
|
Tg = W[11];
|
||
|
Ti = FMA(Te, Tf, Tg * Th);
|
||
|
T1S = FNMS(Tg, Tf, Te * Th);
|
||
|
}
|
||
|
{
|
||
|
E Tp, Tr, To, Tq;
|
||
|
Tp = ri[WS(rs, 2)];
|
||
|
Tr = ii[WS(rs, 2)];
|
||
|
To = W[2];
|
||
|
Tq = W[3];
|
||
|
Ts = FMA(To, Tp, Tq * Tr);
|
||
|
T1c = FNMS(Tq, Tp, To * Tr);
|
||
|
}
|
||
|
{
|
||
|
E Tk, Tm, Tj, Tl;
|
||
|
Tk = ri[WS(rs, 10)];
|
||
|
Tm = ii[WS(rs, 10)];
|
||
|
Tj = W[18];
|
||
|
Tl = W[19];
|
||
|
Tn = FMA(Tj, Tk, Tl * Tm);
|
||
|
T1b = FNMS(Tl, Tk, Tj * Tm);
|
||
|
}
|
||
|
T1d = KP866025403 * (T1b - T1c);
|
||
|
T24 = KP866025403 * (Ts - Tn);
|
||
|
Tt = Tn + Ts;
|
||
|
T1a = FNMS(KP500000000, Tt, Ti);
|
||
|
T1T = T1b + T1c;
|
||
|
T25 = FNMS(KP500000000, T1T, T1S);
|
||
|
}
|
||
|
{
|
||
|
E TK, T1i, TF, T1h;
|
||
|
{
|
||
|
E Tx, Tz, Tw, Ty;
|
||
|
Tx = ri[WS(rs, 3)];
|
||
|
Tz = ii[WS(rs, 3)];
|
||
|
Tw = W[4];
|
||
|
Ty = W[5];
|
||
|
TA = FMA(Tw, Tx, Ty * Tz);
|
||
|
T1z = FNMS(Ty, Tx, Tw * Tz);
|
||
|
}
|
||
|
{
|
||
|
E TH, TJ, TG, TI;
|
||
|
TH = ri[WS(rs, 11)];
|
||
|
TJ = ii[WS(rs, 11)];
|
||
|
TG = W[20];
|
||
|
TI = W[21];
|
||
|
TK = FMA(TG, TH, TI * TJ);
|
||
|
T1i = FNMS(TI, TH, TG * TJ);
|
||
|
}
|
||
|
{
|
||
|
E TC, TE, TB, TD;
|
||
|
TC = ri[WS(rs, 7)];
|
||
|
TE = ii[WS(rs, 7)];
|
||
|
TB = W[12];
|
||
|
TD = W[13];
|
||
|
TF = FMA(TB, TC, TD * TE);
|
||
|
T1h = FNMS(TD, TC, TB * TE);
|
||
|
}
|
||
|
T1j = KP866025403 * (T1h - T1i);
|
||
|
T1y = KP866025403 * (TK - TF);
|
||
|
TL = TF + TK;
|
||
|
T1g = FNMS(KP500000000, TL, TA);
|
||
|
T1A = T1h + T1i;
|
||
|
T1B = FNMS(KP500000000, T1A, T1z);
|
||
|
}
|
||
|
{
|
||
|
E Tv, T1N, T1Y, T20, T14, T1Z, T1Q, T1R;
|
||
|
{
|
||
|
E Td, Tu, T1U, T1X;
|
||
|
Td = T1 + Tc;
|
||
|
Tu = Ti + Tt;
|
||
|
Tv = Td + Tu;
|
||
|
T1N = Td - Tu;
|
||
|
T1U = T1S + T1T;
|
||
|
T1X = T1V + T1W;
|
||
|
T1Y = T1U + T1X;
|
||
|
T20 = T1X - T1U;
|
||
|
}
|
||
|
{
|
||
|
E TM, T13, T1O, T1P;
|
||
|
TM = TA + TL;
|
||
|
T13 = TR + T12;
|
||
|
T14 = TM + T13;
|
||
|
T1Z = TM - T13;
|
||
|
T1O = T1z + T1A;
|
||
|
T1P = T1E + T1F;
|
||
|
T1Q = T1O - T1P;
|
||
|
T1R = T1O + T1P;
|
||
|
}
|
||
|
ri[WS(rs, 6)] = Tv - T14;
|
||
|
ii[WS(rs, 6)] = T1Y - T1R;
|
||
|
ri[0] = Tv + T14;
|
||
|
ii[0] = T1R + T1Y;
|
||
|
ri[WS(rs, 3)] = T1N - T1Q;
|
||
|
ii[WS(rs, 3)] = T1Z + T20;
|
||
|
ri[WS(rs, 9)] = T1N + T1Q;
|
||
|
ii[WS(rs, 9)] = T20 - T1Z;
|
||
|
}
|
||
|
{
|
||
|
E T1t, T1x, T27, T2a, T1w, T28, T1I, T29;
|
||
|
{
|
||
|
E T1r, T1s, T23, T26;
|
||
|
T1r = T15 + T18;
|
||
|
T1s = T1a + T1d;
|
||
|
T1t = T1r + T1s;
|
||
|
T1x = T1r - T1s;
|
||
|
T23 = T21 + T22;
|
||
|
T26 = T24 + T25;
|
||
|
T27 = T23 - T26;
|
||
|
T2a = T26 + T23;
|
||
|
}
|
||
|
{
|
||
|
E T1u, T1v, T1C, T1H;
|
||
|
T1u = T1g + T1j;
|
||
|
T1v = T1l + T1o;
|
||
|
T1w = T1u + T1v;
|
||
|
T28 = T1u - T1v;
|
||
|
T1C = T1y + T1B;
|
||
|
T1H = T1D + T1G;
|
||
|
T1I = T1C - T1H;
|
||
|
T29 = T1C + T1H;
|
||
|
}
|
||
|
ri[WS(rs, 10)] = T1t - T1w;
|
||
|
ii[WS(rs, 10)] = T2a - T29;
|
||
|
ri[WS(rs, 4)] = T1t + T1w;
|
||
|
ii[WS(rs, 4)] = T29 + T2a;
|
||
|
ri[WS(rs, 7)] = T1x - T1I;
|
||
|
ii[WS(rs, 7)] = T28 + T27;
|
||
|
ri[WS(rs, 1)] = T1x + T1I;
|
||
|
ii[WS(rs, 1)] = T27 - T28;
|
||
|
}
|
||
|
{
|
||
|
E T1f, T1J, T2d, T2f, T1q, T2g, T1M, T2e;
|
||
|
{
|
||
|
E T19, T1e, T2b, T2c;
|
||
|
T19 = T15 - T18;
|
||
|
T1e = T1a - T1d;
|
||
|
T1f = T19 + T1e;
|
||
|
T1J = T19 - T1e;
|
||
|
T2b = T25 - T24;
|
||
|
T2c = T22 - T21;
|
||
|
T2d = T2b + T2c;
|
||
|
T2f = T2c - T2b;
|
||
|
}
|
||
|
{
|
||
|
E T1k, T1p, T1K, T1L;
|
||
|
T1k = T1g - T1j;
|
||
|
T1p = T1l - T1o;
|
||
|
T1q = T1k + T1p;
|
||
|
T2g = T1k - T1p;
|
||
|
T1K = T1B - T1y;
|
||
|
T1L = T1G - T1D;
|
||
|
T1M = T1K - T1L;
|
||
|
T2e = T1K + T1L;
|
||
|
}
|
||
|
ri[WS(rs, 2)] = T1f - T1q;
|
||
|
ii[WS(rs, 2)] = T2d - T2e;
|
||
|
ri[WS(rs, 8)] = T1f + T1q;
|
||
|
ii[WS(rs, 8)] = T2e + T2d;
|
||
|
ri[WS(rs, 11)] = T1J - T1M;
|
||
|
ii[WS(rs, 11)] = T2g + T2f;
|
||
|
ri[WS(rs, 5)] = T1J + T1M;
|
||
|
ii[WS(rs, 5)] = T2f - T2g;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 0, 12 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 12, "t1_12", twinstr, &GENUS, { 88, 30, 30, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_t1_12) (planner *p) {
|
||
|
X(kdft_dit_register) (p, t1_12, &desc);
|
||
|
}
|
||
|
#endif
|