mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-24 13:35:11 +00:00
797 lines
20 KiB
C
797 lines
20 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:44:28 EDT 2021 */
|
||
|
|
||
|
#include "dft/codelet-dft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -name t1_16 -include dft/scalar/t.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 174 FP additions, 100 FP multiplications,
|
||
|
* (or, 104 additions, 30 multiplications, 70 fused multiply/add),
|
||
|
* 60 stack variables, 3 constants, and 64 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/t.h"
|
||
|
|
||
|
static void t1_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
||
|
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
|
||
|
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + (mb * 30); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) {
|
||
|
E T8, T3z, T1I, T3o, T1s, T35, T2o, T2r, T1F, T36, T2p, T2w, Tl, T3A, T1N;
|
||
|
E T3k, Tz, T2V, T1T, T1U, T11, T30, T29, T2c, T1e, T31, T2a, T2h, TM, T2W;
|
||
|
E T1W, T21;
|
||
|
{
|
||
|
E T1, T3n, T3, T6, T4, T3l, T2, T7, T3m, T5;
|
||
|
T1 = ri[0];
|
||
|
T3n = ii[0];
|
||
|
T3 = ri[WS(rs, 8)];
|
||
|
T6 = ii[WS(rs, 8)];
|
||
|
T2 = W[14];
|
||
|
T4 = T2 * T3;
|
||
|
T3l = T2 * T6;
|
||
|
T5 = W[15];
|
||
|
T7 = FMA(T5, T6, T4);
|
||
|
T3m = FNMS(T5, T3, T3l);
|
||
|
T8 = T1 + T7;
|
||
|
T3z = T3n - T3m;
|
||
|
T1I = T1 - T7;
|
||
|
T3o = T3m + T3n;
|
||
|
}
|
||
|
{
|
||
|
E T1h, T1k, T1i, T2k, T1n, T1q, T1o, T2m, T1g, T1m;
|
||
|
T1h = ri[WS(rs, 15)];
|
||
|
T1k = ii[WS(rs, 15)];
|
||
|
T1g = W[28];
|
||
|
T1i = T1g * T1h;
|
||
|
T2k = T1g * T1k;
|
||
|
T1n = ri[WS(rs, 7)];
|
||
|
T1q = ii[WS(rs, 7)];
|
||
|
T1m = W[12];
|
||
|
T1o = T1m * T1n;
|
||
|
T2m = T1m * T1q;
|
||
|
{
|
||
|
E T1l, T2l, T1r, T2n, T1j, T1p;
|
||
|
T1j = W[29];
|
||
|
T1l = FMA(T1j, T1k, T1i);
|
||
|
T2l = FNMS(T1j, T1h, T2k);
|
||
|
T1p = W[13];
|
||
|
T1r = FMA(T1p, T1q, T1o);
|
||
|
T2n = FNMS(T1p, T1n, T2m);
|
||
|
T1s = T1l + T1r;
|
||
|
T35 = T2l + T2n;
|
||
|
T2o = T2l - T2n;
|
||
|
T2r = T1l - T1r;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1u, T1x, T1v, T2s, T1A, T1D, T1B, T2u, T1t, T1z;
|
||
|
T1u = ri[WS(rs, 3)];
|
||
|
T1x = ii[WS(rs, 3)];
|
||
|
T1t = W[4];
|
||
|
T1v = T1t * T1u;
|
||
|
T2s = T1t * T1x;
|
||
|
T1A = ri[WS(rs, 11)];
|
||
|
T1D = ii[WS(rs, 11)];
|
||
|
T1z = W[20];
|
||
|
T1B = T1z * T1A;
|
||
|
T2u = T1z * T1D;
|
||
|
{
|
||
|
E T1y, T2t, T1E, T2v, T1w, T1C;
|
||
|
T1w = W[5];
|
||
|
T1y = FMA(T1w, T1x, T1v);
|
||
|
T2t = FNMS(T1w, T1u, T2s);
|
||
|
T1C = W[21];
|
||
|
T1E = FMA(T1C, T1D, T1B);
|
||
|
T2v = FNMS(T1C, T1A, T2u);
|
||
|
T1F = T1y + T1E;
|
||
|
T36 = T2t + T2v;
|
||
|
T2p = T1y - T1E;
|
||
|
T2w = T2t - T2v;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Ta, Td, Tb, T1J, Tg, Tj, Th, T1L, T9, Tf;
|
||
|
Ta = ri[WS(rs, 4)];
|
||
|
Td = ii[WS(rs, 4)];
|
||
|
T9 = W[6];
|
||
|
Tb = T9 * Ta;
|
||
|
T1J = T9 * Td;
|
||
|
Tg = ri[WS(rs, 12)];
|
||
|
Tj = ii[WS(rs, 12)];
|
||
|
Tf = W[22];
|
||
|
Th = Tf * Tg;
|
||
|
T1L = Tf * Tj;
|
||
|
{
|
||
|
E Te, T1K, Tk, T1M, Tc, Ti;
|
||
|
Tc = W[7];
|
||
|
Te = FMA(Tc, Td, Tb);
|
||
|
T1K = FNMS(Tc, Ta, T1J);
|
||
|
Ti = W[23];
|
||
|
Tk = FMA(Ti, Tj, Th);
|
||
|
T1M = FNMS(Ti, Tg, T1L);
|
||
|
Tl = Te + Tk;
|
||
|
T3A = Te - Tk;
|
||
|
T1N = T1K - T1M;
|
||
|
T3k = T1K + T1M;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E To, Tr, Tp, T1P, Tu, Tx, Tv, T1R, Tn, Tt;
|
||
|
To = ri[WS(rs, 2)];
|
||
|
Tr = ii[WS(rs, 2)];
|
||
|
Tn = W[2];
|
||
|
Tp = Tn * To;
|
||
|
T1P = Tn * Tr;
|
||
|
Tu = ri[WS(rs, 10)];
|
||
|
Tx = ii[WS(rs, 10)];
|
||
|
Tt = W[18];
|
||
|
Tv = Tt * Tu;
|
||
|
T1R = Tt * Tx;
|
||
|
{
|
||
|
E Ts, T1Q, Ty, T1S, Tq, Tw;
|
||
|
Tq = W[3];
|
||
|
Ts = FMA(Tq, Tr, Tp);
|
||
|
T1Q = FNMS(Tq, To, T1P);
|
||
|
Tw = W[19];
|
||
|
Ty = FMA(Tw, Tx, Tv);
|
||
|
T1S = FNMS(Tw, Tu, T1R);
|
||
|
Tz = Ts + Ty;
|
||
|
T2V = T1Q + T1S;
|
||
|
T1T = T1Q - T1S;
|
||
|
T1U = Ts - Ty;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E TQ, TT, TR, T25, TW, TZ, TX, T27, TP, TV;
|
||
|
TQ = ri[WS(rs, 1)];
|
||
|
TT = ii[WS(rs, 1)];
|
||
|
TP = W[0];
|
||
|
TR = TP * TQ;
|
||
|
T25 = TP * TT;
|
||
|
TW = ri[WS(rs, 9)];
|
||
|
TZ = ii[WS(rs, 9)];
|
||
|
TV = W[16];
|
||
|
TX = TV * TW;
|
||
|
T27 = TV * TZ;
|
||
|
{
|
||
|
E TU, T26, T10, T28, TS, TY;
|
||
|
TS = W[1];
|
||
|
TU = FMA(TS, TT, TR);
|
||
|
T26 = FNMS(TS, TQ, T25);
|
||
|
TY = W[17];
|
||
|
T10 = FMA(TY, TZ, TX);
|
||
|
T28 = FNMS(TY, TW, T27);
|
||
|
T11 = TU + T10;
|
||
|
T30 = T26 + T28;
|
||
|
T29 = T26 - T28;
|
||
|
T2c = TU - T10;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T13, T16, T14, T2d, T19, T1c, T1a, T2f, T12, T18;
|
||
|
T13 = ri[WS(rs, 5)];
|
||
|
T16 = ii[WS(rs, 5)];
|
||
|
T12 = W[8];
|
||
|
T14 = T12 * T13;
|
||
|
T2d = T12 * T16;
|
||
|
T19 = ri[WS(rs, 13)];
|
||
|
T1c = ii[WS(rs, 13)];
|
||
|
T18 = W[24];
|
||
|
T1a = T18 * T19;
|
||
|
T2f = T18 * T1c;
|
||
|
{
|
||
|
E T17, T2e, T1d, T2g, T15, T1b;
|
||
|
T15 = W[9];
|
||
|
T17 = FMA(T15, T16, T14);
|
||
|
T2e = FNMS(T15, T13, T2d);
|
||
|
T1b = W[25];
|
||
|
T1d = FMA(T1b, T1c, T1a);
|
||
|
T2g = FNMS(T1b, T19, T2f);
|
||
|
T1e = T17 + T1d;
|
||
|
T31 = T2e + T2g;
|
||
|
T2a = T17 - T1d;
|
||
|
T2h = T2e - T2g;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E TB, TE, TC, T1X, TH, TK, TI, T1Z, TA, TG;
|
||
|
TB = ri[WS(rs, 14)];
|
||
|
TE = ii[WS(rs, 14)];
|
||
|
TA = W[26];
|
||
|
TC = TA * TB;
|
||
|
T1X = TA * TE;
|
||
|
TH = ri[WS(rs, 6)];
|
||
|
TK = ii[WS(rs, 6)];
|
||
|
TG = W[10];
|
||
|
TI = TG * TH;
|
||
|
T1Z = TG * TK;
|
||
|
{
|
||
|
E TF, T1Y, TL, T20, TD, TJ;
|
||
|
TD = W[27];
|
||
|
TF = FMA(TD, TE, TC);
|
||
|
T1Y = FNMS(TD, TB, T1X);
|
||
|
TJ = W[11];
|
||
|
TL = FMA(TJ, TK, TI);
|
||
|
T20 = FNMS(TJ, TH, T1Z);
|
||
|
TM = TF + TL;
|
||
|
T2W = T1Y + T20;
|
||
|
T1W = TF - TL;
|
||
|
T21 = T1Y - T20;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E TO, T3e, T3q, T3s, T1H, T3r, T3h, T3i;
|
||
|
{
|
||
|
E Tm, TN, T3j, T3p;
|
||
|
Tm = T8 + Tl;
|
||
|
TN = Tz + TM;
|
||
|
TO = Tm + TN;
|
||
|
T3e = Tm - TN;
|
||
|
T3j = T2V + T2W;
|
||
|
T3p = T3k + T3o;
|
||
|
T3q = T3j + T3p;
|
||
|
T3s = T3p - T3j;
|
||
|
}
|
||
|
{
|
||
|
E T1f, T1G, T3f, T3g;
|
||
|
T1f = T11 + T1e;
|
||
|
T1G = T1s + T1F;
|
||
|
T1H = T1f + T1G;
|
||
|
T3r = T1G - T1f;
|
||
|
T3f = T30 + T31;
|
||
|
T3g = T35 + T36;
|
||
|
T3h = T3f - T3g;
|
||
|
T3i = T3f + T3g;
|
||
|
}
|
||
|
ri[WS(rs, 8)] = TO - T1H;
|
||
|
ii[WS(rs, 8)] = T3q - T3i;
|
||
|
ri[0] = TO + T1H;
|
||
|
ii[0] = T3i + T3q;
|
||
|
ri[WS(rs, 12)] = T3e - T3h;
|
||
|
ii[WS(rs, 12)] = T3s - T3r;
|
||
|
ri[WS(rs, 4)] = T3e + T3h;
|
||
|
ii[WS(rs, 4)] = T3r + T3s;
|
||
|
}
|
||
|
{
|
||
|
E T2Y, T3a, T3v, T3x, T33, T3b, T38, T3c;
|
||
|
{
|
||
|
E T2U, T2X, T3t, T3u;
|
||
|
T2U = T8 - Tl;
|
||
|
T2X = T2V - T2W;
|
||
|
T2Y = T2U + T2X;
|
||
|
T3a = T2U - T2X;
|
||
|
T3t = TM - Tz;
|
||
|
T3u = T3o - T3k;
|
||
|
T3v = T3t + T3u;
|
||
|
T3x = T3u - T3t;
|
||
|
}
|
||
|
{
|
||
|
E T2Z, T32, T34, T37;
|
||
|
T2Z = T11 - T1e;
|
||
|
T32 = T30 - T31;
|
||
|
T33 = T2Z + T32;
|
||
|
T3b = T32 - T2Z;
|
||
|
T34 = T1s - T1F;
|
||
|
T37 = T35 - T36;
|
||
|
T38 = T34 - T37;
|
||
|
T3c = T34 + T37;
|
||
|
}
|
||
|
{
|
||
|
E T39, T3w, T3d, T3y;
|
||
|
T39 = T33 + T38;
|
||
|
ri[WS(rs, 10)] = FNMS(KP707106781, T39, T2Y);
|
||
|
ri[WS(rs, 2)] = FMA(KP707106781, T39, T2Y);
|
||
|
T3w = T3b + T3c;
|
||
|
ii[WS(rs, 2)] = FMA(KP707106781, T3w, T3v);
|
||
|
ii[WS(rs, 10)] = FNMS(KP707106781, T3w, T3v);
|
||
|
T3d = T3b - T3c;
|
||
|
ri[WS(rs, 14)] = FNMS(KP707106781, T3d, T3a);
|
||
|
ri[WS(rs, 6)] = FMA(KP707106781, T3d, T3a);
|
||
|
T3y = T38 - T33;
|
||
|
ii[WS(rs, 6)] = FMA(KP707106781, T3y, T3x);
|
||
|
ii[WS(rs, 14)] = FNMS(KP707106781, T3y, T3x);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1O, T3B, T3H, T2E, T23, T3C, T2O, T2S, T2H, T3I, T2j, T2B, T2L, T2R, T2y;
|
||
|
E T2C;
|
||
|
{
|
||
|
E T1V, T22, T2b, T2i;
|
||
|
T1O = T1I - T1N;
|
||
|
T3B = T3z - T3A;
|
||
|
T3H = T3A + T3z;
|
||
|
T2E = T1I + T1N;
|
||
|
T1V = T1T - T1U;
|
||
|
T22 = T1W + T21;
|
||
|
T23 = T1V - T22;
|
||
|
T3C = T1V + T22;
|
||
|
{
|
||
|
E T2M, T2N, T2F, T2G;
|
||
|
T2M = T2r + T2w;
|
||
|
T2N = T2o - T2p;
|
||
|
T2O = FNMS(KP414213562, T2N, T2M);
|
||
|
T2S = FMA(KP414213562, T2M, T2N);
|
||
|
T2F = T1U + T1T;
|
||
|
T2G = T1W - T21;
|
||
|
T2H = T2F + T2G;
|
||
|
T3I = T2G - T2F;
|
||
|
}
|
||
|
T2b = T29 + T2a;
|
||
|
T2i = T2c - T2h;
|
||
|
T2j = FMA(KP414213562, T2i, T2b);
|
||
|
T2B = FNMS(KP414213562, T2b, T2i);
|
||
|
{
|
||
|
E T2J, T2K, T2q, T2x;
|
||
|
T2J = T2c + T2h;
|
||
|
T2K = T29 - T2a;
|
||
|
T2L = FMA(KP414213562, T2K, T2J);
|
||
|
T2R = FNMS(KP414213562, T2J, T2K);
|
||
|
T2q = T2o + T2p;
|
||
|
T2x = T2r - T2w;
|
||
|
T2y = FNMS(KP414213562, T2x, T2q);
|
||
|
T2C = FMA(KP414213562, T2q, T2x);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T24, T2z, T3J, T3K;
|
||
|
T24 = FMA(KP707106781, T23, T1O);
|
||
|
T2z = T2j - T2y;
|
||
|
ri[WS(rs, 11)] = FNMS(KP923879532, T2z, T24);
|
||
|
ri[WS(rs, 3)] = FMA(KP923879532, T2z, T24);
|
||
|
T3J = FMA(KP707106781, T3I, T3H);
|
||
|
T3K = T2C - T2B;
|
||
|
ii[WS(rs, 3)] = FMA(KP923879532, T3K, T3J);
|
||
|
ii[WS(rs, 11)] = FNMS(KP923879532, T3K, T3J);
|
||
|
}
|
||
|
{
|
||
|
E T2A, T2D, T3L, T3M;
|
||
|
T2A = FNMS(KP707106781, T23, T1O);
|
||
|
T2D = T2B + T2C;
|
||
|
ri[WS(rs, 7)] = FNMS(KP923879532, T2D, T2A);
|
||
|
ri[WS(rs, 15)] = FMA(KP923879532, T2D, T2A);
|
||
|
T3L = FNMS(KP707106781, T3I, T3H);
|
||
|
T3M = T2j + T2y;
|
||
|
ii[WS(rs, 7)] = FNMS(KP923879532, T3M, T3L);
|
||
|
ii[WS(rs, 15)] = FMA(KP923879532, T3M, T3L);
|
||
|
}
|
||
|
{
|
||
|
E T2I, T2P, T3D, T3E;
|
||
|
T2I = FMA(KP707106781, T2H, T2E);
|
||
|
T2P = T2L + T2O;
|
||
|
ri[WS(rs, 9)] = FNMS(KP923879532, T2P, T2I);
|
||
|
ri[WS(rs, 1)] = FMA(KP923879532, T2P, T2I);
|
||
|
T3D = FMA(KP707106781, T3C, T3B);
|
||
|
T3E = T2R + T2S;
|
||
|
ii[WS(rs, 1)] = FMA(KP923879532, T3E, T3D);
|
||
|
ii[WS(rs, 9)] = FNMS(KP923879532, T3E, T3D);
|
||
|
}
|
||
|
{
|
||
|
E T2Q, T2T, T3F, T3G;
|
||
|
T2Q = FNMS(KP707106781, T2H, T2E);
|
||
|
T2T = T2R - T2S;
|
||
|
ri[WS(rs, 13)] = FNMS(KP923879532, T2T, T2Q);
|
||
|
ri[WS(rs, 5)] = FMA(KP923879532, T2T, T2Q);
|
||
|
T3F = FNMS(KP707106781, T3C, T3B);
|
||
|
T3G = T2O - T2L;
|
||
|
ii[WS(rs, 5)] = FMA(KP923879532, T3G, T3F);
|
||
|
ii[WS(rs, 13)] = FNMS(KP923879532, T3G, T3F);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 0, 16 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 16, "t1_16", twinstr, &GENUS, { 104, 30, 70, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_t1_16) (planner *p) {
|
||
|
X(kdft_dit_register) (p, t1_16, &desc);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 16 -name t1_16 -include dft/scalar/t.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 174 FP additions, 84 FP multiplications,
|
||
|
* (or, 136 additions, 46 multiplications, 38 fused multiply/add),
|
||
|
* 52 stack variables, 3 constants, and 64 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/t.h"
|
||
|
|
||
|
static void t1_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP382683432, +0.382683432365089771728459984030398866761344562);
|
||
|
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
||
|
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + (mb * 30); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) {
|
||
|
E T7, T37, T1t, T2U, Ti, T38, T1w, T2R, Tu, T2s, T1C, T2c, TF, T2t, T1H;
|
||
|
E T2d, T1f, T1q, T2B, T2C, T2D, T2E, T1Z, T2j, T24, T2k, TS, T13, T2w, T2x;
|
||
|
E T2y, T2z, T1O, T2g, T1T, T2h;
|
||
|
{
|
||
|
E T1, T2T, T6, T2S;
|
||
|
T1 = ri[0];
|
||
|
T2T = ii[0];
|
||
|
{
|
||
|
E T3, T5, T2, T4;
|
||
|
T3 = ri[WS(rs, 8)];
|
||
|
T5 = ii[WS(rs, 8)];
|
||
|
T2 = W[14];
|
||
|
T4 = W[15];
|
||
|
T6 = FMA(T2, T3, T4 * T5);
|
||
|
T2S = FNMS(T4, T3, T2 * T5);
|
||
|
}
|
||
|
T7 = T1 + T6;
|
||
|
T37 = T2T - T2S;
|
||
|
T1t = T1 - T6;
|
||
|
T2U = T2S + T2T;
|
||
|
}
|
||
|
{
|
||
|
E Tc, T1u, Th, T1v;
|
||
|
{
|
||
|
E T9, Tb, T8, Ta;
|
||
|
T9 = ri[WS(rs, 4)];
|
||
|
Tb = ii[WS(rs, 4)];
|
||
|
T8 = W[6];
|
||
|
Ta = W[7];
|
||
|
Tc = FMA(T8, T9, Ta * Tb);
|
||
|
T1u = FNMS(Ta, T9, T8 * Tb);
|
||
|
}
|
||
|
{
|
||
|
E Te, Tg, Td, Tf;
|
||
|
Te = ri[WS(rs, 12)];
|
||
|
Tg = ii[WS(rs, 12)];
|
||
|
Td = W[22];
|
||
|
Tf = W[23];
|
||
|
Th = FMA(Td, Te, Tf * Tg);
|
||
|
T1v = FNMS(Tf, Te, Td * Tg);
|
||
|
}
|
||
|
Ti = Tc + Th;
|
||
|
T38 = Tc - Th;
|
||
|
T1w = T1u - T1v;
|
||
|
T2R = T1u + T1v;
|
||
|
}
|
||
|
{
|
||
|
E To, T1y, Tt, T1z, T1A, T1B;
|
||
|
{
|
||
|
E Tl, Tn, Tk, Tm;
|
||
|
Tl = ri[WS(rs, 2)];
|
||
|
Tn = ii[WS(rs, 2)];
|
||
|
Tk = W[2];
|
||
|
Tm = W[3];
|
||
|
To = FMA(Tk, Tl, Tm * Tn);
|
||
|
T1y = FNMS(Tm, Tl, Tk * Tn);
|
||
|
}
|
||
|
{
|
||
|
E Tq, Ts, Tp, Tr;
|
||
|
Tq = ri[WS(rs, 10)];
|
||
|
Ts = ii[WS(rs, 10)];
|
||
|
Tp = W[18];
|
||
|
Tr = W[19];
|
||
|
Tt = FMA(Tp, Tq, Tr * Ts);
|
||
|
T1z = FNMS(Tr, Tq, Tp * Ts);
|
||
|
}
|
||
|
Tu = To + Tt;
|
||
|
T2s = T1y + T1z;
|
||
|
T1A = T1y - T1z;
|
||
|
T1B = To - Tt;
|
||
|
T1C = T1A - T1B;
|
||
|
T2c = T1B + T1A;
|
||
|
}
|
||
|
{
|
||
|
E Tz, T1E, TE, T1F, T1D, T1G;
|
||
|
{
|
||
|
E Tw, Ty, Tv, Tx;
|
||
|
Tw = ri[WS(rs, 14)];
|
||
|
Ty = ii[WS(rs, 14)];
|
||
|
Tv = W[26];
|
||
|
Tx = W[27];
|
||
|
Tz = FMA(Tv, Tw, Tx * Ty);
|
||
|
T1E = FNMS(Tx, Tw, Tv * Ty);
|
||
|
}
|
||
|
{
|
||
|
E TB, TD, TA, TC;
|
||
|
TB = ri[WS(rs, 6)];
|
||
|
TD = ii[WS(rs, 6)];
|
||
|
TA = W[10];
|
||
|
TC = W[11];
|
||
|
TE = FMA(TA, TB, TC * TD);
|
||
|
T1F = FNMS(TC, TB, TA * TD);
|
||
|
}
|
||
|
TF = Tz + TE;
|
||
|
T2t = T1E + T1F;
|
||
|
T1D = Tz - TE;
|
||
|
T1G = T1E - T1F;
|
||
|
T1H = T1D + T1G;
|
||
|
T2d = T1D - T1G;
|
||
|
}
|
||
|
{
|
||
|
E T19, T20, T1p, T1X, T1e, T21, T1k, T1W;
|
||
|
{
|
||
|
E T16, T18, T15, T17;
|
||
|
T16 = ri[WS(rs, 15)];
|
||
|
T18 = ii[WS(rs, 15)];
|
||
|
T15 = W[28];
|
||
|
T17 = W[29];
|
||
|
T19 = FMA(T15, T16, T17 * T18);
|
||
|
T20 = FNMS(T17, T16, T15 * T18);
|
||
|
}
|
||
|
{
|
||
|
E T1m, T1o, T1l, T1n;
|
||
|
T1m = ri[WS(rs, 11)];
|
||
|
T1o = ii[WS(rs, 11)];
|
||
|
T1l = W[20];
|
||
|
T1n = W[21];
|
||
|
T1p = FMA(T1l, T1m, T1n * T1o);
|
||
|
T1X = FNMS(T1n, T1m, T1l * T1o);
|
||
|
}
|
||
|
{
|
||
|
E T1b, T1d, T1a, T1c;
|
||
|
T1b = ri[WS(rs, 7)];
|
||
|
T1d = ii[WS(rs, 7)];
|
||
|
T1a = W[12];
|
||
|
T1c = W[13];
|
||
|
T1e = FMA(T1a, T1b, T1c * T1d);
|
||
|
T21 = FNMS(T1c, T1b, T1a * T1d);
|
||
|
}
|
||
|
{
|
||
|
E T1h, T1j, T1g, T1i;
|
||
|
T1h = ri[WS(rs, 3)];
|
||
|
T1j = ii[WS(rs, 3)];
|
||
|
T1g = W[4];
|
||
|
T1i = W[5];
|
||
|
T1k = FMA(T1g, T1h, T1i * T1j);
|
||
|
T1W = FNMS(T1i, T1h, T1g * T1j);
|
||
|
}
|
||
|
T1f = T19 + T1e;
|
||
|
T1q = T1k + T1p;
|
||
|
T2B = T1f - T1q;
|
||
|
T2C = T20 + T21;
|
||
|
T2D = T1W + T1X;
|
||
|
T2E = T2C - T2D;
|
||
|
{
|
||
|
E T1V, T1Y, T22, T23;
|
||
|
T1V = T19 - T1e;
|
||
|
T1Y = T1W - T1X;
|
||
|
T1Z = T1V - T1Y;
|
||
|
T2j = T1V + T1Y;
|
||
|
T22 = T20 - T21;
|
||
|
T23 = T1k - T1p;
|
||
|
T24 = T22 + T23;
|
||
|
T2k = T22 - T23;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E TM, T1K, T12, T1R, TR, T1L, TX, T1Q;
|
||
|
{
|
||
|
E TJ, TL, TI, TK;
|
||
|
TJ = ri[WS(rs, 1)];
|
||
|
TL = ii[WS(rs, 1)];
|
||
|
TI = W[0];
|
||
|
TK = W[1];
|
||
|
TM = FMA(TI, TJ, TK * TL);
|
||
|
T1K = FNMS(TK, TJ, TI * TL);
|
||
|
}
|
||
|
{
|
||
|
E TZ, T11, TY, T10;
|
||
|
TZ = ri[WS(rs, 13)];
|
||
|
T11 = ii[WS(rs, 13)];
|
||
|
TY = W[24];
|
||
|
T10 = W[25];
|
||
|
T12 = FMA(TY, TZ, T10 * T11);
|
||
|
T1R = FNMS(T10, TZ, TY * T11);
|
||
|
}
|
||
|
{
|
||
|
E TO, TQ, TN, TP;
|
||
|
TO = ri[WS(rs, 9)];
|
||
|
TQ = ii[WS(rs, 9)];
|
||
|
TN = W[16];
|
||
|
TP = W[17];
|
||
|
TR = FMA(TN, TO, TP * TQ);
|
||
|
T1L = FNMS(TP, TO, TN * TQ);
|
||
|
}
|
||
|
{
|
||
|
E TU, TW, TT, TV;
|
||
|
TU = ri[WS(rs, 5)];
|
||
|
TW = ii[WS(rs, 5)];
|
||
|
TT = W[8];
|
||
|
TV = W[9];
|
||
|
TX = FMA(TT, TU, TV * TW);
|
||
|
T1Q = FNMS(TV, TU, TT * TW);
|
||
|
}
|
||
|
TS = TM + TR;
|
||
|
T13 = TX + T12;
|
||
|
T2w = TS - T13;
|
||
|
T2x = T1K + T1L;
|
||
|
T2y = T1Q + T1R;
|
||
|
T2z = T2x - T2y;
|
||
|
{
|
||
|
E T1M, T1N, T1P, T1S;
|
||
|
T1M = T1K - T1L;
|
||
|
T1N = TX - T12;
|
||
|
T1O = T1M + T1N;
|
||
|
T2g = T1M - T1N;
|
||
|
T1P = TM - TR;
|
||
|
T1S = T1Q - T1R;
|
||
|
T1T = T1P - T1S;
|
||
|
T2h = T1P + T1S;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1J, T27, T3g, T3i, T26, T3h, T2a, T3d;
|
||
|
{
|
||
|
E T1x, T1I, T3e, T3f;
|
||
|
T1x = T1t - T1w;
|
||
|
T1I = KP707106781 * (T1C - T1H);
|
||
|
T1J = T1x + T1I;
|
||
|
T27 = T1x - T1I;
|
||
|
T3e = KP707106781 * (T2d - T2c);
|
||
|
T3f = T38 + T37;
|
||
|
T3g = T3e + T3f;
|
||
|
T3i = T3f - T3e;
|
||
|
}
|
||
|
{
|
||
|
E T1U, T25, T28, T29;
|
||
|
T1U = FMA(KP923879532, T1O, KP382683432 * T1T);
|
||
|
T25 = FNMS(KP923879532, T24, KP382683432 * T1Z);
|
||
|
T26 = T1U + T25;
|
||
|
T3h = T25 - T1U;
|
||
|
T28 = FNMS(KP923879532, T1T, KP382683432 * T1O);
|
||
|
T29 = FMA(KP382683432, T24, KP923879532 * T1Z);
|
||
|
T2a = T28 - T29;
|
||
|
T3d = T28 + T29;
|
||
|
}
|
||
|
ri[WS(rs, 11)] = T1J - T26;
|
||
|
ii[WS(rs, 11)] = T3g - T3d;
|
||
|
ri[WS(rs, 3)] = T1J + T26;
|
||
|
ii[WS(rs, 3)] = T3d + T3g;
|
||
|
ri[WS(rs, 15)] = T27 - T2a;
|
||
|
ii[WS(rs, 15)] = T3i - T3h;
|
||
|
ri[WS(rs, 7)] = T27 + T2a;
|
||
|
ii[WS(rs, 7)] = T3h + T3i;
|
||
|
}
|
||
|
{
|
||
|
E T2v, T2H, T32, T34, T2G, T33, T2K, T2Z;
|
||
|
{
|
||
|
E T2r, T2u, T30, T31;
|
||
|
T2r = T7 - Ti;
|
||
|
T2u = T2s - T2t;
|
||
|
T2v = T2r + T2u;
|
||
|
T2H = T2r - T2u;
|
||
|
T30 = TF - Tu;
|
||
|
T31 = T2U - T2R;
|
||
|
T32 = T30 + T31;
|
||
|
T34 = T31 - T30;
|
||
|
}
|
||
|
{
|
||
|
E T2A, T2F, T2I, T2J;
|
||
|
T2A = T2w + T2z;
|
||
|
T2F = T2B - T2E;
|
||
|
T2G = KP707106781 * (T2A + T2F);
|
||
|
T33 = KP707106781 * (T2F - T2A);
|
||
|
T2I = T2z - T2w;
|
||
|
T2J = T2B + T2E;
|
||
|
T2K = KP707106781 * (T2I - T2J);
|
||
|
T2Z = KP707106781 * (T2I + T2J);
|
||
|
}
|
||
|
ri[WS(rs, 10)] = T2v - T2G;
|
||
|
ii[WS(rs, 10)] = T32 - T2Z;
|
||
|
ri[WS(rs, 2)] = T2v + T2G;
|
||
|
ii[WS(rs, 2)] = T2Z + T32;
|
||
|
ri[WS(rs, 14)] = T2H - T2K;
|
||
|
ii[WS(rs, 14)] = T34 - T33;
|
||
|
ri[WS(rs, 6)] = T2H + T2K;
|
||
|
ii[WS(rs, 6)] = T33 + T34;
|
||
|
}
|
||
|
{
|
||
|
E T2f, T2n, T3a, T3c, T2m, T3b, T2q, T35;
|
||
|
{
|
||
|
E T2b, T2e, T36, T39;
|
||
|
T2b = T1t + T1w;
|
||
|
T2e = KP707106781 * (T2c + T2d);
|
||
|
T2f = T2b + T2e;
|
||
|
T2n = T2b - T2e;
|
||
|
T36 = KP707106781 * (T1C + T1H);
|
||
|
T39 = T37 - T38;
|
||
|
T3a = T36 + T39;
|
||
|
T3c = T39 - T36;
|
||
|
}
|
||
|
{
|
||
|
E T2i, T2l, T2o, T2p;
|
||
|
T2i = FMA(KP382683432, T2g, KP923879532 * T2h);
|
||
|
T2l = FNMS(KP382683432, T2k, KP923879532 * T2j);
|
||
|
T2m = T2i + T2l;
|
||
|
T3b = T2l - T2i;
|
||
|
T2o = FNMS(KP382683432, T2h, KP923879532 * T2g);
|
||
|
T2p = FMA(KP923879532, T2k, KP382683432 * T2j);
|
||
|
T2q = T2o - T2p;
|
||
|
T35 = T2o + T2p;
|
||
|
}
|
||
|
ri[WS(rs, 9)] = T2f - T2m;
|
||
|
ii[WS(rs, 9)] = T3a - T35;
|
||
|
ri[WS(rs, 1)] = T2f + T2m;
|
||
|
ii[WS(rs, 1)] = T35 + T3a;
|
||
|
ri[WS(rs, 13)] = T2n - T2q;
|
||
|
ii[WS(rs, 13)] = T3c - T3b;
|
||
|
ri[WS(rs, 5)] = T2n + T2q;
|
||
|
ii[WS(rs, 5)] = T3b + T3c;
|
||
|
}
|
||
|
{
|
||
|
E TH, T2L, T2W, T2Y, T1s, T2X, T2O, T2P;
|
||
|
{
|
||
|
E Tj, TG, T2Q, T2V;
|
||
|
Tj = T7 + Ti;
|
||
|
TG = Tu + TF;
|
||
|
TH = Tj + TG;
|
||
|
T2L = Tj - TG;
|
||
|
T2Q = T2s + T2t;
|
||
|
T2V = T2R + T2U;
|
||
|
T2W = T2Q + T2V;
|
||
|
T2Y = T2V - T2Q;
|
||
|
}
|
||
|
{
|
||
|
E T14, T1r, T2M, T2N;
|
||
|
T14 = TS + T13;
|
||
|
T1r = T1f + T1q;
|
||
|
T1s = T14 + T1r;
|
||
|
T2X = T1r - T14;
|
||
|
T2M = T2x + T2y;
|
||
|
T2N = T2C + T2D;
|
||
|
T2O = T2M - T2N;
|
||
|
T2P = T2M + T2N;
|
||
|
}
|
||
|
ri[WS(rs, 8)] = TH - T1s;
|
||
|
ii[WS(rs, 8)] = T2W - T2P;
|
||
|
ri[0] = TH + T1s;
|
||
|
ii[0] = T2P + T2W;
|
||
|
ri[WS(rs, 12)] = T2L - T2O;
|
||
|
ii[WS(rs, 12)] = T2Y - T2X;
|
||
|
ri[WS(rs, 4)] = T2L + T2O;
|
||
|
ii[WS(rs, 4)] = T2X + T2Y;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 0, 16 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 16, "t1_16", twinstr, &GENUS, { 136, 46, 38, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_t1_16) (planner *p) {
|
||
|
X(kdft_dit_register) (p, t1_16, &desc);
|
||
|
}
|
||
|
#endif
|