mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-24 21:45:12 +00:00
153 lines
4 KiB
OCaml
153 lines
4 KiB
OCaml
|
(*
|
||
|
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*)
|
||
|
|
||
|
(* trigonometric transforms *)
|
||
|
open Util
|
||
|
|
||
|
(* DFT of real input *)
|
||
|
let rdft sign n input =
|
||
|
Fft.dft sign n (Complex.real @@ input)
|
||
|
|
||
|
(* DFT of hermitian input *)
|
||
|
let hdft sign n input =
|
||
|
Fft.dft sign n (Complex.hermitian n input)
|
||
|
|
||
|
(* DFT real transform of vectors of two real numbers,
|
||
|
multiplication by (NaN I), and summation *)
|
||
|
let dft_via_rdft sign n input =
|
||
|
let f = rdft sign n input
|
||
|
in fun i ->
|
||
|
Complex.plus
|
||
|
[Complex.real (f i);
|
||
|
Complex.times (Complex.nan Expr.I) (Complex.imag (f i))]
|
||
|
|
||
|
(* Discrete Hartley Transform *)
|
||
|
let dht sign n input =
|
||
|
let f = Fft.dft sign n (Complex.real @@ input) in
|
||
|
(fun i ->
|
||
|
Complex.plus [Complex.real (f i); Complex.imag (f i)])
|
||
|
|
||
|
let trigI n input =
|
||
|
let twon = 2 * n in
|
||
|
let input' = Complex.hermitian twon input
|
||
|
in
|
||
|
Fft.dft 1 twon input'
|
||
|
|
||
|
let interleave_zero input = fun i ->
|
||
|
if (i mod 2) == 0
|
||
|
then Complex.zero
|
||
|
else
|
||
|
input ((i - 1) / 2)
|
||
|
|
||
|
let trigII n input =
|
||
|
let fourn = 4 * n in
|
||
|
let input' = Complex.hermitian fourn (interleave_zero input)
|
||
|
in
|
||
|
Fft.dft 1 fourn input'
|
||
|
|
||
|
let trigIII n input =
|
||
|
let fourn = 4 * n in
|
||
|
let twon = 2 * n in
|
||
|
let input' = Complex.hermitian fourn
|
||
|
(fun i ->
|
||
|
if (i == 0) then
|
||
|
Complex.real (input 0)
|
||
|
else if (i == twon) then
|
||
|
Complex.uminus (Complex.real (input 0))
|
||
|
else
|
||
|
Complex.antihermitian twon input i)
|
||
|
in
|
||
|
let dft = Fft.dft 1 fourn input'
|
||
|
in fun k -> dft (2 * k + 1)
|
||
|
|
||
|
let zero_extend n input = fun i ->
|
||
|
if (i >= 0 && i < n)
|
||
|
then input i
|
||
|
else Complex.zero
|
||
|
|
||
|
let trigIV n input =
|
||
|
let fourn = 4 * n
|
||
|
and eightn = 8 * n in
|
||
|
let input' = Complex.hermitian eightn
|
||
|
(zero_extend fourn (Complex.antihermitian fourn
|
||
|
(interleave_zero input)))
|
||
|
in
|
||
|
let dft = Fft.dft 1 eightn input'
|
||
|
in fun k -> dft (2 * k + 1)
|
||
|
|
||
|
let make_dct scale nshift trig =
|
||
|
fun n input ->
|
||
|
trig (n - nshift) (Complex.real @@ (Complex.times scale) @@
|
||
|
(zero_extend n input))
|
||
|
(*
|
||
|
* DCT-I: y[k] = sum x[j] cos(pi * j * k / n)
|
||
|
*)
|
||
|
let dctI = make_dct Complex.one 1 trigI
|
||
|
|
||
|
(*
|
||
|
* DCT-II: y[k] = sum x[j] cos(pi * (j + 1/2) * k / n)
|
||
|
*)
|
||
|
let dctII = make_dct Complex.one 0 trigII
|
||
|
|
||
|
(*
|
||
|
* DCT-III: y[k] = sum x[j] cos(pi * j * (k + 1/2) / n)
|
||
|
*)
|
||
|
let dctIII = make_dct Complex.half 0 trigIII
|
||
|
|
||
|
(*
|
||
|
* DCT-IV y[k] = sum x[j] cos(pi * (j + 1/2) * (k + 1/2) / n)
|
||
|
*)
|
||
|
let dctIV = make_dct Complex.half 0 trigIV
|
||
|
|
||
|
let shift s input = fun i -> input (i - s)
|
||
|
|
||
|
(* DST-x input := TRIG-x (input / i) *)
|
||
|
let make_dst scale nshift kshift jshift trig =
|
||
|
fun n input ->
|
||
|
Complex.real @@
|
||
|
(shift (- jshift)
|
||
|
(trig (n + nshift) (Complex.uminus @@
|
||
|
(Complex.times Complex.i) @@
|
||
|
(Complex.times scale) @@
|
||
|
Complex.real @@
|
||
|
(shift kshift (zero_extend n input)))))
|
||
|
|
||
|
(*
|
||
|
* DST-I: y[k] = sum x[j] sin(pi * j * k / n)
|
||
|
*)
|
||
|
let dstI = make_dst Complex.one 1 1 1 trigI
|
||
|
|
||
|
(*
|
||
|
* DST-II: y[k] = sum x[j] sin(pi * (j + 1/2) * k / n)
|
||
|
*)
|
||
|
let dstII = make_dst Complex.one 0 0 1 trigII
|
||
|
|
||
|
(*
|
||
|
* DST-III: y[k] = sum x[j] sin(pi * j * (k + 1/2) / n)
|
||
|
*)
|
||
|
let dstIII = make_dst Complex.half 0 1 0 trigIII
|
||
|
|
||
|
(*
|
||
|
* DST-IV y[k] = sum x[j] sin(pi * (j + 1/2) * (k + 1/2) / n)
|
||
|
*)
|
||
|
let dstIV = make_dst Complex.half 0 0 0 trigIV
|
||
|
|