mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-28 07:23:01 +00:00
2356 lines
62 KiB
C
2356 lines
62 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:44:41 EDT 2021 */
|
||
|
|
||
|
#include "dft/codelet-dft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 8 -name q1_8 -include dft/scalar/q.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 528 FP additions, 288 FP multiplications,
|
||
|
* (or, 352 additions, 112 multiplications, 176 fused multiply/add),
|
||
|
* 152 stack variables, 1 constants, and 256 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/q.h"
|
||
|
|
||
|
static void q1_8(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + (mb * 14); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
|
||
|
E T7, T1d, T1t, Tk, TD, TV, T18, TQ, T4F, T5L, T61, T4S, T5b, T5t, T5G;
|
||
|
E T5o, T6b, T7h, T7x, T6o, T6H, T6Z, T7c, T6U, TaJ, TbP, Tc5, TaW, Tbf, Tbx;
|
||
|
E TbK, Tbs, T1D, T2J, T2Z, T1Q, T29, T2r, T2E, T2m, T39, T4f, T4v, T3m, T3F;
|
||
|
E T3X, T4a, T3S, T7H, T8N, T93, T7U, T8d, T8v, T8I, T8q, T9d, Taj, Taz, T9q;
|
||
|
E T9J, Ta1, Tae, T9W, Te, T19, T1u, T1g, TE, TF, TW, Tv, TR, T4M, T5H;
|
||
|
E T62, T5O, T5c, T5d, T5u, T53, T5p, T6i, T7d, T7y, T7k, T6I, T6J, T70, T6z;
|
||
|
E T6V, TaQ, TbL, Tc6, TbS, Tbg, Tbh, Tby, Tb7, Tbt, T1K, T2F, T30, T2M, T2a;
|
||
|
E T2b, T2s, T21, T2n, T3g, T4b, T4w, T4i, T3G, T3H, T3Y, T3x, T3T, T7O, T8J;
|
||
|
E T94, T8Q, T8e, T8f, T8w, T85, T8r, T9k, Taf, TaA, Tam, T9K, T9L, Ta2, T9B;
|
||
|
E T9X;
|
||
|
{
|
||
|
E T3, Tz, Tj, T16, T6, Tg, TC, T17;
|
||
|
{
|
||
|
E T1, T2, Th, Ti;
|
||
|
T1 = rio[0];
|
||
|
T2 = rio[WS(rs, 4)];
|
||
|
T3 = T1 + T2;
|
||
|
Tz = T1 - T2;
|
||
|
Th = iio[0];
|
||
|
Ti = iio[WS(rs, 4)];
|
||
|
Tj = Th - Ti;
|
||
|
T16 = Th + Ti;
|
||
|
}
|
||
|
{
|
||
|
E T4, T5, TA, TB;
|
||
|
T4 = rio[WS(rs, 2)];
|
||
|
T5 = rio[WS(rs, 6)];
|
||
|
T6 = T4 + T5;
|
||
|
Tg = T4 - T5;
|
||
|
TA = iio[WS(rs, 2)];
|
||
|
TB = iio[WS(rs, 6)];
|
||
|
TC = TA - TB;
|
||
|
T17 = TA + TB;
|
||
|
}
|
||
|
T7 = T3 + T6;
|
||
|
T1d = T3 - T6;
|
||
|
T1t = T16 + T17;
|
||
|
Tk = Tg + Tj;
|
||
|
TD = Tz - TC;
|
||
|
TV = Tj - Tg;
|
||
|
T18 = T16 - T17;
|
||
|
TQ = Tz + TC;
|
||
|
}
|
||
|
{
|
||
|
E T4B, T57, T4R, T5E, T4E, T4O, T5a, T5F;
|
||
|
{
|
||
|
E T4z, T4A, T4P, T4Q;
|
||
|
T4z = rio[WS(vs, 3)];
|
||
|
T4A = rio[WS(vs, 3) + WS(rs, 4)];
|
||
|
T4B = T4z + T4A;
|
||
|
T57 = T4z - T4A;
|
||
|
T4P = iio[WS(vs, 3)];
|
||
|
T4Q = iio[WS(vs, 3) + WS(rs, 4)];
|
||
|
T4R = T4P - T4Q;
|
||
|
T5E = T4P + T4Q;
|
||
|
}
|
||
|
{
|
||
|
E T4C, T4D, T58, T59;
|
||
|
T4C = rio[WS(vs, 3) + WS(rs, 2)];
|
||
|
T4D = rio[WS(vs, 3) + WS(rs, 6)];
|
||
|
T4E = T4C + T4D;
|
||
|
T4O = T4C - T4D;
|
||
|
T58 = iio[WS(vs, 3) + WS(rs, 2)];
|
||
|
T59 = iio[WS(vs, 3) + WS(rs, 6)];
|
||
|
T5a = T58 - T59;
|
||
|
T5F = T58 + T59;
|
||
|
}
|
||
|
T4F = T4B + T4E;
|
||
|
T5L = T4B - T4E;
|
||
|
T61 = T5E + T5F;
|
||
|
T4S = T4O + T4R;
|
||
|
T5b = T57 - T5a;
|
||
|
T5t = T4R - T4O;
|
||
|
T5G = T5E - T5F;
|
||
|
T5o = T57 + T5a;
|
||
|
}
|
||
|
{
|
||
|
E T67, T6D, T6n, T7a, T6a, T6k, T6G, T7b;
|
||
|
{
|
||
|
E T65, T66, T6l, T6m;
|
||
|
T65 = rio[WS(vs, 4)];
|
||
|
T66 = rio[WS(vs, 4) + WS(rs, 4)];
|
||
|
T67 = T65 + T66;
|
||
|
T6D = T65 - T66;
|
||
|
T6l = iio[WS(vs, 4)];
|
||
|
T6m = iio[WS(vs, 4) + WS(rs, 4)];
|
||
|
T6n = T6l - T6m;
|
||
|
T7a = T6l + T6m;
|
||
|
}
|
||
|
{
|
||
|
E T68, T69, T6E, T6F;
|
||
|
T68 = rio[WS(vs, 4) + WS(rs, 2)];
|
||
|
T69 = rio[WS(vs, 4) + WS(rs, 6)];
|
||
|
T6a = T68 + T69;
|
||
|
T6k = T68 - T69;
|
||
|
T6E = iio[WS(vs, 4) + WS(rs, 2)];
|
||
|
T6F = iio[WS(vs, 4) + WS(rs, 6)];
|
||
|
T6G = T6E - T6F;
|
||
|
T7b = T6E + T6F;
|
||
|
}
|
||
|
T6b = T67 + T6a;
|
||
|
T7h = T67 - T6a;
|
||
|
T7x = T7a + T7b;
|
||
|
T6o = T6k + T6n;
|
||
|
T6H = T6D - T6G;
|
||
|
T6Z = T6n - T6k;
|
||
|
T7c = T7a - T7b;
|
||
|
T6U = T6D + T6G;
|
||
|
}
|
||
|
{
|
||
|
E TaF, Tbb, TaV, TbI, TaI, TaS, Tbe, TbJ;
|
||
|
{
|
||
|
E TaD, TaE, TaT, TaU;
|
||
|
TaD = rio[WS(vs, 7)];
|
||
|
TaE = rio[WS(vs, 7) + WS(rs, 4)];
|
||
|
TaF = TaD + TaE;
|
||
|
Tbb = TaD - TaE;
|
||
|
TaT = iio[WS(vs, 7)];
|
||
|
TaU = iio[WS(vs, 7) + WS(rs, 4)];
|
||
|
TaV = TaT - TaU;
|
||
|
TbI = TaT + TaU;
|
||
|
}
|
||
|
{
|
||
|
E TaG, TaH, Tbc, Tbd;
|
||
|
TaG = rio[WS(vs, 7) + WS(rs, 2)];
|
||
|
TaH = rio[WS(vs, 7) + WS(rs, 6)];
|
||
|
TaI = TaG + TaH;
|
||
|
TaS = TaG - TaH;
|
||
|
Tbc = iio[WS(vs, 7) + WS(rs, 2)];
|
||
|
Tbd = iio[WS(vs, 7) + WS(rs, 6)];
|
||
|
Tbe = Tbc - Tbd;
|
||
|
TbJ = Tbc + Tbd;
|
||
|
}
|
||
|
TaJ = TaF + TaI;
|
||
|
TbP = TaF - TaI;
|
||
|
Tc5 = TbI + TbJ;
|
||
|
TaW = TaS + TaV;
|
||
|
Tbf = Tbb - Tbe;
|
||
|
Tbx = TaV - TaS;
|
||
|
TbK = TbI - TbJ;
|
||
|
Tbs = Tbb + Tbe;
|
||
|
}
|
||
|
{
|
||
|
E T1z, T25, T1P, T2C, T1C, T1M, T28, T2D;
|
||
|
{
|
||
|
E T1x, T1y, T1N, T1O;
|
||
|
T1x = rio[WS(vs, 1)];
|
||
|
T1y = rio[WS(vs, 1) + WS(rs, 4)];
|
||
|
T1z = T1x + T1y;
|
||
|
T25 = T1x - T1y;
|
||
|
T1N = iio[WS(vs, 1)];
|
||
|
T1O = iio[WS(vs, 1) + WS(rs, 4)];
|
||
|
T1P = T1N - T1O;
|
||
|
T2C = T1N + T1O;
|
||
|
}
|
||
|
{
|
||
|
E T1A, T1B, T26, T27;
|
||
|
T1A = rio[WS(vs, 1) + WS(rs, 2)];
|
||
|
T1B = rio[WS(vs, 1) + WS(rs, 6)];
|
||
|
T1C = T1A + T1B;
|
||
|
T1M = T1A - T1B;
|
||
|
T26 = iio[WS(vs, 1) + WS(rs, 2)];
|
||
|
T27 = iio[WS(vs, 1) + WS(rs, 6)];
|
||
|
T28 = T26 - T27;
|
||
|
T2D = T26 + T27;
|
||
|
}
|
||
|
T1D = T1z + T1C;
|
||
|
T2J = T1z - T1C;
|
||
|
T2Z = T2C + T2D;
|
||
|
T1Q = T1M + T1P;
|
||
|
T29 = T25 - T28;
|
||
|
T2r = T1P - T1M;
|
||
|
T2E = T2C - T2D;
|
||
|
T2m = T25 + T28;
|
||
|
}
|
||
|
{
|
||
|
E T35, T3B, T3l, T48, T38, T3i, T3E, T49;
|
||
|
{
|
||
|
E T33, T34, T3j, T3k;
|
||
|
T33 = rio[WS(vs, 2)];
|
||
|
T34 = rio[WS(vs, 2) + WS(rs, 4)];
|
||
|
T35 = T33 + T34;
|
||
|
T3B = T33 - T34;
|
||
|
T3j = iio[WS(vs, 2)];
|
||
|
T3k = iio[WS(vs, 2) + WS(rs, 4)];
|
||
|
T3l = T3j - T3k;
|
||
|
T48 = T3j + T3k;
|
||
|
}
|
||
|
{
|
||
|
E T36, T37, T3C, T3D;
|
||
|
T36 = rio[WS(vs, 2) + WS(rs, 2)];
|
||
|
T37 = rio[WS(vs, 2) + WS(rs, 6)];
|
||
|
T38 = T36 + T37;
|
||
|
T3i = T36 - T37;
|
||
|
T3C = iio[WS(vs, 2) + WS(rs, 2)];
|
||
|
T3D = iio[WS(vs, 2) + WS(rs, 6)];
|
||
|
T3E = T3C - T3D;
|
||
|
T49 = T3C + T3D;
|
||
|
}
|
||
|
T39 = T35 + T38;
|
||
|
T4f = T35 - T38;
|
||
|
T4v = T48 + T49;
|
||
|
T3m = T3i + T3l;
|
||
|
T3F = T3B - T3E;
|
||
|
T3X = T3l - T3i;
|
||
|
T4a = T48 - T49;
|
||
|
T3S = T3B + T3E;
|
||
|
}
|
||
|
{
|
||
|
E T7D, T89, T7T, T8G, T7G, T7Q, T8c, T8H;
|
||
|
{
|
||
|
E T7B, T7C, T7R, T7S;
|
||
|
T7B = rio[WS(vs, 5)];
|
||
|
T7C = rio[WS(vs, 5) + WS(rs, 4)];
|
||
|
T7D = T7B + T7C;
|
||
|
T89 = T7B - T7C;
|
||
|
T7R = iio[WS(vs, 5)];
|
||
|
T7S = iio[WS(vs, 5) + WS(rs, 4)];
|
||
|
T7T = T7R - T7S;
|
||
|
T8G = T7R + T7S;
|
||
|
}
|
||
|
{
|
||
|
E T7E, T7F, T8a, T8b;
|
||
|
T7E = rio[WS(vs, 5) + WS(rs, 2)];
|
||
|
T7F = rio[WS(vs, 5) + WS(rs, 6)];
|
||
|
T7G = T7E + T7F;
|
||
|
T7Q = T7E - T7F;
|
||
|
T8a = iio[WS(vs, 5) + WS(rs, 2)];
|
||
|
T8b = iio[WS(vs, 5) + WS(rs, 6)];
|
||
|
T8c = T8a - T8b;
|
||
|
T8H = T8a + T8b;
|
||
|
}
|
||
|
T7H = T7D + T7G;
|
||
|
T8N = T7D - T7G;
|
||
|
T93 = T8G + T8H;
|
||
|
T7U = T7Q + T7T;
|
||
|
T8d = T89 - T8c;
|
||
|
T8v = T7T - T7Q;
|
||
|
T8I = T8G - T8H;
|
||
|
T8q = T89 + T8c;
|
||
|
}
|
||
|
{
|
||
|
E T99, T9F, T9p, Tac, T9c, T9m, T9I, Tad;
|
||
|
{
|
||
|
E T97, T98, T9n, T9o;
|
||
|
T97 = rio[WS(vs, 6)];
|
||
|
T98 = rio[WS(vs, 6) + WS(rs, 4)];
|
||
|
T99 = T97 + T98;
|
||
|
T9F = T97 - T98;
|
||
|
T9n = iio[WS(vs, 6)];
|
||
|
T9o = iio[WS(vs, 6) + WS(rs, 4)];
|
||
|
T9p = T9n - T9o;
|
||
|
Tac = T9n + T9o;
|
||
|
}
|
||
|
{
|
||
|
E T9a, T9b, T9G, T9H;
|
||
|
T9a = rio[WS(vs, 6) + WS(rs, 2)];
|
||
|
T9b = rio[WS(vs, 6) + WS(rs, 6)];
|
||
|
T9c = T9a + T9b;
|
||
|
T9m = T9a - T9b;
|
||
|
T9G = iio[WS(vs, 6) + WS(rs, 2)];
|
||
|
T9H = iio[WS(vs, 6) + WS(rs, 6)];
|
||
|
T9I = T9G - T9H;
|
||
|
Tad = T9G + T9H;
|
||
|
}
|
||
|
T9d = T99 + T9c;
|
||
|
Taj = T99 - T9c;
|
||
|
Taz = Tac + Tad;
|
||
|
T9q = T9m + T9p;
|
||
|
T9J = T9F - T9I;
|
||
|
Ta1 = T9p - T9m;
|
||
|
Tae = Tac - Tad;
|
||
|
T9W = T9F + T9I;
|
||
|
}
|
||
|
{
|
||
|
E Ta, Tq, Tt, T1e, Td, Tl, To, T1f, Tp, Tu;
|
||
|
{
|
||
|
E T8, T9, Tr, Ts;
|
||
|
T8 = rio[WS(rs, 1)];
|
||
|
T9 = rio[WS(rs, 5)];
|
||
|
Ta = T8 + T9;
|
||
|
Tq = T8 - T9;
|
||
|
Tr = iio[WS(rs, 1)];
|
||
|
Ts = iio[WS(rs, 5)];
|
||
|
Tt = Tr - Ts;
|
||
|
T1e = Tr + Ts;
|
||
|
}
|
||
|
{
|
||
|
E Tb, Tc, Tm, Tn;
|
||
|
Tb = rio[WS(rs, 7)];
|
||
|
Tc = rio[WS(rs, 3)];
|
||
|
Td = Tb + Tc;
|
||
|
Tl = Tb - Tc;
|
||
|
Tm = iio[WS(rs, 7)];
|
||
|
Tn = iio[WS(rs, 3)];
|
||
|
To = Tm - Tn;
|
||
|
T1f = Tm + Tn;
|
||
|
}
|
||
|
Te = Ta + Td;
|
||
|
T19 = Td - Ta;
|
||
|
T1u = T1e + T1f;
|
||
|
T1g = T1e - T1f;
|
||
|
TE = Tt - Tq;
|
||
|
TF = Tl + To;
|
||
|
TW = TE + TF;
|
||
|
Tp = Tl - To;
|
||
|
Tu = Tq + Tt;
|
||
|
Tv = Tp - Tu;
|
||
|
TR = Tu + Tp;
|
||
|
}
|
||
|
{
|
||
|
E T4I, T4Y, T51, T5M, T4L, T4T, T4W, T5N, T4X, T52;
|
||
|
{
|
||
|
E T4G, T4H, T4Z, T50;
|
||
|
T4G = rio[WS(vs, 3) + WS(rs, 1)];
|
||
|
T4H = rio[WS(vs, 3) + WS(rs, 5)];
|
||
|
T4I = T4G + T4H;
|
||
|
T4Y = T4G - T4H;
|
||
|
T4Z = iio[WS(vs, 3) + WS(rs, 1)];
|
||
|
T50 = iio[WS(vs, 3) + WS(rs, 5)];
|
||
|
T51 = T4Z - T50;
|
||
|
T5M = T4Z + T50;
|
||
|
}
|
||
|
{
|
||
|
E T4J, T4K, T4U, T4V;
|
||
|
T4J = rio[WS(vs, 3) + WS(rs, 7)];
|
||
|
T4K = rio[WS(vs, 3) + WS(rs, 3)];
|
||
|
T4L = T4J + T4K;
|
||
|
T4T = T4J - T4K;
|
||
|
T4U = iio[WS(vs, 3) + WS(rs, 7)];
|
||
|
T4V = iio[WS(vs, 3) + WS(rs, 3)];
|
||
|
T4W = T4U - T4V;
|
||
|
T5N = T4U + T4V;
|
||
|
}
|
||
|
T4M = T4I + T4L;
|
||
|
T5H = T4L - T4I;
|
||
|
T62 = T5M + T5N;
|
||
|
T5O = T5M - T5N;
|
||
|
T5c = T51 - T4Y;
|
||
|
T5d = T4T + T4W;
|
||
|
T5u = T5c + T5d;
|
||
|
T4X = T4T - T4W;
|
||
|
T52 = T4Y + T51;
|
||
|
T53 = T4X - T52;
|
||
|
T5p = T52 + T4X;
|
||
|
}
|
||
|
{
|
||
|
E T6e, T6u, T6x, T7i, T6h, T6p, T6s, T7j, T6t, T6y;
|
||
|
{
|
||
|
E T6c, T6d, T6v, T6w;
|
||
|
T6c = rio[WS(vs, 4) + WS(rs, 1)];
|
||
|
T6d = rio[WS(vs, 4) + WS(rs, 5)];
|
||
|
T6e = T6c + T6d;
|
||
|
T6u = T6c - T6d;
|
||
|
T6v = iio[WS(vs, 4) + WS(rs, 1)];
|
||
|
T6w = iio[WS(vs, 4) + WS(rs, 5)];
|
||
|
T6x = T6v - T6w;
|
||
|
T7i = T6v + T6w;
|
||
|
}
|
||
|
{
|
||
|
E T6f, T6g, T6q, T6r;
|
||
|
T6f = rio[WS(vs, 4) + WS(rs, 7)];
|
||
|
T6g = rio[WS(vs, 4) + WS(rs, 3)];
|
||
|
T6h = T6f + T6g;
|
||
|
T6p = T6f - T6g;
|
||
|
T6q = iio[WS(vs, 4) + WS(rs, 7)];
|
||
|
T6r = iio[WS(vs, 4) + WS(rs, 3)];
|
||
|
T6s = T6q - T6r;
|
||
|
T7j = T6q + T6r;
|
||
|
}
|
||
|
T6i = T6e + T6h;
|
||
|
T7d = T6h - T6e;
|
||
|
T7y = T7i + T7j;
|
||
|
T7k = T7i - T7j;
|
||
|
T6I = T6x - T6u;
|
||
|
T6J = T6p + T6s;
|
||
|
T70 = T6I + T6J;
|
||
|
T6t = T6p - T6s;
|
||
|
T6y = T6u + T6x;
|
||
|
T6z = T6t - T6y;
|
||
|
T6V = T6y + T6t;
|
||
|
}
|
||
|
{
|
||
|
E TaM, Tb2, Tb5, TbQ, TaP, TaX, Tb0, TbR, Tb1, Tb6;
|
||
|
{
|
||
|
E TaK, TaL, Tb3, Tb4;
|
||
|
TaK = rio[WS(vs, 7) + WS(rs, 1)];
|
||
|
TaL = rio[WS(vs, 7) + WS(rs, 5)];
|
||
|
TaM = TaK + TaL;
|
||
|
Tb2 = TaK - TaL;
|
||
|
Tb3 = iio[WS(vs, 7) + WS(rs, 1)];
|
||
|
Tb4 = iio[WS(vs, 7) + WS(rs, 5)];
|
||
|
Tb5 = Tb3 - Tb4;
|
||
|
TbQ = Tb3 + Tb4;
|
||
|
}
|
||
|
{
|
||
|
E TaN, TaO, TaY, TaZ;
|
||
|
TaN = rio[WS(vs, 7) + WS(rs, 7)];
|
||
|
TaO = rio[WS(vs, 7) + WS(rs, 3)];
|
||
|
TaP = TaN + TaO;
|
||
|
TaX = TaN - TaO;
|
||
|
TaY = iio[WS(vs, 7) + WS(rs, 7)];
|
||
|
TaZ = iio[WS(vs, 7) + WS(rs, 3)];
|
||
|
Tb0 = TaY - TaZ;
|
||
|
TbR = TaY + TaZ;
|
||
|
}
|
||
|
TaQ = TaM + TaP;
|
||
|
TbL = TaP - TaM;
|
||
|
Tc6 = TbQ + TbR;
|
||
|
TbS = TbQ - TbR;
|
||
|
Tbg = Tb5 - Tb2;
|
||
|
Tbh = TaX + Tb0;
|
||
|
Tby = Tbg + Tbh;
|
||
|
Tb1 = TaX - Tb0;
|
||
|
Tb6 = Tb2 + Tb5;
|
||
|
Tb7 = Tb1 - Tb6;
|
||
|
Tbt = Tb6 + Tb1;
|
||
|
}
|
||
|
{
|
||
|
E T1G, T1W, T1Z, T2K, T1J, T1R, T1U, T2L, T1V, T20;
|
||
|
{
|
||
|
E T1E, T1F, T1X, T1Y;
|
||
|
T1E = rio[WS(vs, 1) + WS(rs, 1)];
|
||
|
T1F = rio[WS(vs, 1) + WS(rs, 5)];
|
||
|
T1G = T1E + T1F;
|
||
|
T1W = T1E - T1F;
|
||
|
T1X = iio[WS(vs, 1) + WS(rs, 1)];
|
||
|
T1Y = iio[WS(vs, 1) + WS(rs, 5)];
|
||
|
T1Z = T1X - T1Y;
|
||
|
T2K = T1X + T1Y;
|
||
|
}
|
||
|
{
|
||
|
E T1H, T1I, T1S, T1T;
|
||
|
T1H = rio[WS(vs, 1) + WS(rs, 7)];
|
||
|
T1I = rio[WS(vs, 1) + WS(rs, 3)];
|
||
|
T1J = T1H + T1I;
|
||
|
T1R = T1H - T1I;
|
||
|
T1S = iio[WS(vs, 1) + WS(rs, 7)];
|
||
|
T1T = iio[WS(vs, 1) + WS(rs, 3)];
|
||
|
T1U = T1S - T1T;
|
||
|
T2L = T1S + T1T;
|
||
|
}
|
||
|
T1K = T1G + T1J;
|
||
|
T2F = T1J - T1G;
|
||
|
T30 = T2K + T2L;
|
||
|
T2M = T2K - T2L;
|
||
|
T2a = T1Z - T1W;
|
||
|
T2b = T1R + T1U;
|
||
|
T2s = T2a + T2b;
|
||
|
T1V = T1R - T1U;
|
||
|
T20 = T1W + T1Z;
|
||
|
T21 = T1V - T20;
|
||
|
T2n = T20 + T1V;
|
||
|
}
|
||
|
{
|
||
|
E T3c, T3s, T3v, T4g, T3f, T3n, T3q, T4h, T3r, T3w;
|
||
|
{
|
||
|
E T3a, T3b, T3t, T3u;
|
||
|
T3a = rio[WS(vs, 2) + WS(rs, 1)];
|
||
|
T3b = rio[WS(vs, 2) + WS(rs, 5)];
|
||
|
T3c = T3a + T3b;
|
||
|
T3s = T3a - T3b;
|
||
|
T3t = iio[WS(vs, 2) + WS(rs, 1)];
|
||
|
T3u = iio[WS(vs, 2) + WS(rs, 5)];
|
||
|
T3v = T3t - T3u;
|
||
|
T4g = T3t + T3u;
|
||
|
}
|
||
|
{
|
||
|
E T3d, T3e, T3o, T3p;
|
||
|
T3d = rio[WS(vs, 2) + WS(rs, 7)];
|
||
|
T3e = rio[WS(vs, 2) + WS(rs, 3)];
|
||
|
T3f = T3d + T3e;
|
||
|
T3n = T3d - T3e;
|
||
|
T3o = iio[WS(vs, 2) + WS(rs, 7)];
|
||
|
T3p = iio[WS(vs, 2) + WS(rs, 3)];
|
||
|
T3q = T3o - T3p;
|
||
|
T4h = T3o + T3p;
|
||
|
}
|
||
|
T3g = T3c + T3f;
|
||
|
T4b = T3f - T3c;
|
||
|
T4w = T4g + T4h;
|
||
|
T4i = T4g - T4h;
|
||
|
T3G = T3v - T3s;
|
||
|
T3H = T3n + T3q;
|
||
|
T3Y = T3G + T3H;
|
||
|
T3r = T3n - T3q;
|
||
|
T3w = T3s + T3v;
|
||
|
T3x = T3r - T3w;
|
||
|
T3T = T3w + T3r;
|
||
|
}
|
||
|
{
|
||
|
E T7K, T80, T83, T8O, T7N, T7V, T7Y, T8P, T7Z, T84;
|
||
|
{
|
||
|
E T7I, T7J, T81, T82;
|
||
|
T7I = rio[WS(vs, 5) + WS(rs, 1)];
|
||
|
T7J = rio[WS(vs, 5) + WS(rs, 5)];
|
||
|
T7K = T7I + T7J;
|
||
|
T80 = T7I - T7J;
|
||
|
T81 = iio[WS(vs, 5) + WS(rs, 1)];
|
||
|
T82 = iio[WS(vs, 5) + WS(rs, 5)];
|
||
|
T83 = T81 - T82;
|
||
|
T8O = T81 + T82;
|
||
|
}
|
||
|
{
|
||
|
E T7L, T7M, T7W, T7X;
|
||
|
T7L = rio[WS(vs, 5) + WS(rs, 7)];
|
||
|
T7M = rio[WS(vs, 5) + WS(rs, 3)];
|
||
|
T7N = T7L + T7M;
|
||
|
T7V = T7L - T7M;
|
||
|
T7W = iio[WS(vs, 5) + WS(rs, 7)];
|
||
|
T7X = iio[WS(vs, 5) + WS(rs, 3)];
|
||
|
T7Y = T7W - T7X;
|
||
|
T8P = T7W + T7X;
|
||
|
}
|
||
|
T7O = T7K + T7N;
|
||
|
T8J = T7N - T7K;
|
||
|
T94 = T8O + T8P;
|
||
|
T8Q = T8O - T8P;
|
||
|
T8e = T83 - T80;
|
||
|
T8f = T7V + T7Y;
|
||
|
T8w = T8e + T8f;
|
||
|
T7Z = T7V - T7Y;
|
||
|
T84 = T80 + T83;
|
||
|
T85 = T7Z - T84;
|
||
|
T8r = T84 + T7Z;
|
||
|
}
|
||
|
{
|
||
|
E T9g, T9w, T9z, Tak, T9j, T9r, T9u, Tal, T9v, T9A;
|
||
|
{
|
||
|
E T9e, T9f, T9x, T9y;
|
||
|
T9e = rio[WS(vs, 6) + WS(rs, 1)];
|
||
|
T9f = rio[WS(vs, 6) + WS(rs, 5)];
|
||
|
T9g = T9e + T9f;
|
||
|
T9w = T9e - T9f;
|
||
|
T9x = iio[WS(vs, 6) + WS(rs, 1)];
|
||
|
T9y = iio[WS(vs, 6) + WS(rs, 5)];
|
||
|
T9z = T9x - T9y;
|
||
|
Tak = T9x + T9y;
|
||
|
}
|
||
|
{
|
||
|
E T9h, T9i, T9s, T9t;
|
||
|
T9h = rio[WS(vs, 6) + WS(rs, 7)];
|
||
|
T9i = rio[WS(vs, 6) + WS(rs, 3)];
|
||
|
T9j = T9h + T9i;
|
||
|
T9r = T9h - T9i;
|
||
|
T9s = iio[WS(vs, 6) + WS(rs, 7)];
|
||
|
T9t = iio[WS(vs, 6) + WS(rs, 3)];
|
||
|
T9u = T9s - T9t;
|
||
|
Tal = T9s + T9t;
|
||
|
}
|
||
|
T9k = T9g + T9j;
|
||
|
Taf = T9j - T9g;
|
||
|
TaA = Tak + Tal;
|
||
|
Tam = Tak - Tal;
|
||
|
T9K = T9z - T9w;
|
||
|
T9L = T9r + T9u;
|
||
|
Ta2 = T9K + T9L;
|
||
|
T9v = T9r - T9u;
|
||
|
T9A = T9w + T9z;
|
||
|
T9B = T9v - T9A;
|
||
|
T9X = T9A + T9v;
|
||
|
}
|
||
|
rio[0] = T7 + Te;
|
||
|
iio[0] = T1t + T1u;
|
||
|
rio[WS(rs, 1)] = T1D + T1K;
|
||
|
iio[WS(rs, 1)] = T2Z + T30;
|
||
|
rio[WS(rs, 2)] = T39 + T3g;
|
||
|
iio[WS(rs, 2)] = T4v + T4w;
|
||
|
rio[WS(rs, 3)] = T4F + T4M;
|
||
|
iio[WS(rs, 3)] = T61 + T62;
|
||
|
rio[WS(rs, 4)] = T6b + T6i;
|
||
|
iio[WS(rs, 4)] = T7x + T7y;
|
||
|
rio[WS(rs, 5)] = T7H + T7O;
|
||
|
iio[WS(rs, 5)] = T93 + T94;
|
||
|
rio[WS(rs, 6)] = T9d + T9k;
|
||
|
iio[WS(rs, 6)] = Taz + TaA;
|
||
|
rio[WS(rs, 7)] = TaJ + TaQ;
|
||
|
iio[WS(rs, 7)] = Tc5 + Tc6;
|
||
|
{
|
||
|
E TS, TX, TT, TY, TP, TU;
|
||
|
TS = FNMS(KP707106781, TR, TQ);
|
||
|
TX = FNMS(KP707106781, TW, TV);
|
||
|
TP = W[8];
|
||
|
TT = TP * TS;
|
||
|
TY = TP * TX;
|
||
|
TU = W[9];
|
||
|
rio[WS(vs, 5)] = FMA(TU, TX, TT);
|
||
|
iio[WS(vs, 5)] = FNMS(TU, TS, TY);
|
||
|
}
|
||
|
{
|
||
|
E T2N, T2B, T2H, T2I, T2O, T2G;
|
||
|
T2N = T2J - T2M;
|
||
|
T2G = T2E - T2F;
|
||
|
T2B = W[10];
|
||
|
T2H = T2B * T2G;
|
||
|
T2I = W[11];
|
||
|
T2O = T2I * T2G;
|
||
|
iio[WS(vs, 6) + WS(rs, 1)] = FNMS(T2I, T2N, T2H);
|
||
|
rio[WS(vs, 6) + WS(rs, 1)] = FMA(T2B, T2N, T2O);
|
||
|
}
|
||
|
{
|
||
|
E T1n, T1j, T1l, T1m, T1o, T1k;
|
||
|
T1n = T1d + T1g;
|
||
|
T1k = T19 + T18;
|
||
|
T1j = W[2];
|
||
|
T1l = T1j * T1k;
|
||
|
T1m = W[3];
|
||
|
T1o = T1m * T1k;
|
||
|
iio[WS(vs, 2)] = FNMS(T1m, T1n, T1l);
|
||
|
rio[WS(vs, 2)] = FMA(T1j, T1n, T1o);
|
||
|
}
|
||
|
{
|
||
|
E T1q, T1v, T1r, T1w, T1p, T1s;
|
||
|
T1q = T7 - Te;
|
||
|
T1v = T1t - T1u;
|
||
|
T1p = W[6];
|
||
|
T1r = T1p * T1q;
|
||
|
T1w = T1p * T1v;
|
||
|
T1s = W[7];
|
||
|
rio[WS(vs, 4)] = FMA(T1s, T1v, T1r);
|
||
|
iio[WS(vs, 4)] = FNMS(T1s, T1q, T1w);
|
||
|
}
|
||
|
{
|
||
|
E Tan, Tab, Tah, Tai, Tao, Tag;
|
||
|
Tan = Taj - Tam;
|
||
|
Tag = Tae - Taf;
|
||
|
Tab = W[10];
|
||
|
Tah = Tab * Tag;
|
||
|
Tai = W[11];
|
||
|
Tao = Tai * Tag;
|
||
|
iio[WS(vs, 6) + WS(rs, 6)] = FNMS(Tai, Tan, Tah);
|
||
|
rio[WS(vs, 6) + WS(rs, 6)] = FMA(Tab, Tan, Tao);
|
||
|
}
|
||
|
{
|
||
|
E Tc2, Tc7, Tc3, Tc8, Tc1, Tc4;
|
||
|
Tc2 = TaJ - TaQ;
|
||
|
Tc7 = Tc5 - Tc6;
|
||
|
Tc1 = W[6];
|
||
|
Tc3 = Tc1 * Tc2;
|
||
|
Tc8 = Tc1 * Tc7;
|
||
|
Tc4 = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 7)] = FMA(Tc4, Tc7, Tc3);
|
||
|
iio[WS(vs, 4) + WS(rs, 7)] = FNMS(Tc4, Tc2, Tc8);
|
||
|
}
|
||
|
{
|
||
|
E Tbu, Tbz, Tbv, TbA, Tbr, Tbw;
|
||
|
Tbu = FNMS(KP707106781, Tbt, Tbs);
|
||
|
Tbz = FNMS(KP707106781, Tby, Tbx);
|
||
|
Tbr = W[8];
|
||
|
Tbv = Tbr * Tbu;
|
||
|
TbA = Tbr * Tbz;
|
||
|
Tbw = W[9];
|
||
|
rio[WS(vs, 5) + WS(rs, 7)] = FMA(Tbw, Tbz, Tbv);
|
||
|
iio[WS(vs, 5) + WS(rs, 7)] = FNMS(Tbw, Tbu, TbA);
|
||
|
}
|
||
|
{
|
||
|
E TbC, TbF, TbD, TbG, TbB, TbE;
|
||
|
TbC = FMA(KP707106781, Tbt, Tbs);
|
||
|
TbF = FMA(KP707106781, Tby, Tbx);
|
||
|
TbB = W[0];
|
||
|
TbD = TbB * TbC;
|
||
|
TbG = TbB * TbF;
|
||
|
TbE = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 7)] = FMA(TbE, TbF, TbD);
|
||
|
iio[WS(vs, 1) + WS(rs, 7)] = FNMS(TbE, TbC, TbG);
|
||
|
}
|
||
|
{
|
||
|
E T10, T13, T11, T14, TZ, T12;
|
||
|
T10 = FMA(KP707106781, TR, TQ);
|
||
|
T13 = FMA(KP707106781, TW, TV);
|
||
|
TZ = W[0];
|
||
|
T11 = TZ * T10;
|
||
|
T14 = TZ * T13;
|
||
|
T12 = W[1];
|
||
|
rio[WS(vs, 1)] = FMA(T12, T13, T11);
|
||
|
iio[WS(vs, 1)] = FNMS(T12, T10, T14);
|
||
|
}
|
||
|
{
|
||
|
E T2w, T2z, T2x, T2A, T2v, T2y;
|
||
|
T2w = FMA(KP707106781, T2n, T2m);
|
||
|
T2z = FMA(KP707106781, T2s, T2r);
|
||
|
T2v = W[0];
|
||
|
T2x = T2v * T2w;
|
||
|
T2A = T2v * T2z;
|
||
|
T2y = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 1)] = FMA(T2y, T2z, T2x);
|
||
|
iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T2y, T2w, T2A);
|
||
|
}
|
||
|
{
|
||
|
E T1h, T15, T1b, T1c, T1i, T1a;
|
||
|
T1h = T1d - T1g;
|
||
|
T1a = T18 - T19;
|
||
|
T15 = W[10];
|
||
|
T1b = T15 * T1a;
|
||
|
T1c = W[11];
|
||
|
T1i = T1c * T1a;
|
||
|
iio[WS(vs, 6)] = FNMS(T1c, T1h, T1b);
|
||
|
rio[WS(vs, 6)] = FMA(T15, T1h, T1i);
|
||
|
}
|
||
|
{
|
||
|
E T2o, T2t, T2p, T2u, T2l, T2q;
|
||
|
T2o = FNMS(KP707106781, T2n, T2m);
|
||
|
T2t = FNMS(KP707106781, T2s, T2r);
|
||
|
T2l = W[8];
|
||
|
T2p = T2l * T2o;
|
||
|
T2u = T2l * T2t;
|
||
|
T2q = W[9];
|
||
|
rio[WS(vs, 5) + WS(rs, 1)] = FMA(T2q, T2t, T2p);
|
||
|
iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T2q, T2o, T2u);
|
||
|
}
|
||
|
{
|
||
|
E Tat, Tap, Tar, Tas, Tau, Taq;
|
||
|
Tat = Taj + Tam;
|
||
|
Taq = Taf + Tae;
|
||
|
Tap = W[2];
|
||
|
Tar = Tap * Taq;
|
||
|
Tas = W[3];
|
||
|
Tau = Tas * Taq;
|
||
|
iio[WS(vs, 2) + WS(rs, 6)] = FNMS(Tas, Tat, Tar);
|
||
|
rio[WS(vs, 2) + WS(rs, 6)] = FMA(Tap, Tat, Tau);
|
||
|
}
|
||
|
{
|
||
|
E TbZ, TbV, TbX, TbY, Tc0, TbW;
|
||
|
TbZ = TbP + TbS;
|
||
|
TbW = TbL + TbK;
|
||
|
TbV = W[2];
|
||
|
TbX = TbV * TbW;
|
||
|
TbY = W[3];
|
||
|
Tc0 = TbY * TbW;
|
||
|
iio[WS(vs, 2) + WS(rs, 7)] = FNMS(TbY, TbZ, TbX);
|
||
|
rio[WS(vs, 2) + WS(rs, 7)] = FMA(TbV, TbZ, Tc0);
|
||
|
}
|
||
|
{
|
||
|
E Taw, TaB, Tax, TaC, Tav, Tay;
|
||
|
Taw = T9d - T9k;
|
||
|
TaB = Taz - TaA;
|
||
|
Tav = W[6];
|
||
|
Tax = Tav * Taw;
|
||
|
TaC = Tav * TaB;
|
||
|
Tay = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 6)] = FMA(Tay, TaB, Tax);
|
||
|
iio[WS(vs, 4) + WS(rs, 6)] = FNMS(Tay, Taw, TaC);
|
||
|
}
|
||
|
{
|
||
|
E TbT, TbH, TbN, TbO, TbU, TbM;
|
||
|
TbT = TbP - TbS;
|
||
|
TbM = TbK - TbL;
|
||
|
TbH = W[10];
|
||
|
TbN = TbH * TbM;
|
||
|
TbO = W[11];
|
||
|
TbU = TbO * TbM;
|
||
|
iio[WS(vs, 6) + WS(rs, 7)] = FNMS(TbO, TbT, TbN);
|
||
|
rio[WS(vs, 6) + WS(rs, 7)] = FMA(TbH, TbT, TbU);
|
||
|
}
|
||
|
{
|
||
|
E T2T, T2P, T2R, T2S, T2U, T2Q;
|
||
|
T2T = T2J + T2M;
|
||
|
T2Q = T2F + T2E;
|
||
|
T2P = W[2];
|
||
|
T2R = T2P * T2Q;
|
||
|
T2S = W[3];
|
||
|
T2U = T2S * T2Q;
|
||
|
iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T2S, T2T, T2R);
|
||
|
rio[WS(vs, 2) + WS(rs, 1)] = FMA(T2P, T2T, T2U);
|
||
|
}
|
||
|
{
|
||
|
E T5Y, T63, T5Z, T64, T5X, T60;
|
||
|
T5Y = T4F - T4M;
|
||
|
T63 = T61 - T62;
|
||
|
T5X = W[6];
|
||
|
T5Z = T5X * T5Y;
|
||
|
T64 = T5X * T63;
|
||
|
T60 = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 3)] = FMA(T60, T63, T5Z);
|
||
|
iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T60, T5Y, T64);
|
||
|
}
|
||
|
{
|
||
|
E T42, T45, T43, T46, T41, T44;
|
||
|
T42 = FMA(KP707106781, T3T, T3S);
|
||
|
T45 = FMA(KP707106781, T3Y, T3X);
|
||
|
T41 = W[0];
|
||
|
T43 = T41 * T42;
|
||
|
T46 = T41 * T45;
|
||
|
T44 = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 2)] = FMA(T44, T45, T43);
|
||
|
iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T44, T42, T46);
|
||
|
}
|
||
|
{
|
||
|
E T5y, T5B, T5z, T5C, T5x, T5A;
|
||
|
T5y = FMA(KP707106781, T5p, T5o);
|
||
|
T5B = FMA(KP707106781, T5u, T5t);
|
||
|
T5x = W[0];
|
||
|
T5z = T5x * T5y;
|
||
|
T5C = T5x * T5B;
|
||
|
T5A = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 3)] = FMA(T5A, T5B, T5z);
|
||
|
iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T5A, T5y, T5C);
|
||
|
}
|
||
|
{
|
||
|
E T6W, T71, T6X, T72, T6T, T6Y;
|
||
|
T6W = FNMS(KP707106781, T6V, T6U);
|
||
|
T71 = FNMS(KP707106781, T70, T6Z);
|
||
|
T6T = W[8];
|
||
|
T6X = T6T * T6W;
|
||
|
T72 = T6T * T71;
|
||
|
T6Y = W[9];
|
||
|
rio[WS(vs, 5) + WS(rs, 4)] = FMA(T6Y, T71, T6X);
|
||
|
iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T6Y, T6W, T72);
|
||
|
}
|
||
|
{
|
||
|
E Ta6, Ta9, Ta7, Taa, Ta5, Ta8;
|
||
|
Ta6 = FMA(KP707106781, T9X, T9W);
|
||
|
Ta9 = FMA(KP707106781, Ta2, Ta1);
|
||
|
Ta5 = W[0];
|
||
|
Ta7 = Ta5 * Ta6;
|
||
|
Taa = Ta5 * Ta9;
|
||
|
Ta8 = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 6)] = FMA(Ta8, Ta9, Ta7);
|
||
|
iio[WS(vs, 1) + WS(rs, 6)] = FNMS(Ta8, Ta6, Taa);
|
||
|
}
|
||
|
{
|
||
|
E T7r, T7n, T7p, T7q, T7s, T7o;
|
||
|
T7r = T7h + T7k;
|
||
|
T7o = T7d + T7c;
|
||
|
T7n = W[2];
|
||
|
T7p = T7n * T7o;
|
||
|
T7q = W[3];
|
||
|
T7s = T7q * T7o;
|
||
|
iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T7q, T7r, T7p);
|
||
|
rio[WS(vs, 2) + WS(rs, 4)] = FMA(T7n, T7r, T7s);
|
||
|
}
|
||
|
{
|
||
|
E T8X, T8T, T8V, T8W, T8Y, T8U;
|
||
|
T8X = T8N + T8Q;
|
||
|
T8U = T8J + T8I;
|
||
|
T8T = W[2];
|
||
|
T8V = T8T * T8U;
|
||
|
T8W = W[3];
|
||
|
T8Y = T8W * T8U;
|
||
|
iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T8W, T8X, T8V);
|
||
|
rio[WS(vs, 2) + WS(rs, 5)] = FMA(T8T, T8X, T8Y);
|
||
|
}
|
||
|
{
|
||
|
E T2W, T31, T2X, T32, T2V, T2Y;
|
||
|
T2W = T1D - T1K;
|
||
|
T31 = T2Z - T30;
|
||
|
T2V = W[6];
|
||
|
T2X = T2V * T2W;
|
||
|
T32 = T2V * T31;
|
||
|
T2Y = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 1)] = FMA(T2Y, T31, T2X);
|
||
|
iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T2Y, T2W, T32);
|
||
|
}
|
||
|
{
|
||
|
E T5V, T5R, T5T, T5U, T5W, T5S;
|
||
|
T5V = T5L + T5O;
|
||
|
T5S = T5H + T5G;
|
||
|
T5R = W[2];
|
||
|
T5T = T5R * T5S;
|
||
|
T5U = W[3];
|
||
|
T5W = T5U * T5S;
|
||
|
iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T5U, T5V, T5T);
|
||
|
rio[WS(vs, 2) + WS(rs, 3)] = FMA(T5R, T5V, T5W);
|
||
|
}
|
||
|
{
|
||
|
E T3U, T3Z, T3V, T40, T3R, T3W;
|
||
|
T3U = FNMS(KP707106781, T3T, T3S);
|
||
|
T3Z = FNMS(KP707106781, T3Y, T3X);
|
||
|
T3R = W[8];
|
||
|
T3V = T3R * T3U;
|
||
|
T40 = T3R * T3Z;
|
||
|
T3W = W[9];
|
||
|
rio[WS(vs, 5) + WS(rs, 2)] = FMA(T3W, T3Z, T3V);
|
||
|
iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T3W, T3U, T40);
|
||
|
}
|
||
|
{
|
||
|
E T5P, T5D, T5J, T5K, T5Q, T5I;
|
||
|
T5P = T5L - T5O;
|
||
|
T5I = T5G - T5H;
|
||
|
T5D = W[10];
|
||
|
T5J = T5D * T5I;
|
||
|
T5K = W[11];
|
||
|
T5Q = T5K * T5I;
|
||
|
iio[WS(vs, 6) + WS(rs, 3)] = FNMS(T5K, T5P, T5J);
|
||
|
rio[WS(vs, 6) + WS(rs, 3)] = FMA(T5D, T5P, T5Q);
|
||
|
}
|
||
|
{
|
||
|
E T74, T77, T75, T78, T73, T76;
|
||
|
T74 = FMA(KP707106781, T6V, T6U);
|
||
|
T77 = FMA(KP707106781, T70, T6Z);
|
||
|
T73 = W[0];
|
||
|
T75 = T73 * T74;
|
||
|
T78 = T73 * T77;
|
||
|
T76 = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 4)] = FMA(T76, T77, T75);
|
||
|
iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T76, T74, T78);
|
||
|
}
|
||
|
{
|
||
|
E T9Y, Ta3, T9Z, Ta4, T9V, Ta0;
|
||
|
T9Y = FNMS(KP707106781, T9X, T9W);
|
||
|
Ta3 = FNMS(KP707106781, Ta2, Ta1);
|
||
|
T9V = W[8];
|
||
|
T9Z = T9V * T9Y;
|
||
|
Ta4 = T9V * Ta3;
|
||
|
Ta0 = W[9];
|
||
|
rio[WS(vs, 5) + WS(rs, 6)] = FMA(Ta0, Ta3, T9Z);
|
||
|
iio[WS(vs, 5) + WS(rs, 6)] = FNMS(Ta0, T9Y, Ta4);
|
||
|
}
|
||
|
{
|
||
|
E T7l, T79, T7f, T7g, T7m, T7e;
|
||
|
T7l = T7h - T7k;
|
||
|
T7e = T7c - T7d;
|
||
|
T79 = W[10];
|
||
|
T7f = T79 * T7e;
|
||
|
T7g = W[11];
|
||
|
T7m = T7g * T7e;
|
||
|
iio[WS(vs, 6) + WS(rs, 4)] = FNMS(T7g, T7l, T7f);
|
||
|
rio[WS(vs, 6) + WS(rs, 4)] = FMA(T79, T7l, T7m);
|
||
|
}
|
||
|
{
|
||
|
E T90, T95, T91, T96, T8Z, T92;
|
||
|
T90 = T7H - T7O;
|
||
|
T95 = T93 - T94;
|
||
|
T8Z = W[6];
|
||
|
T91 = T8Z * T90;
|
||
|
T96 = T8Z * T95;
|
||
|
T92 = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 5)] = FMA(T92, T95, T91);
|
||
|
iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T92, T90, T96);
|
||
|
}
|
||
|
{
|
||
|
E T4j, T47, T4d, T4e, T4k, T4c;
|
||
|
T4j = T4f - T4i;
|
||
|
T4c = T4a - T4b;
|
||
|
T47 = W[10];
|
||
|
T4d = T47 * T4c;
|
||
|
T4e = W[11];
|
||
|
T4k = T4e * T4c;
|
||
|
iio[WS(vs, 6) + WS(rs, 2)] = FNMS(T4e, T4j, T4d);
|
||
|
rio[WS(vs, 6) + WS(rs, 2)] = FMA(T47, T4j, T4k);
|
||
|
}
|
||
|
{
|
||
|
E T5q, T5v, T5r, T5w, T5n, T5s;
|
||
|
T5q = FNMS(KP707106781, T5p, T5o);
|
||
|
T5v = FNMS(KP707106781, T5u, T5t);
|
||
|
T5n = W[8];
|
||
|
T5r = T5n * T5q;
|
||
|
T5w = T5n * T5v;
|
||
|
T5s = W[9];
|
||
|
rio[WS(vs, 5) + WS(rs, 3)] = FMA(T5s, T5v, T5r);
|
||
|
iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T5s, T5q, T5w);
|
||
|
}
|
||
|
{
|
||
|
E T4p, T4l, T4n, T4o, T4q, T4m;
|
||
|
T4p = T4f + T4i;
|
||
|
T4m = T4b + T4a;
|
||
|
T4l = W[2];
|
||
|
T4n = T4l * T4m;
|
||
|
T4o = W[3];
|
||
|
T4q = T4o * T4m;
|
||
|
iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T4o, T4p, T4n);
|
||
|
rio[WS(vs, 2) + WS(rs, 2)] = FMA(T4l, T4p, T4q);
|
||
|
}
|
||
|
{
|
||
|
E T4s, T4x, T4t, T4y, T4r, T4u;
|
||
|
T4s = T39 - T3g;
|
||
|
T4x = T4v - T4w;
|
||
|
T4r = W[6];
|
||
|
T4t = T4r * T4s;
|
||
|
T4y = T4r * T4x;
|
||
|
T4u = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 2)] = FMA(T4u, T4x, T4t);
|
||
|
iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T4u, T4s, T4y);
|
||
|
}
|
||
|
{
|
||
|
E T7u, T7z, T7v, T7A, T7t, T7w;
|
||
|
T7u = T6b - T6i;
|
||
|
T7z = T7x - T7y;
|
||
|
T7t = W[6];
|
||
|
T7v = T7t * T7u;
|
||
|
T7A = T7t * T7z;
|
||
|
T7w = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 4)] = FMA(T7w, T7z, T7v);
|
||
|
iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T7w, T7u, T7A);
|
||
|
}
|
||
|
{
|
||
|
E T8R, T8F, T8L, T8M, T8S, T8K;
|
||
|
T8R = T8N - T8Q;
|
||
|
T8K = T8I - T8J;
|
||
|
T8F = W[10];
|
||
|
T8L = T8F * T8K;
|
||
|
T8M = W[11];
|
||
|
T8S = T8M * T8K;
|
||
|
iio[WS(vs, 6) + WS(rs, 5)] = FNMS(T8M, T8R, T8L);
|
||
|
rio[WS(vs, 6) + WS(rs, 5)] = FMA(T8F, T8R, T8S);
|
||
|
}
|
||
|
{
|
||
|
E T8s, T8x, T8t, T8y, T8p, T8u;
|
||
|
T8s = FNMS(KP707106781, T8r, T8q);
|
||
|
T8x = FNMS(KP707106781, T8w, T8v);
|
||
|
T8p = W[8];
|
||
|
T8t = T8p * T8s;
|
||
|
T8y = T8p * T8x;
|
||
|
T8u = W[9];
|
||
|
rio[WS(vs, 5) + WS(rs, 5)] = FMA(T8u, T8x, T8t);
|
||
|
iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T8u, T8s, T8y);
|
||
|
}
|
||
|
{
|
||
|
E T8A, T8D, T8B, T8E, T8z, T8C;
|
||
|
T8A = FMA(KP707106781, T8r, T8q);
|
||
|
T8D = FMA(KP707106781, T8w, T8v);
|
||
|
T8z = W[0];
|
||
|
T8B = T8z * T8A;
|
||
|
T8E = T8z * T8D;
|
||
|
T8C = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 5)] = FMA(T8C, T8D, T8B);
|
||
|
iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T8C, T8A, T8E);
|
||
|
}
|
||
|
{
|
||
|
E TH, TN, TJ, TL, TM, TO, Tf, Tx, Ty, TI, TG, TK, Tw;
|
||
|
TG = TE - TF;
|
||
|
TH = FNMS(KP707106781, TG, TD);
|
||
|
TN = FMA(KP707106781, TG, TD);
|
||
|
TK = FMA(KP707106781, Tv, Tk);
|
||
|
TJ = W[4];
|
||
|
TL = TJ * TK;
|
||
|
TM = W[5];
|
||
|
TO = TM * TK;
|
||
|
Tw = FNMS(KP707106781, Tv, Tk);
|
||
|
Tf = W[12];
|
||
|
Tx = Tf * Tw;
|
||
|
Ty = W[13];
|
||
|
TI = Ty * Tw;
|
||
|
iio[WS(vs, 7)] = FNMS(Ty, TH, Tx);
|
||
|
rio[WS(vs, 7)] = FMA(Tf, TH, TI);
|
||
|
iio[WS(vs, 3)] = FNMS(TM, TN, TL);
|
||
|
rio[WS(vs, 3)] = FMA(TJ, TN, TO);
|
||
|
}
|
||
|
{
|
||
|
E T5f, T5l, T5h, T5j, T5k, T5m, T4N, T55, T56, T5g, T5e, T5i, T54;
|
||
|
T5e = T5c - T5d;
|
||
|
T5f = FNMS(KP707106781, T5e, T5b);
|
||
|
T5l = FMA(KP707106781, T5e, T5b);
|
||
|
T5i = FMA(KP707106781, T53, T4S);
|
||
|
T5h = W[4];
|
||
|
T5j = T5h * T5i;
|
||
|
T5k = W[5];
|
||
|
T5m = T5k * T5i;
|
||
|
T54 = FNMS(KP707106781, T53, T4S);
|
||
|
T4N = W[12];
|
||
|
T55 = T4N * T54;
|
||
|
T56 = W[13];
|
||
|
T5g = T56 * T54;
|
||
|
iio[WS(vs, 7) + WS(rs, 3)] = FNMS(T56, T5f, T55);
|
||
|
rio[WS(vs, 7) + WS(rs, 3)] = FMA(T4N, T5f, T5g);
|
||
|
iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T5k, T5l, T5j);
|
||
|
rio[WS(vs, 3) + WS(rs, 3)] = FMA(T5h, T5l, T5m);
|
||
|
}
|
||
|
{
|
||
|
E T2d, T2j, T2f, T2h, T2i, T2k, T1L, T23, T24, T2e, T2c, T2g, T22;
|
||
|
T2c = T2a - T2b;
|
||
|
T2d = FNMS(KP707106781, T2c, T29);
|
||
|
T2j = FMA(KP707106781, T2c, T29);
|
||
|
T2g = FMA(KP707106781, T21, T1Q);
|
||
|
T2f = W[4];
|
||
|
T2h = T2f * T2g;
|
||
|
T2i = W[5];
|
||
|
T2k = T2i * T2g;
|
||
|
T22 = FNMS(KP707106781, T21, T1Q);
|
||
|
T1L = W[12];
|
||
|
T23 = T1L * T22;
|
||
|
T24 = W[13];
|
||
|
T2e = T24 * T22;
|
||
|
iio[WS(vs, 7) + WS(rs, 1)] = FNMS(T24, T2d, T23);
|
||
|
rio[WS(vs, 7) + WS(rs, 1)] = FMA(T1L, T2d, T2e);
|
||
|
iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T2i, T2j, T2h);
|
||
|
rio[WS(vs, 3) + WS(rs, 1)] = FMA(T2f, T2j, T2k);
|
||
|
}
|
||
|
{
|
||
|
E T3J, T3P, T3L, T3N, T3O, T3Q, T3h, T3z, T3A, T3K, T3I, T3M, T3y;
|
||
|
T3I = T3G - T3H;
|
||
|
T3J = FNMS(KP707106781, T3I, T3F);
|
||
|
T3P = FMA(KP707106781, T3I, T3F);
|
||
|
T3M = FMA(KP707106781, T3x, T3m);
|
||
|
T3L = W[4];
|
||
|
T3N = T3L * T3M;
|
||
|
T3O = W[5];
|
||
|
T3Q = T3O * T3M;
|
||
|
T3y = FNMS(KP707106781, T3x, T3m);
|
||
|
T3h = W[12];
|
||
|
T3z = T3h * T3y;
|
||
|
T3A = W[13];
|
||
|
T3K = T3A * T3y;
|
||
|
iio[WS(vs, 7) + WS(rs, 2)] = FNMS(T3A, T3J, T3z);
|
||
|
rio[WS(vs, 7) + WS(rs, 2)] = FMA(T3h, T3J, T3K);
|
||
|
iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T3O, T3P, T3N);
|
||
|
rio[WS(vs, 3) + WS(rs, 2)] = FMA(T3L, T3P, T3Q);
|
||
|
}
|
||
|
{
|
||
|
E T6L, T6R, T6N, T6P, T6Q, T6S, T6j, T6B, T6C, T6M, T6K, T6O, T6A;
|
||
|
T6K = T6I - T6J;
|
||
|
T6L = FNMS(KP707106781, T6K, T6H);
|
||
|
T6R = FMA(KP707106781, T6K, T6H);
|
||
|
T6O = FMA(KP707106781, T6z, T6o);
|
||
|
T6N = W[4];
|
||
|
T6P = T6N * T6O;
|
||
|
T6Q = W[5];
|
||
|
T6S = T6Q * T6O;
|
||
|
T6A = FNMS(KP707106781, T6z, T6o);
|
||
|
T6j = W[12];
|
||
|
T6B = T6j * T6A;
|
||
|
T6C = W[13];
|
||
|
T6M = T6C * T6A;
|
||
|
iio[WS(vs, 7) + WS(rs, 4)] = FNMS(T6C, T6L, T6B);
|
||
|
rio[WS(vs, 7) + WS(rs, 4)] = FMA(T6j, T6L, T6M);
|
||
|
iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T6Q, T6R, T6P);
|
||
|
rio[WS(vs, 3) + WS(rs, 4)] = FMA(T6N, T6R, T6S);
|
||
|
}
|
||
|
{
|
||
|
E Tbj, Tbp, Tbl, Tbn, Tbo, Tbq, TaR, Tb9, Tba, Tbk, Tbi, Tbm, Tb8;
|
||
|
Tbi = Tbg - Tbh;
|
||
|
Tbj = FNMS(KP707106781, Tbi, Tbf);
|
||
|
Tbp = FMA(KP707106781, Tbi, Tbf);
|
||
|
Tbm = FMA(KP707106781, Tb7, TaW);
|
||
|
Tbl = W[4];
|
||
|
Tbn = Tbl * Tbm;
|
||
|
Tbo = W[5];
|
||
|
Tbq = Tbo * Tbm;
|
||
|
Tb8 = FNMS(KP707106781, Tb7, TaW);
|
||
|
TaR = W[12];
|
||
|
Tb9 = TaR * Tb8;
|
||
|
Tba = W[13];
|
||
|
Tbk = Tba * Tb8;
|
||
|
iio[WS(vs, 7) + WS(rs, 7)] = FNMS(Tba, Tbj, Tb9);
|
||
|
rio[WS(vs, 7) + WS(rs, 7)] = FMA(TaR, Tbj, Tbk);
|
||
|
iio[WS(vs, 3) + WS(rs, 7)] = FNMS(Tbo, Tbp, Tbn);
|
||
|
rio[WS(vs, 3) + WS(rs, 7)] = FMA(Tbl, Tbp, Tbq);
|
||
|
}
|
||
|
{
|
||
|
E T8h, T8n, T8j, T8l, T8m, T8o, T7P, T87, T88, T8i, T8g, T8k, T86;
|
||
|
T8g = T8e - T8f;
|
||
|
T8h = FNMS(KP707106781, T8g, T8d);
|
||
|
T8n = FMA(KP707106781, T8g, T8d);
|
||
|
T8k = FMA(KP707106781, T85, T7U);
|
||
|
T8j = W[4];
|
||
|
T8l = T8j * T8k;
|
||
|
T8m = W[5];
|
||
|
T8o = T8m * T8k;
|
||
|
T86 = FNMS(KP707106781, T85, T7U);
|
||
|
T7P = W[12];
|
||
|
T87 = T7P * T86;
|
||
|
T88 = W[13];
|
||
|
T8i = T88 * T86;
|
||
|
iio[WS(vs, 7) + WS(rs, 5)] = FNMS(T88, T8h, T87);
|
||
|
rio[WS(vs, 7) + WS(rs, 5)] = FMA(T7P, T8h, T8i);
|
||
|
iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T8m, T8n, T8l);
|
||
|
rio[WS(vs, 3) + WS(rs, 5)] = FMA(T8j, T8n, T8o);
|
||
|
}
|
||
|
{
|
||
|
E T9N, T9T, T9P, T9R, T9S, T9U, T9l, T9D, T9E, T9O, T9M, T9Q, T9C;
|
||
|
T9M = T9K - T9L;
|
||
|
T9N = FNMS(KP707106781, T9M, T9J);
|
||
|
T9T = FMA(KP707106781, T9M, T9J);
|
||
|
T9Q = FMA(KP707106781, T9B, T9q);
|
||
|
T9P = W[4];
|
||
|
T9R = T9P * T9Q;
|
||
|
T9S = W[5];
|
||
|
T9U = T9S * T9Q;
|
||
|
T9C = FNMS(KP707106781, T9B, T9q);
|
||
|
T9l = W[12];
|
||
|
T9D = T9l * T9C;
|
||
|
T9E = W[13];
|
||
|
T9O = T9E * T9C;
|
||
|
iio[WS(vs, 7) + WS(rs, 6)] = FNMS(T9E, T9N, T9D);
|
||
|
rio[WS(vs, 7) + WS(rs, 6)] = FMA(T9l, T9N, T9O);
|
||
|
iio[WS(vs, 3) + WS(rs, 6)] = FNMS(T9S, T9T, T9R);
|
||
|
rio[WS(vs, 3) + WS(rs, 6)] = FMA(T9P, T9T, T9U);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 0, 8 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 8, "q1_8", twinstr, &GENUS, { 352, 112, 176, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_q1_8) (planner *p) {
|
||
|
X(kdft_difsq_register) (p, q1_8, &desc);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 8 -name q1_8 -include dft/scalar/q.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 528 FP additions, 256 FP multiplications,
|
||
|
* (or, 416 additions, 144 multiplications, 112 fused multiply/add),
|
||
|
* 142 stack variables, 1 constants, and 256 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/q.h"
|
||
|
|
||
|
static void q1_8(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + (mb * 14); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
|
||
|
E T7, T14, T1g, Tk, TC, TQ, T10, TM, T1w, T2p, T2z, T1H, T1M, T1W, T2j;
|
||
|
E T1V, T7R, T8O, T90, T84, T8m, T8A, T8K, T8w, T9g, Ta9, Taj, T9r, T9w, T9G;
|
||
|
E Ta3, T9F, Te, T17, T1h, Tp, Tu, TE, T11, TD, T1p, T2m, T2y, T1C, T1U;
|
||
|
E T28, T2i, T24, T7Y, T8R, T91, T89, T8e, T8o, T8L, T8n, T99, Ta6, Tai, T9m;
|
||
|
E T9E, T9S, Ta2, T9O, T2H, T3E, T3Q, T2U, T3c, T3q, T3A, T3m, T46, T4Z, T59;
|
||
|
E T4h, T4m, T4w, T4T, T4v, T5h, T6e, T6q, T5u, T5M, T60, T6a, T5W, T6G, T7z;
|
||
|
E T7J, T6R, T6W, T76, T7t, T75, T2O, T3H, T3R, T2Z, T34, T3e, T3B, T3d, T3Z;
|
||
|
E T4W, T58, T4c, T4u, T4I, T4S, T4E, T5o, T6h, T6r, T5z, T5E, T5O, T6b, T5N;
|
||
|
E T6z, T7w, T7I, T6M, T74, T7i, T7s, T7e;
|
||
|
{
|
||
|
E T3, Ty, Tj, TY, T6, Tg, TB, TZ;
|
||
|
{
|
||
|
E T1, T2, Th, Ti;
|
||
|
T1 = rio[0];
|
||
|
T2 = rio[WS(rs, 4)];
|
||
|
T3 = T1 + T2;
|
||
|
Ty = T1 - T2;
|
||
|
Th = iio[0];
|
||
|
Ti = iio[WS(rs, 4)];
|
||
|
Tj = Th - Ti;
|
||
|
TY = Th + Ti;
|
||
|
}
|
||
|
{
|
||
|
E T4, T5, Tz, TA;
|
||
|
T4 = rio[WS(rs, 2)];
|
||
|
T5 = rio[WS(rs, 6)];
|
||
|
T6 = T4 + T5;
|
||
|
Tg = T4 - T5;
|
||
|
Tz = iio[WS(rs, 2)];
|
||
|
TA = iio[WS(rs, 6)];
|
||
|
TB = Tz - TA;
|
||
|
TZ = Tz + TA;
|
||
|
}
|
||
|
T7 = T3 + T6;
|
||
|
T14 = T3 - T6;
|
||
|
T1g = TY + TZ;
|
||
|
Tk = Tg + Tj;
|
||
|
TC = Ty - TB;
|
||
|
TQ = Tj - Tg;
|
||
|
T10 = TY - TZ;
|
||
|
TM = Ty + TB;
|
||
|
}
|
||
|
{
|
||
|
E T1s, T1I, T1L, T2n, T1v, T1D, T1G, T2o;
|
||
|
{
|
||
|
E T1q, T1r, T1J, T1K;
|
||
|
T1q = rio[WS(vs, 1) + WS(rs, 1)];
|
||
|
T1r = rio[WS(vs, 1) + WS(rs, 5)];
|
||
|
T1s = T1q + T1r;
|
||
|
T1I = T1q - T1r;
|
||
|
T1J = iio[WS(vs, 1) + WS(rs, 1)];
|
||
|
T1K = iio[WS(vs, 1) + WS(rs, 5)];
|
||
|
T1L = T1J - T1K;
|
||
|
T2n = T1J + T1K;
|
||
|
}
|
||
|
{
|
||
|
E T1t, T1u, T1E, T1F;
|
||
|
T1t = rio[WS(vs, 1) + WS(rs, 7)];
|
||
|
T1u = rio[WS(vs, 1) + WS(rs, 3)];
|
||
|
T1v = T1t + T1u;
|
||
|
T1D = T1t - T1u;
|
||
|
T1E = iio[WS(vs, 1) + WS(rs, 7)];
|
||
|
T1F = iio[WS(vs, 1) + WS(rs, 3)];
|
||
|
T1G = T1E - T1F;
|
||
|
T2o = T1E + T1F;
|
||
|
}
|
||
|
T1w = T1s + T1v;
|
||
|
T2p = T2n - T2o;
|
||
|
T2z = T2n + T2o;
|
||
|
T1H = T1D - T1G;
|
||
|
T1M = T1I + T1L;
|
||
|
T1W = T1D + T1G;
|
||
|
T2j = T1v - T1s;
|
||
|
T1V = T1L - T1I;
|
||
|
}
|
||
|
{
|
||
|
E T7N, T8i, T83, T8I, T7Q, T80, T8l, T8J;
|
||
|
{
|
||
|
E T7L, T7M, T81, T82;
|
||
|
T7L = rio[WS(vs, 6)];
|
||
|
T7M = rio[WS(vs, 6) + WS(rs, 4)];
|
||
|
T7N = T7L + T7M;
|
||
|
T8i = T7L - T7M;
|
||
|
T81 = iio[WS(vs, 6)];
|
||
|
T82 = iio[WS(vs, 6) + WS(rs, 4)];
|
||
|
T83 = T81 - T82;
|
||
|
T8I = T81 + T82;
|
||
|
}
|
||
|
{
|
||
|
E T7O, T7P, T8j, T8k;
|
||
|
T7O = rio[WS(vs, 6) + WS(rs, 2)];
|
||
|
T7P = rio[WS(vs, 6) + WS(rs, 6)];
|
||
|
T7Q = T7O + T7P;
|
||
|
T80 = T7O - T7P;
|
||
|
T8j = iio[WS(vs, 6) + WS(rs, 2)];
|
||
|
T8k = iio[WS(vs, 6) + WS(rs, 6)];
|
||
|
T8l = T8j - T8k;
|
||
|
T8J = T8j + T8k;
|
||
|
}
|
||
|
T7R = T7N + T7Q;
|
||
|
T8O = T7N - T7Q;
|
||
|
T90 = T8I + T8J;
|
||
|
T84 = T80 + T83;
|
||
|
T8m = T8i - T8l;
|
||
|
T8A = T83 - T80;
|
||
|
T8K = T8I - T8J;
|
||
|
T8w = T8i + T8l;
|
||
|
}
|
||
|
{
|
||
|
E T9c, T9s, T9v, Ta7, T9f, T9n, T9q, Ta8;
|
||
|
{
|
||
|
E T9a, T9b, T9t, T9u;
|
||
|
T9a = rio[WS(vs, 7) + WS(rs, 1)];
|
||
|
T9b = rio[WS(vs, 7) + WS(rs, 5)];
|
||
|
T9c = T9a + T9b;
|
||
|
T9s = T9a - T9b;
|
||
|
T9t = iio[WS(vs, 7) + WS(rs, 1)];
|
||
|
T9u = iio[WS(vs, 7) + WS(rs, 5)];
|
||
|
T9v = T9t - T9u;
|
||
|
Ta7 = T9t + T9u;
|
||
|
}
|
||
|
{
|
||
|
E T9d, T9e, T9o, T9p;
|
||
|
T9d = rio[WS(vs, 7) + WS(rs, 7)];
|
||
|
T9e = rio[WS(vs, 7) + WS(rs, 3)];
|
||
|
T9f = T9d + T9e;
|
||
|
T9n = T9d - T9e;
|
||
|
T9o = iio[WS(vs, 7) + WS(rs, 7)];
|
||
|
T9p = iio[WS(vs, 7) + WS(rs, 3)];
|
||
|
T9q = T9o - T9p;
|
||
|
Ta8 = T9o + T9p;
|
||
|
}
|
||
|
T9g = T9c + T9f;
|
||
|
Ta9 = Ta7 - Ta8;
|
||
|
Taj = Ta7 + Ta8;
|
||
|
T9r = T9n - T9q;
|
||
|
T9w = T9s + T9v;
|
||
|
T9G = T9n + T9q;
|
||
|
Ta3 = T9f - T9c;
|
||
|
T9F = T9v - T9s;
|
||
|
}
|
||
|
{
|
||
|
E Ta, Tq, Tt, T15, Td, Tl, To, T16;
|
||
|
{
|
||
|
E T8, T9, Tr, Ts;
|
||
|
T8 = rio[WS(rs, 1)];
|
||
|
T9 = rio[WS(rs, 5)];
|
||
|
Ta = T8 + T9;
|
||
|
Tq = T8 - T9;
|
||
|
Tr = iio[WS(rs, 1)];
|
||
|
Ts = iio[WS(rs, 5)];
|
||
|
Tt = Tr - Ts;
|
||
|
T15 = Tr + Ts;
|
||
|
}
|
||
|
{
|
||
|
E Tb, Tc, Tm, Tn;
|
||
|
Tb = rio[WS(rs, 7)];
|
||
|
Tc = rio[WS(rs, 3)];
|
||
|
Td = Tb + Tc;
|
||
|
Tl = Tb - Tc;
|
||
|
Tm = iio[WS(rs, 7)];
|
||
|
Tn = iio[WS(rs, 3)];
|
||
|
To = Tm - Tn;
|
||
|
T16 = Tm + Tn;
|
||
|
}
|
||
|
Te = Ta + Td;
|
||
|
T17 = T15 - T16;
|
||
|
T1h = T15 + T16;
|
||
|
Tp = Tl - To;
|
||
|
Tu = Tq + Tt;
|
||
|
TE = Tl + To;
|
||
|
T11 = Td - Ta;
|
||
|
TD = Tt - Tq;
|
||
|
}
|
||
|
{
|
||
|
E T1l, T1Q, T1B, T2g, T1o, T1y, T1T, T2h;
|
||
|
{
|
||
|
E T1j, T1k, T1z, T1A;
|
||
|
T1j = rio[WS(vs, 1)];
|
||
|
T1k = rio[WS(vs, 1) + WS(rs, 4)];
|
||
|
T1l = T1j + T1k;
|
||
|
T1Q = T1j - T1k;
|
||
|
T1z = iio[WS(vs, 1)];
|
||
|
T1A = iio[WS(vs, 1) + WS(rs, 4)];
|
||
|
T1B = T1z - T1A;
|
||
|
T2g = T1z + T1A;
|
||
|
}
|
||
|
{
|
||
|
E T1m, T1n, T1R, T1S;
|
||
|
T1m = rio[WS(vs, 1) + WS(rs, 2)];
|
||
|
T1n = rio[WS(vs, 1) + WS(rs, 6)];
|
||
|
T1o = T1m + T1n;
|
||
|
T1y = T1m - T1n;
|
||
|
T1R = iio[WS(vs, 1) + WS(rs, 2)];
|
||
|
T1S = iio[WS(vs, 1) + WS(rs, 6)];
|
||
|
T1T = T1R - T1S;
|
||
|
T2h = T1R + T1S;
|
||
|
}
|
||
|
T1p = T1l + T1o;
|
||
|
T2m = T1l - T1o;
|
||
|
T2y = T2g + T2h;
|
||
|
T1C = T1y + T1B;
|
||
|
T1U = T1Q - T1T;
|
||
|
T28 = T1B - T1y;
|
||
|
T2i = T2g - T2h;
|
||
|
T24 = T1Q + T1T;
|
||
|
}
|
||
|
{
|
||
|
E T7U, T8a, T8d, T8P, T7X, T85, T88, T8Q;
|
||
|
{
|
||
|
E T7S, T7T, T8b, T8c;
|
||
|
T7S = rio[WS(vs, 6) + WS(rs, 1)];
|
||
|
T7T = rio[WS(vs, 6) + WS(rs, 5)];
|
||
|
T7U = T7S + T7T;
|
||
|
T8a = T7S - T7T;
|
||
|
T8b = iio[WS(vs, 6) + WS(rs, 1)];
|
||
|
T8c = iio[WS(vs, 6) + WS(rs, 5)];
|
||
|
T8d = T8b - T8c;
|
||
|
T8P = T8b + T8c;
|
||
|
}
|
||
|
{
|
||
|
E T7V, T7W, T86, T87;
|
||
|
T7V = rio[WS(vs, 6) + WS(rs, 7)];
|
||
|
T7W = rio[WS(vs, 6) + WS(rs, 3)];
|
||
|
T7X = T7V + T7W;
|
||
|
T85 = T7V - T7W;
|
||
|
T86 = iio[WS(vs, 6) + WS(rs, 7)];
|
||
|
T87 = iio[WS(vs, 6) + WS(rs, 3)];
|
||
|
T88 = T86 - T87;
|
||
|
T8Q = T86 + T87;
|
||
|
}
|
||
|
T7Y = T7U + T7X;
|
||
|
T8R = T8P - T8Q;
|
||
|
T91 = T8P + T8Q;
|
||
|
T89 = T85 - T88;
|
||
|
T8e = T8a + T8d;
|
||
|
T8o = T85 + T88;
|
||
|
T8L = T7X - T7U;
|
||
|
T8n = T8d - T8a;
|
||
|
}
|
||
|
{
|
||
|
E T95, T9A, T9l, Ta0, T98, T9i, T9D, Ta1;
|
||
|
{
|
||
|
E T93, T94, T9j, T9k;
|
||
|
T93 = rio[WS(vs, 7)];
|
||
|
T94 = rio[WS(vs, 7) + WS(rs, 4)];
|
||
|
T95 = T93 + T94;
|
||
|
T9A = T93 - T94;
|
||
|
T9j = iio[WS(vs, 7)];
|
||
|
T9k = iio[WS(vs, 7) + WS(rs, 4)];
|
||
|
T9l = T9j - T9k;
|
||
|
Ta0 = T9j + T9k;
|
||
|
}
|
||
|
{
|
||
|
E T96, T97, T9B, T9C;
|
||
|
T96 = rio[WS(vs, 7) + WS(rs, 2)];
|
||
|
T97 = rio[WS(vs, 7) + WS(rs, 6)];
|
||
|
T98 = T96 + T97;
|
||
|
T9i = T96 - T97;
|
||
|
T9B = iio[WS(vs, 7) + WS(rs, 2)];
|
||
|
T9C = iio[WS(vs, 7) + WS(rs, 6)];
|
||
|
T9D = T9B - T9C;
|
||
|
Ta1 = T9B + T9C;
|
||
|
}
|
||
|
T99 = T95 + T98;
|
||
|
Ta6 = T95 - T98;
|
||
|
Tai = Ta0 + Ta1;
|
||
|
T9m = T9i + T9l;
|
||
|
T9E = T9A - T9D;
|
||
|
T9S = T9l - T9i;
|
||
|
Ta2 = Ta0 - Ta1;
|
||
|
T9O = T9A + T9D;
|
||
|
}
|
||
|
{
|
||
|
E T2D, T38, T2T, T3y, T2G, T2Q, T3b, T3z;
|
||
|
{
|
||
|
E T2B, T2C, T2R, T2S;
|
||
|
T2B = rio[WS(vs, 2)];
|
||
|
T2C = rio[WS(vs, 2) + WS(rs, 4)];
|
||
|
T2D = T2B + T2C;
|
||
|
T38 = T2B - T2C;
|
||
|
T2R = iio[WS(vs, 2)];
|
||
|
T2S = iio[WS(vs, 2) + WS(rs, 4)];
|
||
|
T2T = T2R - T2S;
|
||
|
T3y = T2R + T2S;
|
||
|
}
|
||
|
{
|
||
|
E T2E, T2F, T39, T3a;
|
||
|
T2E = rio[WS(vs, 2) + WS(rs, 2)];
|
||
|
T2F = rio[WS(vs, 2) + WS(rs, 6)];
|
||
|
T2G = T2E + T2F;
|
||
|
T2Q = T2E - T2F;
|
||
|
T39 = iio[WS(vs, 2) + WS(rs, 2)];
|
||
|
T3a = iio[WS(vs, 2) + WS(rs, 6)];
|
||
|
T3b = T39 - T3a;
|
||
|
T3z = T39 + T3a;
|
||
|
}
|
||
|
T2H = T2D + T2G;
|
||
|
T3E = T2D - T2G;
|
||
|
T3Q = T3y + T3z;
|
||
|
T2U = T2Q + T2T;
|
||
|
T3c = T38 - T3b;
|
||
|
T3q = T2T - T2Q;
|
||
|
T3A = T3y - T3z;
|
||
|
T3m = T38 + T3b;
|
||
|
}
|
||
|
{
|
||
|
E T42, T4i, T4l, T4X, T45, T4d, T4g, T4Y;
|
||
|
{
|
||
|
E T40, T41, T4j, T4k;
|
||
|
T40 = rio[WS(vs, 3) + WS(rs, 1)];
|
||
|
T41 = rio[WS(vs, 3) + WS(rs, 5)];
|
||
|
T42 = T40 + T41;
|
||
|
T4i = T40 - T41;
|
||
|
T4j = iio[WS(vs, 3) + WS(rs, 1)];
|
||
|
T4k = iio[WS(vs, 3) + WS(rs, 5)];
|
||
|
T4l = T4j - T4k;
|
||
|
T4X = T4j + T4k;
|
||
|
}
|
||
|
{
|
||
|
E T43, T44, T4e, T4f;
|
||
|
T43 = rio[WS(vs, 3) + WS(rs, 7)];
|
||
|
T44 = rio[WS(vs, 3) + WS(rs, 3)];
|
||
|
T45 = T43 + T44;
|
||
|
T4d = T43 - T44;
|
||
|
T4e = iio[WS(vs, 3) + WS(rs, 7)];
|
||
|
T4f = iio[WS(vs, 3) + WS(rs, 3)];
|
||
|
T4g = T4e - T4f;
|
||
|
T4Y = T4e + T4f;
|
||
|
}
|
||
|
T46 = T42 + T45;
|
||
|
T4Z = T4X - T4Y;
|
||
|
T59 = T4X + T4Y;
|
||
|
T4h = T4d - T4g;
|
||
|
T4m = T4i + T4l;
|
||
|
T4w = T4d + T4g;
|
||
|
T4T = T45 - T42;
|
||
|
T4v = T4l - T4i;
|
||
|
}
|
||
|
{
|
||
|
E T5d, T5I, T5t, T68, T5g, T5q, T5L, T69;
|
||
|
{
|
||
|
E T5b, T5c, T5r, T5s;
|
||
|
T5b = rio[WS(vs, 4)];
|
||
|
T5c = rio[WS(vs, 4) + WS(rs, 4)];
|
||
|
T5d = T5b + T5c;
|
||
|
T5I = T5b - T5c;
|
||
|
T5r = iio[WS(vs, 4)];
|
||
|
T5s = iio[WS(vs, 4) + WS(rs, 4)];
|
||
|
T5t = T5r - T5s;
|
||
|
T68 = T5r + T5s;
|
||
|
}
|
||
|
{
|
||
|
E T5e, T5f, T5J, T5K;
|
||
|
T5e = rio[WS(vs, 4) + WS(rs, 2)];
|
||
|
T5f = rio[WS(vs, 4) + WS(rs, 6)];
|
||
|
T5g = T5e + T5f;
|
||
|
T5q = T5e - T5f;
|
||
|
T5J = iio[WS(vs, 4) + WS(rs, 2)];
|
||
|
T5K = iio[WS(vs, 4) + WS(rs, 6)];
|
||
|
T5L = T5J - T5K;
|
||
|
T69 = T5J + T5K;
|
||
|
}
|
||
|
T5h = T5d + T5g;
|
||
|
T6e = T5d - T5g;
|
||
|
T6q = T68 + T69;
|
||
|
T5u = T5q + T5t;
|
||
|
T5M = T5I - T5L;
|
||
|
T60 = T5t - T5q;
|
||
|
T6a = T68 - T69;
|
||
|
T5W = T5I + T5L;
|
||
|
}
|
||
|
{
|
||
|
E T6C, T6S, T6V, T7x, T6F, T6N, T6Q, T7y;
|
||
|
{
|
||
|
E T6A, T6B, T6T, T6U;
|
||
|
T6A = rio[WS(vs, 5) + WS(rs, 1)];
|
||
|
T6B = rio[WS(vs, 5) + WS(rs, 5)];
|
||
|
T6C = T6A + T6B;
|
||
|
T6S = T6A - T6B;
|
||
|
T6T = iio[WS(vs, 5) + WS(rs, 1)];
|
||
|
T6U = iio[WS(vs, 5) + WS(rs, 5)];
|
||
|
T6V = T6T - T6U;
|
||
|
T7x = T6T + T6U;
|
||
|
}
|
||
|
{
|
||
|
E T6D, T6E, T6O, T6P;
|
||
|
T6D = rio[WS(vs, 5) + WS(rs, 7)];
|
||
|
T6E = rio[WS(vs, 5) + WS(rs, 3)];
|
||
|
T6F = T6D + T6E;
|
||
|
T6N = T6D - T6E;
|
||
|
T6O = iio[WS(vs, 5) + WS(rs, 7)];
|
||
|
T6P = iio[WS(vs, 5) + WS(rs, 3)];
|
||
|
T6Q = T6O - T6P;
|
||
|
T7y = T6O + T6P;
|
||
|
}
|
||
|
T6G = T6C + T6F;
|
||
|
T7z = T7x - T7y;
|
||
|
T7J = T7x + T7y;
|
||
|
T6R = T6N - T6Q;
|
||
|
T6W = T6S + T6V;
|
||
|
T76 = T6N + T6Q;
|
||
|
T7t = T6F - T6C;
|
||
|
T75 = T6V - T6S;
|
||
|
}
|
||
|
{
|
||
|
E T2K, T30, T33, T3F, T2N, T2V, T2Y, T3G;
|
||
|
{
|
||
|
E T2I, T2J, T31, T32;
|
||
|
T2I = rio[WS(vs, 2) + WS(rs, 1)];
|
||
|
T2J = rio[WS(vs, 2) + WS(rs, 5)];
|
||
|
T2K = T2I + T2J;
|
||
|
T30 = T2I - T2J;
|
||
|
T31 = iio[WS(vs, 2) + WS(rs, 1)];
|
||
|
T32 = iio[WS(vs, 2) + WS(rs, 5)];
|
||
|
T33 = T31 - T32;
|
||
|
T3F = T31 + T32;
|
||
|
}
|
||
|
{
|
||
|
E T2L, T2M, T2W, T2X;
|
||
|
T2L = rio[WS(vs, 2) + WS(rs, 7)];
|
||
|
T2M = rio[WS(vs, 2) + WS(rs, 3)];
|
||
|
T2N = T2L + T2M;
|
||
|
T2V = T2L - T2M;
|
||
|
T2W = iio[WS(vs, 2) + WS(rs, 7)];
|
||
|
T2X = iio[WS(vs, 2) + WS(rs, 3)];
|
||
|
T2Y = T2W - T2X;
|
||
|
T3G = T2W + T2X;
|
||
|
}
|
||
|
T2O = T2K + T2N;
|
||
|
T3H = T3F - T3G;
|
||
|
T3R = T3F + T3G;
|
||
|
T2Z = T2V - T2Y;
|
||
|
T34 = T30 + T33;
|
||
|
T3e = T2V + T2Y;
|
||
|
T3B = T2N - T2K;
|
||
|
T3d = T33 - T30;
|
||
|
}
|
||
|
{
|
||
|
E T3V, T4q, T4b, T4Q, T3Y, T48, T4t, T4R;
|
||
|
{
|
||
|
E T3T, T3U, T49, T4a;
|
||
|
T3T = rio[WS(vs, 3)];
|
||
|
T3U = rio[WS(vs, 3) + WS(rs, 4)];
|
||
|
T3V = T3T + T3U;
|
||
|
T4q = T3T - T3U;
|
||
|
T49 = iio[WS(vs, 3)];
|
||
|
T4a = iio[WS(vs, 3) + WS(rs, 4)];
|
||
|
T4b = T49 - T4a;
|
||
|
T4Q = T49 + T4a;
|
||
|
}
|
||
|
{
|
||
|
E T3W, T3X, T4r, T4s;
|
||
|
T3W = rio[WS(vs, 3) + WS(rs, 2)];
|
||
|
T3X = rio[WS(vs, 3) + WS(rs, 6)];
|
||
|
T3Y = T3W + T3X;
|
||
|
T48 = T3W - T3X;
|
||
|
T4r = iio[WS(vs, 3) + WS(rs, 2)];
|
||
|
T4s = iio[WS(vs, 3) + WS(rs, 6)];
|
||
|
T4t = T4r - T4s;
|
||
|
T4R = T4r + T4s;
|
||
|
}
|
||
|
T3Z = T3V + T3Y;
|
||
|
T4W = T3V - T3Y;
|
||
|
T58 = T4Q + T4R;
|
||
|
T4c = T48 + T4b;
|
||
|
T4u = T4q - T4t;
|
||
|
T4I = T4b - T48;
|
||
|
T4S = T4Q - T4R;
|
||
|
T4E = T4q + T4t;
|
||
|
}
|
||
|
{
|
||
|
E T5k, T5A, T5D, T6f, T5n, T5v, T5y, T6g;
|
||
|
{
|
||
|
E T5i, T5j, T5B, T5C;
|
||
|
T5i = rio[WS(vs, 4) + WS(rs, 1)];
|
||
|
T5j = rio[WS(vs, 4) + WS(rs, 5)];
|
||
|
T5k = T5i + T5j;
|
||
|
T5A = T5i - T5j;
|
||
|
T5B = iio[WS(vs, 4) + WS(rs, 1)];
|
||
|
T5C = iio[WS(vs, 4) + WS(rs, 5)];
|
||
|
T5D = T5B - T5C;
|
||
|
T6f = T5B + T5C;
|
||
|
}
|
||
|
{
|
||
|
E T5l, T5m, T5w, T5x;
|
||
|
T5l = rio[WS(vs, 4) + WS(rs, 7)];
|
||
|
T5m = rio[WS(vs, 4) + WS(rs, 3)];
|
||
|
T5n = T5l + T5m;
|
||
|
T5v = T5l - T5m;
|
||
|
T5w = iio[WS(vs, 4) + WS(rs, 7)];
|
||
|
T5x = iio[WS(vs, 4) + WS(rs, 3)];
|
||
|
T5y = T5w - T5x;
|
||
|
T6g = T5w + T5x;
|
||
|
}
|
||
|
T5o = T5k + T5n;
|
||
|
T6h = T6f - T6g;
|
||
|
T6r = T6f + T6g;
|
||
|
T5z = T5v - T5y;
|
||
|
T5E = T5A + T5D;
|
||
|
T5O = T5v + T5y;
|
||
|
T6b = T5n - T5k;
|
||
|
T5N = T5D - T5A;
|
||
|
}
|
||
|
{
|
||
|
E T6v, T70, T6L, T7q, T6y, T6I, T73, T7r;
|
||
|
{
|
||
|
E T6t, T6u, T6J, T6K;
|
||
|
T6t = rio[WS(vs, 5)];
|
||
|
T6u = rio[WS(vs, 5) + WS(rs, 4)];
|
||
|
T6v = T6t + T6u;
|
||
|
T70 = T6t - T6u;
|
||
|
T6J = iio[WS(vs, 5)];
|
||
|
T6K = iio[WS(vs, 5) + WS(rs, 4)];
|
||
|
T6L = T6J - T6K;
|
||
|
T7q = T6J + T6K;
|
||
|
}
|
||
|
{
|
||
|
E T6w, T6x, T71, T72;
|
||
|
T6w = rio[WS(vs, 5) + WS(rs, 2)];
|
||
|
T6x = rio[WS(vs, 5) + WS(rs, 6)];
|
||
|
T6y = T6w + T6x;
|
||
|
T6I = T6w - T6x;
|
||
|
T71 = iio[WS(vs, 5) + WS(rs, 2)];
|
||
|
T72 = iio[WS(vs, 5) + WS(rs, 6)];
|
||
|
T73 = T71 - T72;
|
||
|
T7r = T71 + T72;
|
||
|
}
|
||
|
T6z = T6v + T6y;
|
||
|
T7w = T6v - T6y;
|
||
|
T7I = T7q + T7r;
|
||
|
T6M = T6I + T6L;
|
||
|
T74 = T70 - T73;
|
||
|
T7i = T6L - T6I;
|
||
|
T7s = T7q - T7r;
|
||
|
T7e = T70 + T73;
|
||
|
}
|
||
|
rio[0] = T7 + Te;
|
||
|
iio[0] = T1g + T1h;
|
||
|
rio[WS(rs, 1)] = T1p + T1w;
|
||
|
iio[WS(rs, 1)] = T2y + T2z;
|
||
|
rio[WS(rs, 3)] = T3Z + T46;
|
||
|
rio[WS(rs, 2)] = T2H + T2O;
|
||
|
iio[WS(rs, 2)] = T3Q + T3R;
|
||
|
iio[WS(rs, 3)] = T58 + T59;
|
||
|
rio[WS(rs, 6)] = T7R + T7Y;
|
||
|
iio[WS(rs, 6)] = T90 + T91;
|
||
|
iio[WS(rs, 5)] = T7I + T7J;
|
||
|
rio[WS(rs, 5)] = T6z + T6G;
|
||
|
iio[WS(rs, 4)] = T6q + T6r;
|
||
|
rio[WS(rs, 4)] = T5h + T5o;
|
||
|
rio[WS(rs, 7)] = T99 + T9g;
|
||
|
iio[WS(rs, 7)] = Tai + Taj;
|
||
|
{
|
||
|
E T12, T18, TX, T13;
|
||
|
T12 = T10 - T11;
|
||
|
T18 = T14 - T17;
|
||
|
TX = W[10];
|
||
|
T13 = W[11];
|
||
|
iio[WS(vs, 6)] = FNMS(T13, T18, TX * T12);
|
||
|
rio[WS(vs, 6)] = FMA(T13, T12, TX * T18);
|
||
|
}
|
||
|
{
|
||
|
E Tag, Tak, Taf, Tah;
|
||
|
Tag = T99 - T9g;
|
||
|
Tak = Tai - Taj;
|
||
|
Taf = W[6];
|
||
|
Tah = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 7)] = FMA(Taf, Tag, Tah * Tak);
|
||
|
iio[WS(vs, 4) + WS(rs, 7)] = FNMS(Tah, Tag, Taf * Tak);
|
||
|
}
|
||
|
{
|
||
|
E T8M, T8S, T8H, T8N;
|
||
|
T8M = T8K - T8L;
|
||
|
T8S = T8O - T8R;
|
||
|
T8H = W[10];
|
||
|
T8N = W[11];
|
||
|
iio[WS(vs, 6) + WS(rs, 6)] = FNMS(T8N, T8S, T8H * T8M);
|
||
|
rio[WS(vs, 6) + WS(rs, 6)] = FMA(T8N, T8M, T8H * T8S);
|
||
|
}
|
||
|
{
|
||
|
E T2k, T2q, T2f, T2l;
|
||
|
T2k = T2i - T2j;
|
||
|
T2q = T2m - T2p;
|
||
|
T2f = W[10];
|
||
|
T2l = W[11];
|
||
|
iio[WS(vs, 6) + WS(rs, 1)] = FNMS(T2l, T2q, T2f * T2k);
|
||
|
rio[WS(vs, 6) + WS(rs, 1)] = FMA(T2l, T2k, T2f * T2q);
|
||
|
}
|
||
|
{
|
||
|
E Ta4, Taa, T9Z, Ta5;
|
||
|
Ta4 = Ta2 - Ta3;
|
||
|
Taa = Ta6 - Ta9;
|
||
|
T9Z = W[10];
|
||
|
Ta5 = W[11];
|
||
|
iio[WS(vs, 6) + WS(rs, 7)] = FNMS(Ta5, Taa, T9Z * Ta4);
|
||
|
rio[WS(vs, 6) + WS(rs, 7)] = FMA(Ta5, Ta4, T9Z * Taa);
|
||
|
}
|
||
|
{
|
||
|
E T8Y, T92, T8X, T8Z;
|
||
|
T8Y = T7R - T7Y;
|
||
|
T92 = T90 - T91;
|
||
|
T8X = W[6];
|
||
|
T8Z = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 6)] = FMA(T8X, T8Y, T8Z * T92);
|
||
|
iio[WS(vs, 4) + WS(rs, 6)] = FNMS(T8Z, T8Y, T8X * T92);
|
||
|
}
|
||
|
{
|
||
|
E T2w, T2A, T2v, T2x;
|
||
|
T2w = T1p - T1w;
|
||
|
T2A = T2y - T2z;
|
||
|
T2v = W[6];
|
||
|
T2x = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 1)] = FMA(T2v, T2w, T2x * T2A);
|
||
|
iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T2x, T2w, T2v * T2A);
|
||
|
}
|
||
|
{
|
||
|
E Tac, Tae, Tab, Tad;
|
||
|
Tac = Ta3 + Ta2;
|
||
|
Tae = Ta6 + Ta9;
|
||
|
Tab = W[2];
|
||
|
Tad = W[3];
|
||
|
iio[WS(vs, 2) + WS(rs, 7)] = FNMS(Tad, Tae, Tab * Tac);
|
||
|
rio[WS(vs, 2) + WS(rs, 7)] = FMA(Tad, Tac, Tab * Tae);
|
||
|
}
|
||
|
{
|
||
|
E T8U, T8W, T8T, T8V;
|
||
|
T8U = T8L + T8K;
|
||
|
T8W = T8O + T8R;
|
||
|
T8T = W[2];
|
||
|
T8V = W[3];
|
||
|
iio[WS(vs, 2) + WS(rs, 6)] = FNMS(T8V, T8W, T8T * T8U);
|
||
|
rio[WS(vs, 2) + WS(rs, 6)] = FMA(T8V, T8U, T8T * T8W);
|
||
|
}
|
||
|
{
|
||
|
E T1a, T1c, T19, T1b;
|
||
|
T1a = T11 + T10;
|
||
|
T1c = T14 + T17;
|
||
|
T19 = W[2];
|
||
|
T1b = W[3];
|
||
|
iio[WS(vs, 2)] = FNMS(T1b, T1c, T19 * T1a);
|
||
|
rio[WS(vs, 2)] = FMA(T1b, T1a, T19 * T1c);
|
||
|
}
|
||
|
{
|
||
|
E T1e, T1i, T1d, T1f;
|
||
|
T1e = T7 - Te;
|
||
|
T1i = T1g - T1h;
|
||
|
T1d = W[6];
|
||
|
T1f = W[7];
|
||
|
rio[WS(vs, 4)] = FMA(T1d, T1e, T1f * T1i);
|
||
|
iio[WS(vs, 4)] = FNMS(T1f, T1e, T1d * T1i);
|
||
|
}
|
||
|
{
|
||
|
E T2s, T2u, T2r, T2t;
|
||
|
T2s = T2j + T2i;
|
||
|
T2u = T2m + T2p;
|
||
|
T2r = W[2];
|
||
|
T2t = W[3];
|
||
|
iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T2t, T2u, T2r * T2s);
|
||
|
rio[WS(vs, 2) + WS(rs, 1)] = FMA(T2t, T2s, T2r * T2u);
|
||
|
}
|
||
|
{
|
||
|
E T3C, T3I, T3x, T3D;
|
||
|
T3C = T3A - T3B;
|
||
|
T3I = T3E - T3H;
|
||
|
T3x = W[10];
|
||
|
T3D = W[11];
|
||
|
iio[WS(vs, 6) + WS(rs, 2)] = FNMS(T3D, T3I, T3x * T3C);
|
||
|
rio[WS(vs, 6) + WS(rs, 2)] = FMA(T3D, T3C, T3x * T3I);
|
||
|
}
|
||
|
{
|
||
|
E T4U, T50, T4P, T4V;
|
||
|
T4U = T4S - T4T;
|
||
|
T50 = T4W - T4Z;
|
||
|
T4P = W[10];
|
||
|
T4V = W[11];
|
||
|
iio[WS(vs, 6) + WS(rs, 3)] = FNMS(T4V, T50, T4P * T4U);
|
||
|
rio[WS(vs, 6) + WS(rs, 3)] = FMA(T4V, T4U, T4P * T50);
|
||
|
}
|
||
|
{
|
||
|
E T56, T5a, T55, T57;
|
||
|
T56 = T3Z - T46;
|
||
|
T5a = T58 - T59;
|
||
|
T55 = W[6];
|
||
|
T57 = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 3)] = FMA(T55, T56, T57 * T5a);
|
||
|
iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T57, T56, T55 * T5a);
|
||
|
}
|
||
|
{
|
||
|
E T6o, T6s, T6n, T6p;
|
||
|
T6o = T5h - T5o;
|
||
|
T6s = T6q - T6r;
|
||
|
T6n = W[6];
|
||
|
T6p = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 4)] = FMA(T6n, T6o, T6p * T6s);
|
||
|
iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T6p, T6o, T6n * T6s);
|
||
|
}
|
||
|
{
|
||
|
E T7u, T7A, T7p, T7v;
|
||
|
T7u = T7s - T7t;
|
||
|
T7A = T7w - T7z;
|
||
|
T7p = W[10];
|
||
|
T7v = W[11];
|
||
|
iio[WS(vs, 6) + WS(rs, 5)] = FNMS(T7v, T7A, T7p * T7u);
|
||
|
rio[WS(vs, 6) + WS(rs, 5)] = FMA(T7v, T7u, T7p * T7A);
|
||
|
}
|
||
|
{
|
||
|
E T6c, T6i, T67, T6d;
|
||
|
T6c = T6a - T6b;
|
||
|
T6i = T6e - T6h;
|
||
|
T67 = W[10];
|
||
|
T6d = W[11];
|
||
|
iio[WS(vs, 6) + WS(rs, 4)] = FNMS(T6d, T6i, T67 * T6c);
|
||
|
rio[WS(vs, 6) + WS(rs, 4)] = FMA(T6d, T6c, T67 * T6i);
|
||
|
}
|
||
|
{
|
||
|
E T7G, T7K, T7F, T7H;
|
||
|
T7G = T6z - T6G;
|
||
|
T7K = T7I - T7J;
|
||
|
T7F = W[6];
|
||
|
T7H = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 5)] = FMA(T7F, T7G, T7H * T7K);
|
||
|
iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T7H, T7G, T7F * T7K);
|
||
|
}
|
||
|
{
|
||
|
E T3O, T3S, T3N, T3P;
|
||
|
T3O = T2H - T2O;
|
||
|
T3S = T3Q - T3R;
|
||
|
T3N = W[6];
|
||
|
T3P = W[7];
|
||
|
rio[WS(vs, 4) + WS(rs, 2)] = FMA(T3N, T3O, T3P * T3S);
|
||
|
iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T3P, T3O, T3N * T3S);
|
||
|
}
|
||
|
{
|
||
|
E T3K, T3M, T3J, T3L;
|
||
|
T3K = T3B + T3A;
|
||
|
T3M = T3E + T3H;
|
||
|
T3J = W[2];
|
||
|
T3L = W[3];
|
||
|
iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T3L, T3M, T3J * T3K);
|
||
|
rio[WS(vs, 2) + WS(rs, 2)] = FMA(T3L, T3K, T3J * T3M);
|
||
|
}
|
||
|
{
|
||
|
E T7C, T7E, T7B, T7D;
|
||
|
T7C = T7t + T7s;
|
||
|
T7E = T7w + T7z;
|
||
|
T7B = W[2];
|
||
|
T7D = W[3];
|
||
|
iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T7D, T7E, T7B * T7C);
|
||
|
rio[WS(vs, 2) + WS(rs, 5)] = FMA(T7D, T7C, T7B * T7E);
|
||
|
}
|
||
|
{
|
||
|
E T6k, T6m, T6j, T6l;
|
||
|
T6k = T6b + T6a;
|
||
|
T6m = T6e + T6h;
|
||
|
T6j = W[2];
|
||
|
T6l = W[3];
|
||
|
iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T6l, T6m, T6j * T6k);
|
||
|
rio[WS(vs, 2) + WS(rs, 4)] = FMA(T6l, T6k, T6j * T6m);
|
||
|
}
|
||
|
{
|
||
|
E T52, T54, T51, T53;
|
||
|
T52 = T4T + T4S;
|
||
|
T54 = T4W + T4Z;
|
||
|
T51 = W[2];
|
||
|
T53 = W[3];
|
||
|
iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T53, T54, T51 * T52);
|
||
|
rio[WS(vs, 2) + WS(rs, 3)] = FMA(T53, T52, T51 * T54);
|
||
|
}
|
||
|
{
|
||
|
E T5G, T5S, T5Q, T5U, T5F, T5P;
|
||
|
T5F = KP707106781 * (T5z - T5E);
|
||
|
T5G = T5u - T5F;
|
||
|
T5S = T5u + T5F;
|
||
|
T5P = KP707106781 * (T5N - T5O);
|
||
|
T5Q = T5M - T5P;
|
||
|
T5U = T5M + T5P;
|
||
|
{
|
||
|
E T5p, T5H, T5R, T5T;
|
||
|
T5p = W[12];
|
||
|
T5H = W[13];
|
||
|
iio[WS(vs, 7) + WS(rs, 4)] = FNMS(T5H, T5Q, T5p * T5G);
|
||
|
rio[WS(vs, 7) + WS(rs, 4)] = FMA(T5H, T5G, T5p * T5Q);
|
||
|
T5R = W[4];
|
||
|
T5T = W[5];
|
||
|
iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T5T, T5U, T5R * T5S);
|
||
|
rio[WS(vs, 3) + WS(rs, 4)] = FMA(T5T, T5S, T5R * T5U);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Tw, TI, TG, TK, Tv, TF;
|
||
|
Tv = KP707106781 * (Tp - Tu);
|
||
|
Tw = Tk - Tv;
|
||
|
TI = Tk + Tv;
|
||
|
TF = KP707106781 * (TD - TE);
|
||
|
TG = TC - TF;
|
||
|
TK = TC + TF;
|
||
|
{
|
||
|
E Tf, Tx, TH, TJ;
|
||
|
Tf = W[12];
|
||
|
Tx = W[13];
|
||
|
iio[WS(vs, 7)] = FNMS(Tx, TG, Tf * Tw);
|
||
|
rio[WS(vs, 7)] = FMA(Tx, Tw, Tf * TG);
|
||
|
TH = W[4];
|
||
|
TJ = W[5];
|
||
|
iio[WS(vs, 3)] = FNMS(TJ, TK, TH * TI);
|
||
|
rio[WS(vs, 3)] = FMA(TJ, TI, TH * TK);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T9Q, T9W, T9U, T9Y, T9P, T9T;
|
||
|
T9P = KP707106781 * (T9w + T9r);
|
||
|
T9Q = T9O - T9P;
|
||
|
T9W = T9O + T9P;
|
||
|
T9T = KP707106781 * (T9F + T9G);
|
||
|
T9U = T9S - T9T;
|
||
|
T9Y = T9S + T9T;
|
||
|
{
|
||
|
E T9N, T9R, T9V, T9X;
|
||
|
T9N = W[8];
|
||
|
T9R = W[9];
|
||
|
rio[WS(vs, 5) + WS(rs, 7)] = FMA(T9N, T9Q, T9R * T9U);
|
||
|
iio[WS(vs, 5) + WS(rs, 7)] = FNMS(T9R, T9Q, T9N * T9U);
|
||
|
T9V = W[0];
|
||
|
T9X = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 7)] = FMA(T9V, T9W, T9X * T9Y);
|
||
|
iio[WS(vs, 1) + WS(rs, 7)] = FNMS(T9X, T9W, T9V * T9Y);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T36, T3i, T3g, T3k, T35, T3f;
|
||
|
T35 = KP707106781 * (T2Z - T34);
|
||
|
T36 = T2U - T35;
|
||
|
T3i = T2U + T35;
|
||
|
T3f = KP707106781 * (T3d - T3e);
|
||
|
T3g = T3c - T3f;
|
||
|
T3k = T3c + T3f;
|
||
|
{
|
||
|
E T2P, T37, T3h, T3j;
|
||
|
T2P = W[12];
|
||
|
T37 = W[13];
|
||
|
iio[WS(vs, 7) + WS(rs, 2)] = FNMS(T37, T3g, T2P * T36);
|
||
|
rio[WS(vs, 7) + WS(rs, 2)] = FMA(T37, T36, T2P * T3g);
|
||
|
T3h = W[4];
|
||
|
T3j = W[5];
|
||
|
iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T3j, T3k, T3h * T3i);
|
||
|
rio[WS(vs, 3) + WS(rs, 2)] = FMA(T3j, T3i, T3h * T3k);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T5Y, T64, T62, T66, T5X, T61;
|
||
|
T5X = KP707106781 * (T5E + T5z);
|
||
|
T5Y = T5W - T5X;
|
||
|
T64 = T5W + T5X;
|
||
|
T61 = KP707106781 * (T5N + T5O);
|
||
|
T62 = T60 - T61;
|
||
|
T66 = T60 + T61;
|
||
|
{
|
||
|
E T5V, T5Z, T63, T65;
|
||
|
T5V = W[8];
|
||
|
T5Z = W[9];
|
||
|
rio[WS(vs, 5) + WS(rs, 4)] = FMA(T5V, T5Y, T5Z * T62);
|
||
|
iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T5Z, T5Y, T5V * T62);
|
||
|
T63 = W[0];
|
||
|
T65 = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 4)] = FMA(T63, T64, T65 * T66);
|
||
|
iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T65, T64, T63 * T66);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T7g, T7m, T7k, T7o, T7f, T7j;
|
||
|
T7f = KP707106781 * (T6W + T6R);
|
||
|
T7g = T7e - T7f;
|
||
|
T7m = T7e + T7f;
|
||
|
T7j = KP707106781 * (T75 + T76);
|
||
|
T7k = T7i - T7j;
|
||
|
T7o = T7i + T7j;
|
||
|
{
|
||
|
E T7d, T7h, T7l, T7n;
|
||
|
T7d = W[8];
|
||
|
T7h = W[9];
|
||
|
rio[WS(vs, 5) + WS(rs, 5)] = FMA(T7d, T7g, T7h * T7k);
|
||
|
iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T7h, T7g, T7d * T7k);
|
||
|
T7l = W[0];
|
||
|
T7n = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 5)] = FMA(T7l, T7m, T7n * T7o);
|
||
|
iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T7n, T7m, T7l * T7o);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T8g, T8s, T8q, T8u, T8f, T8p;
|
||
|
T8f = KP707106781 * (T89 - T8e);
|
||
|
T8g = T84 - T8f;
|
||
|
T8s = T84 + T8f;
|
||
|
T8p = KP707106781 * (T8n - T8o);
|
||
|
T8q = T8m - T8p;
|
||
|
T8u = T8m + T8p;
|
||
|
{
|
||
|
E T7Z, T8h, T8r, T8t;
|
||
|
T7Z = W[12];
|
||
|
T8h = W[13];
|
||
|
iio[WS(vs, 7) + WS(rs, 6)] = FNMS(T8h, T8q, T7Z * T8g);
|
||
|
rio[WS(vs, 7) + WS(rs, 6)] = FMA(T8h, T8g, T7Z * T8q);
|
||
|
T8r = W[4];
|
||
|
T8t = W[5];
|
||
|
iio[WS(vs, 3) + WS(rs, 6)] = FNMS(T8t, T8u, T8r * T8s);
|
||
|
rio[WS(vs, 3) + WS(rs, 6)] = FMA(T8t, T8s, T8r * T8u);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T4G, T4M, T4K, T4O, T4F, T4J;
|
||
|
T4F = KP707106781 * (T4m + T4h);
|
||
|
T4G = T4E - T4F;
|
||
|
T4M = T4E + T4F;
|
||
|
T4J = KP707106781 * (T4v + T4w);
|
||
|
T4K = T4I - T4J;
|
||
|
T4O = T4I + T4J;
|
||
|
{
|
||
|
E T4D, T4H, T4L, T4N;
|
||
|
T4D = W[8];
|
||
|
T4H = W[9];
|
||
|
rio[WS(vs, 5) + WS(rs, 3)] = FMA(T4D, T4G, T4H * T4K);
|
||
|
iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T4H, T4G, T4D * T4K);
|
||
|
T4L = W[0];
|
||
|
T4N = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 3)] = FMA(T4L, T4M, T4N * T4O);
|
||
|
iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T4N, T4M, T4L * T4O);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E TO, TU, TS, TW, TN, TR;
|
||
|
TN = KP707106781 * (Tu + Tp);
|
||
|
TO = TM - TN;
|
||
|
TU = TM + TN;
|
||
|
TR = KP707106781 * (TD + TE);
|
||
|
TS = TQ - TR;
|
||
|
TW = TQ + TR;
|
||
|
{
|
||
|
E TL, TP, TT, TV;
|
||
|
TL = W[8];
|
||
|
TP = W[9];
|
||
|
rio[WS(vs, 5)] = FMA(TL, TO, TP * TS);
|
||
|
iio[WS(vs, 5)] = FNMS(TP, TO, TL * TS);
|
||
|
TT = W[0];
|
||
|
TV = W[1];
|
||
|
rio[WS(vs, 1)] = FMA(TT, TU, TV * TW);
|
||
|
iio[WS(vs, 1)] = FNMS(TV, TU, TT * TW);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T26, T2c, T2a, T2e, T25, T29;
|
||
|
T25 = KP707106781 * (T1M + T1H);
|
||
|
T26 = T24 - T25;
|
||
|
T2c = T24 + T25;
|
||
|
T29 = KP707106781 * (T1V + T1W);
|
||
|
T2a = T28 - T29;
|
||
|
T2e = T28 + T29;
|
||
|
{
|
||
|
E T23, T27, T2b, T2d;
|
||
|
T23 = W[8];
|
||
|
T27 = W[9];
|
||
|
rio[WS(vs, 5) + WS(rs, 1)] = FMA(T23, T26, T27 * T2a);
|
||
|
iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T27, T26, T23 * T2a);
|
||
|
T2b = W[0];
|
||
|
T2d = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 1)] = FMA(T2b, T2c, T2d * T2e);
|
||
|
iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T2d, T2c, T2b * T2e);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T9y, T9K, T9I, T9M, T9x, T9H;
|
||
|
T9x = KP707106781 * (T9r - T9w);
|
||
|
T9y = T9m - T9x;
|
||
|
T9K = T9m + T9x;
|
||
|
T9H = KP707106781 * (T9F - T9G);
|
||
|
T9I = T9E - T9H;
|
||
|
T9M = T9E + T9H;
|
||
|
{
|
||
|
E T9h, T9z, T9J, T9L;
|
||
|
T9h = W[12];
|
||
|
T9z = W[13];
|
||
|
iio[WS(vs, 7) + WS(rs, 7)] = FNMS(T9z, T9I, T9h * T9y);
|
||
|
rio[WS(vs, 7) + WS(rs, 7)] = FMA(T9z, T9y, T9h * T9I);
|
||
|
T9J = W[4];
|
||
|
T9L = W[5];
|
||
|
iio[WS(vs, 3) + WS(rs, 7)] = FNMS(T9L, T9M, T9J * T9K);
|
||
|
rio[WS(vs, 3) + WS(rs, 7)] = FMA(T9L, T9K, T9J * T9M);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T6Y, T7a, T78, T7c, T6X, T77;
|
||
|
T6X = KP707106781 * (T6R - T6W);
|
||
|
T6Y = T6M - T6X;
|
||
|
T7a = T6M + T6X;
|
||
|
T77 = KP707106781 * (T75 - T76);
|
||
|
T78 = T74 - T77;
|
||
|
T7c = T74 + T77;
|
||
|
{
|
||
|
E T6H, T6Z, T79, T7b;
|
||
|
T6H = W[12];
|
||
|
T6Z = W[13];
|
||
|
iio[WS(vs, 7) + WS(rs, 5)] = FNMS(T6Z, T78, T6H * T6Y);
|
||
|
rio[WS(vs, 7) + WS(rs, 5)] = FMA(T6Z, T6Y, T6H * T78);
|
||
|
T79 = W[4];
|
||
|
T7b = W[5];
|
||
|
iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T7b, T7c, T79 * T7a);
|
||
|
rio[WS(vs, 3) + WS(rs, 5)] = FMA(T7b, T7a, T79 * T7c);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1O, T20, T1Y, T22, T1N, T1X;
|
||
|
T1N = KP707106781 * (T1H - T1M);
|
||
|
T1O = T1C - T1N;
|
||
|
T20 = T1C + T1N;
|
||
|
T1X = KP707106781 * (T1V - T1W);
|
||
|
T1Y = T1U - T1X;
|
||
|
T22 = T1U + T1X;
|
||
|
{
|
||
|
E T1x, T1P, T1Z, T21;
|
||
|
T1x = W[12];
|
||
|
T1P = W[13];
|
||
|
iio[WS(vs, 7) + WS(rs, 1)] = FNMS(T1P, T1Y, T1x * T1O);
|
||
|
rio[WS(vs, 7) + WS(rs, 1)] = FMA(T1P, T1O, T1x * T1Y);
|
||
|
T1Z = W[4];
|
||
|
T21 = W[5];
|
||
|
iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T21, T22, T1Z * T20);
|
||
|
rio[WS(vs, 3) + WS(rs, 1)] = FMA(T21, T20, T1Z * T22);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T4o, T4A, T4y, T4C, T4n, T4x;
|
||
|
T4n = KP707106781 * (T4h - T4m);
|
||
|
T4o = T4c - T4n;
|
||
|
T4A = T4c + T4n;
|
||
|
T4x = KP707106781 * (T4v - T4w);
|
||
|
T4y = T4u - T4x;
|
||
|
T4C = T4u + T4x;
|
||
|
{
|
||
|
E T47, T4p, T4z, T4B;
|
||
|
T47 = W[12];
|
||
|
T4p = W[13];
|
||
|
iio[WS(vs, 7) + WS(rs, 3)] = FNMS(T4p, T4y, T47 * T4o);
|
||
|
rio[WS(vs, 7) + WS(rs, 3)] = FMA(T4p, T4o, T47 * T4y);
|
||
|
T4z = W[4];
|
||
|
T4B = W[5];
|
||
|
iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T4B, T4C, T4z * T4A);
|
||
|
rio[WS(vs, 3) + WS(rs, 3)] = FMA(T4B, T4A, T4z * T4C);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T3o, T3u, T3s, T3w, T3n, T3r;
|
||
|
T3n = KP707106781 * (T34 + T2Z);
|
||
|
T3o = T3m - T3n;
|
||
|
T3u = T3m + T3n;
|
||
|
T3r = KP707106781 * (T3d + T3e);
|
||
|
T3s = T3q - T3r;
|
||
|
T3w = T3q + T3r;
|
||
|
{
|
||
|
E T3l, T3p, T3t, T3v;
|
||
|
T3l = W[8];
|
||
|
T3p = W[9];
|
||
|
rio[WS(vs, 5) + WS(rs, 2)] = FMA(T3l, T3o, T3p * T3s);
|
||
|
iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T3p, T3o, T3l * T3s);
|
||
|
T3t = W[0];
|
||
|
T3v = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 2)] = FMA(T3t, T3u, T3v * T3w);
|
||
|
iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T3v, T3u, T3t * T3w);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T8y, T8E, T8C, T8G, T8x, T8B;
|
||
|
T8x = KP707106781 * (T8e + T89);
|
||
|
T8y = T8w - T8x;
|
||
|
T8E = T8w + T8x;
|
||
|
T8B = KP707106781 * (T8n + T8o);
|
||
|
T8C = T8A - T8B;
|
||
|
T8G = T8A + T8B;
|
||
|
{
|
||
|
E T8v, T8z, T8D, T8F;
|
||
|
T8v = W[8];
|
||
|
T8z = W[9];
|
||
|
rio[WS(vs, 5) + WS(rs, 6)] = FMA(T8v, T8y, T8z * T8C);
|
||
|
iio[WS(vs, 5) + WS(rs, 6)] = FNMS(T8z, T8y, T8v * T8C);
|
||
|
T8D = W[0];
|
||
|
T8F = W[1];
|
||
|
rio[WS(vs, 1) + WS(rs, 6)] = FMA(T8D, T8E, T8F * T8G);
|
||
|
iio[WS(vs, 1) + WS(rs, 6)] = FNMS(T8F, T8E, T8D * T8G);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 0, 8 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 8, "q1_8", twinstr, &GENUS, { 416, 144, 112, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_q1_8) (planner *p) {
|
||
|
X(kdft_difsq_register) (p, q1_8, &desc);
|
||
|
}
|
||
|
#endif
|