mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-04 18:27:25 +00:00
514 lines
16 KiB
C
514 lines
16 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:44:24 EDT 2021 */
|
||
|
|
||
|
#include "dft/codelet-dft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 14 -name n1_14 -include dft/scalar/n.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 148 FP additions, 84 FP multiplications,
|
||
|
* (or, 64 additions, 0 multiplications, 84 fused multiply/add),
|
||
|
* 67 stack variables, 6 constants, and 56 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/n.h"
|
||
|
|
||
|
static void n1_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DK(KP974927912, +0.974927912181823607018131682993931217232785801);
|
||
|
DK(KP801937735, +0.801937735804838252472204639014890102331838324);
|
||
|
DK(KP554958132, +0.554958132087371191422194871006410481067288862);
|
||
|
DK(KP900968867, +0.900968867902419126236102319507445051165919162);
|
||
|
DK(KP692021471, +0.692021471630095869627814897002069140197260599);
|
||
|
DK(KP356895867, +0.356895867892209443894399510021300583399127187);
|
||
|
{
|
||
|
INT i;
|
||
|
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(56, is), MAKE_VOLATILE_STRIDE(56, os)) {
|
||
|
E T3, Tp, T1b, T1x, T1i, T1L, T1M, T1j, T1k, T1K, Ta, To, Th, Tz, T14;
|
||
|
E TZ, Ts, Ty, Tv, T1Z, T2c, T27, TI, T23, T24, TP, TW, T22, T1c, T1e;
|
||
|
E T1d, T1f, T1s, T1n, T1A, T1G, T1D, T1H, T1U, T1P;
|
||
|
{
|
||
|
E T1, T2, T19, T1a;
|
||
|
T1 = ri[0];
|
||
|
T2 = ri[WS(is, 7)];
|
||
|
T3 = T1 - T2;
|
||
|
Tp = T1 + T2;
|
||
|
T19 = ii[0];
|
||
|
T1a = ii[WS(is, 7)];
|
||
|
T1b = T19 - T1a;
|
||
|
T1x = T19 + T1a;
|
||
|
}
|
||
|
{
|
||
|
E T6, Tq, T9, Tr, Tn, Tx, Tk, Tw, Tg, Tu, Td, Tt;
|
||
|
{
|
||
|
E T4, T5, Ti, Tj;
|
||
|
T4 = ri[WS(is, 2)];
|
||
|
T5 = ri[WS(is, 9)];
|
||
|
T6 = T4 - T5;
|
||
|
Tq = T4 + T5;
|
||
|
{
|
||
|
E T7, T8, Tl, Tm;
|
||
|
T7 = ri[WS(is, 12)];
|
||
|
T8 = ri[WS(is, 5)];
|
||
|
T9 = T7 - T8;
|
||
|
Tr = T7 + T8;
|
||
|
Tl = ri[WS(is, 8)];
|
||
|
Tm = ri[WS(is, 1)];
|
||
|
Tn = Tl - Tm;
|
||
|
Tx = Tl + Tm;
|
||
|
}
|
||
|
Ti = ri[WS(is, 6)];
|
||
|
Tj = ri[WS(is, 13)];
|
||
|
Tk = Ti - Tj;
|
||
|
Tw = Ti + Tj;
|
||
|
{
|
||
|
E Te, Tf, Tb, Tc;
|
||
|
Te = ri[WS(is, 10)];
|
||
|
Tf = ri[WS(is, 3)];
|
||
|
Tg = Te - Tf;
|
||
|
Tu = Te + Tf;
|
||
|
Tb = ri[WS(is, 4)];
|
||
|
Tc = ri[WS(is, 11)];
|
||
|
Td = Tb - Tc;
|
||
|
Tt = Tb + Tc;
|
||
|
}
|
||
|
}
|
||
|
T1i = Tn - Tk;
|
||
|
T1L = Tt - Tu;
|
||
|
T1M = Tr - Tq;
|
||
|
T1j = Tg - Td;
|
||
|
T1k = T9 - T6;
|
||
|
T1K = Tw - Tx;
|
||
|
Ta = T6 + T9;
|
||
|
To = Tk + Tn;
|
||
|
Th = Td + Tg;
|
||
|
Tz = FNMS(KP356895867, Th, Ta);
|
||
|
T14 = FNMS(KP356895867, To, Th);
|
||
|
TZ = FNMS(KP356895867, Ta, To);
|
||
|
Ts = Tq + Tr;
|
||
|
Ty = Tw + Tx;
|
||
|
Tv = Tt + Tu;
|
||
|
T1Z = FNMS(KP356895867, Ts, Ty);
|
||
|
T2c = FNMS(KP356895867, Ty, Tv);
|
||
|
T27 = FNMS(KP356895867, Tv, Ts);
|
||
|
}
|
||
|
{
|
||
|
E TE, T1B, TH, T1C, TV, T1F, TS, T1E, TO, T1z, TL, T1y;
|
||
|
{
|
||
|
E TC, TD, TQ, TR;
|
||
|
TC = ii[WS(is, 4)];
|
||
|
TD = ii[WS(is, 11)];
|
||
|
TE = TC - TD;
|
||
|
T1B = TC + TD;
|
||
|
{
|
||
|
E TF, TG, TT, TU;
|
||
|
TF = ii[WS(is, 10)];
|
||
|
TG = ii[WS(is, 3)];
|
||
|
TH = TF - TG;
|
||
|
T1C = TF + TG;
|
||
|
TT = ii[WS(is, 8)];
|
||
|
TU = ii[WS(is, 1)];
|
||
|
TV = TT - TU;
|
||
|
T1F = TT + TU;
|
||
|
}
|
||
|
TQ = ii[WS(is, 6)];
|
||
|
TR = ii[WS(is, 13)];
|
||
|
TS = TQ - TR;
|
||
|
T1E = TQ + TR;
|
||
|
{
|
||
|
E TM, TN, TJ, TK;
|
||
|
TM = ii[WS(is, 12)];
|
||
|
TN = ii[WS(is, 5)];
|
||
|
TO = TM - TN;
|
||
|
T1z = TM + TN;
|
||
|
TJ = ii[WS(is, 2)];
|
||
|
TK = ii[WS(is, 9)];
|
||
|
TL = TJ - TK;
|
||
|
T1y = TJ + TK;
|
||
|
}
|
||
|
}
|
||
|
TI = TE - TH;
|
||
|
T23 = T1F - T1E;
|
||
|
T24 = T1C - T1B;
|
||
|
TP = TL - TO;
|
||
|
TW = TS - TV;
|
||
|
T22 = T1y - T1z;
|
||
|
T1c = TL + TO;
|
||
|
T1e = TS + TV;
|
||
|
T1d = TE + TH;
|
||
|
T1f = FNMS(KP356895867, T1e, T1d);
|
||
|
T1s = FNMS(KP356895867, T1d, T1c);
|
||
|
T1n = FNMS(KP356895867, T1c, T1e);
|
||
|
T1A = T1y + T1z;
|
||
|
T1G = T1E + T1F;
|
||
|
T1D = T1B + T1C;
|
||
|
T1H = FNMS(KP356895867, T1G, T1D);
|
||
|
T1U = FNMS(KP356895867, T1D, T1A);
|
||
|
T1P = FNMS(KP356895867, T1A, T1G);
|
||
|
}
|
||
|
ro[WS(os, 7)] = T3 + Ta + Th + To;
|
||
|
io[WS(os, 7)] = T1b + T1c + T1d + T1e;
|
||
|
ro[0] = Tp + Ts + Tv + Ty;
|
||
|
io[0] = T1x + T1A + T1D + T1G;
|
||
|
{
|
||
|
E TB, TY, TA, TX;
|
||
|
TA = FNMS(KP692021471, Tz, To);
|
||
|
TB = FNMS(KP900968867, TA, T3);
|
||
|
TX = FMA(KP554958132, TW, TP);
|
||
|
TY = FMA(KP801937735, TX, TI);
|
||
|
ro[WS(os, 13)] = FNMS(KP974927912, TY, TB);
|
||
|
ro[WS(os, 1)] = FMA(KP974927912, TY, TB);
|
||
|
}
|
||
|
{
|
||
|
E T1u, T1w, T1t, T1v;
|
||
|
T1t = FNMS(KP692021471, T1s, T1e);
|
||
|
T1u = FNMS(KP900968867, T1t, T1b);
|
||
|
T1v = FMA(KP554958132, T1i, T1k);
|
||
|
T1w = FMA(KP801937735, T1v, T1j);
|
||
|
io[WS(os, 1)] = FMA(KP974927912, T1w, T1u);
|
||
|
io[WS(os, 13)] = FNMS(KP974927912, T1w, T1u);
|
||
|
}
|
||
|
{
|
||
|
E T11, T13, T10, T12;
|
||
|
T10 = FNMS(KP692021471, TZ, Th);
|
||
|
T11 = FNMS(KP900968867, T10, T3);
|
||
|
T12 = FMA(KP554958132, TI, TW);
|
||
|
T13 = FNMS(KP801937735, T12, TP);
|
||
|
ro[WS(os, 5)] = FNMS(KP974927912, T13, T11);
|
||
|
ro[WS(os, 9)] = FMA(KP974927912, T13, T11);
|
||
|
}
|
||
|
{
|
||
|
E T1p, T1r, T1o, T1q;
|
||
|
T1o = FNMS(KP692021471, T1n, T1d);
|
||
|
T1p = FNMS(KP900968867, T1o, T1b);
|
||
|
T1q = FMA(KP554958132, T1j, T1i);
|
||
|
T1r = FNMS(KP801937735, T1q, T1k);
|
||
|
io[WS(os, 5)] = FNMS(KP974927912, T1r, T1p);
|
||
|
io[WS(os, 9)] = FMA(KP974927912, T1r, T1p);
|
||
|
}
|
||
|
{
|
||
|
E T16, T18, T15, T17;
|
||
|
T15 = FNMS(KP692021471, T14, Ta);
|
||
|
T16 = FNMS(KP900968867, T15, T3);
|
||
|
T17 = FNMS(KP554958132, TP, TI);
|
||
|
T18 = FNMS(KP801937735, T17, TW);
|
||
|
ro[WS(os, 11)] = FNMS(KP974927912, T18, T16);
|
||
|
ro[WS(os, 3)] = FMA(KP974927912, T18, T16);
|
||
|
}
|
||
|
{
|
||
|
E T1h, T1m, T1g, T1l;
|
||
|
T1g = FNMS(KP692021471, T1f, T1c);
|
||
|
T1h = FNMS(KP900968867, T1g, T1b);
|
||
|
T1l = FNMS(KP554958132, T1k, T1j);
|
||
|
T1m = FNMS(KP801937735, T1l, T1i);
|
||
|
io[WS(os, 3)] = FMA(KP974927912, T1m, T1h);
|
||
|
io[WS(os, 11)] = FNMS(KP974927912, T1m, T1h);
|
||
|
}
|
||
|
{
|
||
|
E T1J, T1O, T1I, T1N;
|
||
|
T1I = FNMS(KP692021471, T1H, T1A);
|
||
|
T1J = FNMS(KP900968867, T1I, T1x);
|
||
|
T1N = FMA(KP554958132, T1M, T1L);
|
||
|
T1O = FNMS(KP801937735, T1N, T1K);
|
||
|
io[WS(os, 4)] = FMA(KP974927912, T1O, T1J);
|
||
|
io[WS(os, 10)] = FNMS(KP974927912, T1O, T1J);
|
||
|
}
|
||
|
{
|
||
|
E T2e, T2g, T2d, T2f;
|
||
|
T2d = FNMS(KP692021471, T2c, Ts);
|
||
|
T2e = FNMS(KP900968867, T2d, Tp);
|
||
|
T2f = FMA(KP554958132, T22, T24);
|
||
|
T2g = FNMS(KP801937735, T2f, T23);
|
||
|
ro[WS(os, 10)] = FNMS(KP974927912, T2g, T2e);
|
||
|
ro[WS(os, 4)] = FMA(KP974927912, T2g, T2e);
|
||
|
}
|
||
|
{
|
||
|
E T1R, T1T, T1Q, T1S;
|
||
|
T1Q = FNMS(KP692021471, T1P, T1D);
|
||
|
T1R = FNMS(KP900968867, T1Q, T1x);
|
||
|
T1S = FMA(KP554958132, T1L, T1K);
|
||
|
T1T = FMA(KP801937735, T1S, T1M);
|
||
|
io[WS(os, 2)] = FMA(KP974927912, T1T, T1R);
|
||
|
io[WS(os, 12)] = FNMS(KP974927912, T1T, T1R);
|
||
|
}
|
||
|
{
|
||
|
E T21, T26, T20, T25;
|
||
|
T20 = FNMS(KP692021471, T1Z, Tv);
|
||
|
T21 = FNMS(KP900968867, T20, Tp);
|
||
|
T25 = FMA(KP554958132, T24, T23);
|
||
|
T26 = FMA(KP801937735, T25, T22);
|
||
|
ro[WS(os, 12)] = FNMS(KP974927912, T26, T21);
|
||
|
ro[WS(os, 2)] = FMA(KP974927912, T26, T21);
|
||
|
}
|
||
|
{
|
||
|
E T1W, T1Y, T1V, T1X;
|
||
|
T1V = FNMS(KP692021471, T1U, T1G);
|
||
|
T1W = FNMS(KP900968867, T1V, T1x);
|
||
|
T1X = FNMS(KP554958132, T1K, T1M);
|
||
|
T1Y = FNMS(KP801937735, T1X, T1L);
|
||
|
io[WS(os, 6)] = FMA(KP974927912, T1Y, T1W);
|
||
|
io[WS(os, 8)] = FNMS(KP974927912, T1Y, T1W);
|
||
|
}
|
||
|
{
|
||
|
E T29, T2b, T28, T2a;
|
||
|
T28 = FNMS(KP692021471, T27, Ty);
|
||
|
T29 = FNMS(KP900968867, T28, Tp);
|
||
|
T2a = FNMS(KP554958132, T23, T22);
|
||
|
T2b = FNMS(KP801937735, T2a, T24);
|
||
|
ro[WS(os, 8)] = FNMS(KP974927912, T2b, T29);
|
||
|
ro[WS(os, 6)] = FMA(KP974927912, T2b, T29);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const kdft_desc desc = { 14, "n1_14", { 64, 0, 84, 0 }, &GENUS, 0, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_n1_14) (planner *p) { X(kdft_register) (p, n1_14, &desc);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 14 -name n1_14 -include dft/scalar/n.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 148 FP additions, 72 FP multiplications,
|
||
|
* (or, 100 additions, 24 multiplications, 48 fused multiply/add),
|
||
|
* 43 stack variables, 6 constants, and 56 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/n.h"
|
||
|
|
||
|
static void n1_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DK(KP222520933, +0.222520933956314404288902564496794759466355569);
|
||
|
DK(KP900968867, +0.900968867902419126236102319507445051165919162);
|
||
|
DK(KP623489801, +0.623489801858733530525004884004239810632274731);
|
||
|
DK(KP433883739, +0.433883739117558120475768332848358754609990728);
|
||
|
DK(KP781831482, +0.781831482468029808708444526674057750232334519);
|
||
|
DK(KP974927912, +0.974927912181823607018131682993931217232785801);
|
||
|
{
|
||
|
INT i;
|
||
|
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(56, is), MAKE_VOLATILE_STRIDE(56, os)) {
|
||
|
E T3, Tp, T16, T1f, Ta, T1q, Ts, T10, TG, T1z, T19, T1i, Th, T1s, Tv;
|
||
|
E T12, TU, T1B, T17, T1o, To, T1r, Ty, T11, TN, T1A, T18, T1l;
|
||
|
{
|
||
|
E T1, T2, T14, T15;
|
||
|
T1 = ri[0];
|
||
|
T2 = ri[WS(is, 7)];
|
||
|
T3 = T1 - T2;
|
||
|
Tp = T1 + T2;
|
||
|
T14 = ii[0];
|
||
|
T15 = ii[WS(is, 7)];
|
||
|
T16 = T14 - T15;
|
||
|
T1f = T14 + T15;
|
||
|
}
|
||
|
{
|
||
|
E T6, Tq, T9, Tr;
|
||
|
{
|
||
|
E T4, T5, T7, T8;
|
||
|
T4 = ri[WS(is, 2)];
|
||
|
T5 = ri[WS(is, 9)];
|
||
|
T6 = T4 - T5;
|
||
|
Tq = T4 + T5;
|
||
|
T7 = ri[WS(is, 12)];
|
||
|
T8 = ri[WS(is, 5)];
|
||
|
T9 = T7 - T8;
|
||
|
Tr = T7 + T8;
|
||
|
}
|
||
|
Ta = T6 + T9;
|
||
|
T1q = Tr - Tq;
|
||
|
Ts = Tq + Tr;
|
||
|
T10 = T9 - T6;
|
||
|
}
|
||
|
{
|
||
|
E TC, T1g, TF, T1h;
|
||
|
{
|
||
|
E TA, TB, TD, TE;
|
||
|
TA = ii[WS(is, 2)];
|
||
|
TB = ii[WS(is, 9)];
|
||
|
TC = TA - TB;
|
||
|
T1g = TA + TB;
|
||
|
TD = ii[WS(is, 12)];
|
||
|
TE = ii[WS(is, 5)];
|
||
|
TF = TD - TE;
|
||
|
T1h = TD + TE;
|
||
|
}
|
||
|
TG = TC - TF;
|
||
|
T1z = T1g - T1h;
|
||
|
T19 = TC + TF;
|
||
|
T1i = T1g + T1h;
|
||
|
}
|
||
|
{
|
||
|
E Td, Tt, Tg, Tu;
|
||
|
{
|
||
|
E Tb, Tc, Te, Tf;
|
||
|
Tb = ri[WS(is, 4)];
|
||
|
Tc = ri[WS(is, 11)];
|
||
|
Td = Tb - Tc;
|
||
|
Tt = Tb + Tc;
|
||
|
Te = ri[WS(is, 10)];
|
||
|
Tf = ri[WS(is, 3)];
|
||
|
Tg = Te - Tf;
|
||
|
Tu = Te + Tf;
|
||
|
}
|
||
|
Th = Td + Tg;
|
||
|
T1s = Tt - Tu;
|
||
|
Tv = Tt + Tu;
|
||
|
T12 = Tg - Td;
|
||
|
}
|
||
|
{
|
||
|
E TQ, T1m, TT, T1n;
|
||
|
{
|
||
|
E TO, TP, TR, TS;
|
||
|
TO = ii[WS(is, 4)];
|
||
|
TP = ii[WS(is, 11)];
|
||
|
TQ = TO - TP;
|
||
|
T1m = TO + TP;
|
||
|
TR = ii[WS(is, 10)];
|
||
|
TS = ii[WS(is, 3)];
|
||
|
TT = TR - TS;
|
||
|
T1n = TR + TS;
|
||
|
}
|
||
|
TU = TQ - TT;
|
||
|
T1B = T1n - T1m;
|
||
|
T17 = TQ + TT;
|
||
|
T1o = T1m + T1n;
|
||
|
}
|
||
|
{
|
||
|
E Tk, Tw, Tn, Tx;
|
||
|
{
|
||
|
E Ti, Tj, Tl, Tm;
|
||
|
Ti = ri[WS(is, 6)];
|
||
|
Tj = ri[WS(is, 13)];
|
||
|
Tk = Ti - Tj;
|
||
|
Tw = Ti + Tj;
|
||
|
Tl = ri[WS(is, 8)];
|
||
|
Tm = ri[WS(is, 1)];
|
||
|
Tn = Tl - Tm;
|
||
|
Tx = Tl + Tm;
|
||
|
}
|
||
|
To = Tk + Tn;
|
||
|
T1r = Tw - Tx;
|
||
|
Ty = Tw + Tx;
|
||
|
T11 = Tn - Tk;
|
||
|
}
|
||
|
{
|
||
|
E TJ, T1j, TM, T1k;
|
||
|
{
|
||
|
E TH, TI, TK, TL;
|
||
|
TH = ii[WS(is, 6)];
|
||
|
TI = ii[WS(is, 13)];
|
||
|
TJ = TH - TI;
|
||
|
T1j = TH + TI;
|
||
|
TK = ii[WS(is, 8)];
|
||
|
TL = ii[WS(is, 1)];
|
||
|
TM = TK - TL;
|
||
|
T1k = TK + TL;
|
||
|
}
|
||
|
TN = TJ - TM;
|
||
|
T1A = T1k - T1j;
|
||
|
T18 = TJ + TM;
|
||
|
T1l = T1j + T1k;
|
||
|
}
|
||
|
ro[WS(os, 7)] = T3 + Ta + Th + To;
|
||
|
io[WS(os, 7)] = T16 + T19 + T17 + T18;
|
||
|
ro[0] = Tp + Ts + Tv + Ty;
|
||
|
io[0] = T1f + T1i + T1o + T1l;
|
||
|
{
|
||
|
E TV, Tz, T1e, T1d;
|
||
|
TV = FNMS(KP781831482, TN, KP974927912 * TG) - (KP433883739 * TU);
|
||
|
Tz = FMA(KP623489801, To, T3) + FNMA(KP900968867, Th, KP222520933 * Ta);
|
||
|
ro[WS(os, 5)] = Tz - TV;
|
||
|
ro[WS(os, 9)] = Tz + TV;
|
||
|
T1e = FNMS(KP781831482, T11, KP974927912 * T10) - (KP433883739 * T12);
|
||
|
T1d = FMA(KP623489801, T18, T16) + FNMA(KP900968867, T17, KP222520933 * T19);
|
||
|
io[WS(os, 5)] = T1d - T1e;
|
||
|
io[WS(os, 9)] = T1e + T1d;
|
||
|
}
|
||
|
{
|
||
|
E TX, TW, T1b, T1c;
|
||
|
TX = FMA(KP781831482, TG, KP974927912 * TU) + (KP433883739 * TN);
|
||
|
TW = FMA(KP623489801, Ta, T3) + FNMA(KP900968867, To, KP222520933 * Th);
|
||
|
ro[WS(os, 13)] = TW - TX;
|
||
|
ro[WS(os, 1)] = TW + TX;
|
||
|
T1b = FMA(KP781831482, T10, KP974927912 * T12) + (KP433883739 * T11);
|
||
|
T1c = FMA(KP623489801, T19, T16) + FNMA(KP900968867, T18, KP222520933 * T17);
|
||
|
io[WS(os, 1)] = T1b + T1c;
|
||
|
io[WS(os, 13)] = T1c - T1b;
|
||
|
}
|
||
|
{
|
||
|
E TZ, TY, T13, T1a;
|
||
|
TZ = FMA(KP433883739, TG, KP974927912 * TN) - (KP781831482 * TU);
|
||
|
TY = FMA(KP623489801, Th, T3) + FNMA(KP222520933, To, KP900968867 * Ta);
|
||
|
ro[WS(os, 11)] = TY - TZ;
|
||
|
ro[WS(os, 3)] = TY + TZ;
|
||
|
T13 = FMA(KP433883739, T10, KP974927912 * T11) - (KP781831482 * T12);
|
||
|
T1a = FMA(KP623489801, T17, T16) + FNMA(KP222520933, T18, KP900968867 * T19);
|
||
|
io[WS(os, 3)] = T13 + T1a;
|
||
|
io[WS(os, 11)] = T1a - T13;
|
||
|
}
|
||
|
{
|
||
|
E T1t, T1p, T1C, T1y;
|
||
|
T1t = FNMS(KP433883739, T1r, KP781831482 * T1q) - (KP974927912 * T1s);
|
||
|
T1p = FMA(KP623489801, T1i, T1f) + FNMA(KP900968867, T1l, KP222520933 * T1o);
|
||
|
io[WS(os, 6)] = T1p - T1t;
|
||
|
io[WS(os, 8)] = T1t + T1p;
|
||
|
T1C = FNMS(KP433883739, T1A, KP781831482 * T1z) - (KP974927912 * T1B);
|
||
|
T1y = FMA(KP623489801, Ts, Tp) + FNMA(KP900968867, Ty, KP222520933 * Tv);
|
||
|
ro[WS(os, 6)] = T1y - T1C;
|
||
|
ro[WS(os, 8)] = T1y + T1C;
|
||
|
}
|
||
|
{
|
||
|
E T1v, T1u, T1E, T1D;
|
||
|
T1v = FMA(KP433883739, T1q, KP781831482 * T1s) - (KP974927912 * T1r);
|
||
|
T1u = FMA(KP623489801, T1o, T1f) + FNMA(KP222520933, T1l, KP900968867 * T1i);
|
||
|
io[WS(os, 4)] = T1u - T1v;
|
||
|
io[WS(os, 10)] = T1v + T1u;
|
||
|
T1E = FMA(KP433883739, T1z, KP781831482 * T1B) - (KP974927912 * T1A);
|
||
|
T1D = FMA(KP623489801, Tv, Tp) + FNMA(KP222520933, Ty, KP900968867 * Ts);
|
||
|
ro[WS(os, 4)] = T1D - T1E;
|
||
|
ro[WS(os, 10)] = T1D + T1E;
|
||
|
}
|
||
|
{
|
||
|
E T1w, T1x, T1G, T1F;
|
||
|
T1w = FMA(KP974927912, T1q, KP433883739 * T1s) + (KP781831482 * T1r);
|
||
|
T1x = FMA(KP623489801, T1l, T1f) + FNMA(KP900968867, T1o, KP222520933 * T1i);
|
||
|
io[WS(os, 2)] = T1w + T1x;
|
||
|
io[WS(os, 12)] = T1x - T1w;
|
||
|
T1G = FMA(KP974927912, T1z, KP433883739 * T1B) + (KP781831482 * T1A);
|
||
|
T1F = FMA(KP623489801, Ty, Tp) + FNMA(KP900968867, Tv, KP222520933 * Ts);
|
||
|
ro[WS(os, 12)] = T1F - T1G;
|
||
|
ro[WS(os, 2)] = T1F + T1G;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const kdft_desc desc = { 14, "n1_14", { 100, 24, 48, 0 }, &GENUS, 0, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_n1_14) (planner *p) { X(kdft_register) (p, n1_14, &desc);
|
||
|
}
|
||
|
|
||
|
#endif
|