mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-24 13:35:11 +00:00
250 lines
8.4 KiB
C
250 lines
8.4 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:44:24 EDT 2021 */
|
||
|
|
||
|
#include "dft/codelet-dft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 7 -name n1_7 -include dft/scalar/n.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 60 FP additions, 42 FP multiplications,
|
||
|
* (or, 18 additions, 0 multiplications, 42 fused multiply/add),
|
||
|
* 41 stack variables, 6 constants, and 28 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/n.h"
|
||
|
|
||
|
static void n1_7(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DK(KP974927912, +0.974927912181823607018131682993931217232785801);
|
||
|
DK(KP900968867, +0.900968867902419126236102319507445051165919162);
|
||
|
DK(KP692021471, +0.692021471630095869627814897002069140197260599);
|
||
|
DK(KP801937735, +0.801937735804838252472204639014890102331838324);
|
||
|
DK(KP554958132, +0.554958132087371191422194871006410481067288862);
|
||
|
DK(KP356895867, +0.356895867892209443894399510021300583399127187);
|
||
|
{
|
||
|
INT i;
|
||
|
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) {
|
||
|
E T1, Tz, T4, TI, Ta, TG, T7, TH, Tb, Tp, TT, TO, TJ, Tu, Tg;
|
||
|
E TB, Tm, TC, Tj, TA, Tn, Ts, TQ, TL, TD, Tx;
|
||
|
T1 = ri[0];
|
||
|
Tz = ii[0];
|
||
|
{
|
||
|
E T2, T3, Te, Tf;
|
||
|
T2 = ri[WS(is, 1)];
|
||
|
T3 = ri[WS(is, 6)];
|
||
|
T4 = T2 + T3;
|
||
|
TI = T3 - T2;
|
||
|
{
|
||
|
E T8, T9, T5, T6;
|
||
|
T8 = ri[WS(is, 3)];
|
||
|
T9 = ri[WS(is, 4)];
|
||
|
Ta = T8 + T9;
|
||
|
TG = T9 - T8;
|
||
|
T5 = ri[WS(is, 2)];
|
||
|
T6 = ri[WS(is, 5)];
|
||
|
T7 = T5 + T6;
|
||
|
TH = T6 - T5;
|
||
|
}
|
||
|
Tb = FNMS(KP356895867, T7, T4);
|
||
|
Tp = FNMS(KP356895867, T4, Ta);
|
||
|
TT = FMA(KP554958132, TG, TI);
|
||
|
TO = FMA(KP554958132, TH, TG);
|
||
|
TJ = FNMS(KP554958132, TI, TH);
|
||
|
Tu = FNMS(KP356895867, Ta, T7);
|
||
|
Te = ii[WS(is, 2)];
|
||
|
Tf = ii[WS(is, 5)];
|
||
|
Tg = Te - Tf;
|
||
|
TB = Te + Tf;
|
||
|
{
|
||
|
E Tk, Tl, Th, Ti;
|
||
|
Tk = ii[WS(is, 3)];
|
||
|
Tl = ii[WS(is, 4)];
|
||
|
Tm = Tk - Tl;
|
||
|
TC = Tk + Tl;
|
||
|
Th = ii[WS(is, 1)];
|
||
|
Ti = ii[WS(is, 6)];
|
||
|
Tj = Th - Ti;
|
||
|
TA = Th + Ti;
|
||
|
}
|
||
|
Tn = FMA(KP554958132, Tm, Tj);
|
||
|
Ts = FMA(KP554958132, Tg, Tm);
|
||
|
TQ = FNMS(KP356895867, TB, TA);
|
||
|
TL = FNMS(KP356895867, TA, TC);
|
||
|
TD = FNMS(KP356895867, TC, TB);
|
||
|
Tx = FNMS(KP554958132, Tj, Tg);
|
||
|
}
|
||
|
ro[0] = T1 + T4 + T7 + Ta;
|
||
|
io[0] = Tz + TA + TB + TC;
|
||
|
{
|
||
|
E To, Td, Tc, TU, TS, TR;
|
||
|
To = FMA(KP801937735, Tn, Tg);
|
||
|
Tc = FNMS(KP692021471, Tb, Ta);
|
||
|
Td = FNMS(KP900968867, Tc, T1);
|
||
|
ro[WS(os, 6)] = FNMS(KP974927912, To, Td);
|
||
|
ro[WS(os, 1)] = FMA(KP974927912, To, Td);
|
||
|
TU = FMA(KP801937735, TT, TH);
|
||
|
TR = FNMS(KP692021471, TQ, TC);
|
||
|
TS = FNMS(KP900968867, TR, Tz);
|
||
|
io[WS(os, 1)] = FMA(KP974927912, TU, TS);
|
||
|
io[WS(os, 6)] = FNMS(KP974927912, TU, TS);
|
||
|
}
|
||
|
{
|
||
|
E Tt, Tr, Tq, TP, TN, TM;
|
||
|
Tt = FNMS(KP801937735, Ts, Tj);
|
||
|
Tq = FNMS(KP692021471, Tp, T7);
|
||
|
Tr = FNMS(KP900968867, Tq, T1);
|
||
|
ro[WS(os, 5)] = FNMS(KP974927912, Tt, Tr);
|
||
|
ro[WS(os, 2)] = FMA(KP974927912, Tt, Tr);
|
||
|
TP = FNMS(KP801937735, TO, TI);
|
||
|
TM = FNMS(KP692021471, TL, TB);
|
||
|
TN = FNMS(KP900968867, TM, Tz);
|
||
|
io[WS(os, 2)] = FMA(KP974927912, TP, TN);
|
||
|
io[WS(os, 5)] = FNMS(KP974927912, TP, TN);
|
||
|
}
|
||
|
{
|
||
|
E Ty, Tw, Tv, TK, TF, TE;
|
||
|
Ty = FNMS(KP801937735, Tx, Tm);
|
||
|
Tv = FNMS(KP692021471, Tu, T4);
|
||
|
Tw = FNMS(KP900968867, Tv, T1);
|
||
|
ro[WS(os, 4)] = FNMS(KP974927912, Ty, Tw);
|
||
|
ro[WS(os, 3)] = FMA(KP974927912, Ty, Tw);
|
||
|
TK = FNMS(KP801937735, TJ, TG);
|
||
|
TE = FNMS(KP692021471, TD, TA);
|
||
|
TF = FNMS(KP900968867, TE, Tz);
|
||
|
io[WS(os, 3)] = FMA(KP974927912, TK, TF);
|
||
|
io[WS(os, 4)] = FNMS(KP974927912, TK, TF);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const kdft_desc desc = { 7, "n1_7", { 18, 0, 42, 0 }, &GENUS, 0, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_n1_7) (planner *p) { X(kdft_register) (p, n1_7, &desc);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 7 -name n1_7 -include dft/scalar/n.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 60 FP additions, 36 FP multiplications,
|
||
|
* (or, 36 additions, 12 multiplications, 24 fused multiply/add),
|
||
|
* 25 stack variables, 6 constants, and 28 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/n.h"
|
||
|
|
||
|
static void n1_7(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DK(KP222520933, +0.222520933956314404288902564496794759466355569);
|
||
|
DK(KP900968867, +0.900968867902419126236102319507445051165919162);
|
||
|
DK(KP623489801, +0.623489801858733530525004884004239810632274731);
|
||
|
DK(KP433883739, +0.433883739117558120475768332848358754609990728);
|
||
|
DK(KP781831482, +0.781831482468029808708444526674057750232334519);
|
||
|
DK(KP974927912, +0.974927912181823607018131682993931217232785801);
|
||
|
{
|
||
|
INT i;
|
||
|
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) {
|
||
|
E T1, Tu, T4, Tq, Te, Tx, T7, Ts, Tk, Tv, Ta, Tr, Th, Tw;
|
||
|
T1 = ri[0];
|
||
|
Tu = ii[0];
|
||
|
{
|
||
|
E T2, T3, Tc, Td;
|
||
|
T2 = ri[WS(is, 1)];
|
||
|
T3 = ri[WS(is, 6)];
|
||
|
T4 = T2 + T3;
|
||
|
Tq = T3 - T2;
|
||
|
Tc = ii[WS(is, 1)];
|
||
|
Td = ii[WS(is, 6)];
|
||
|
Te = Tc - Td;
|
||
|
Tx = Tc + Td;
|
||
|
}
|
||
|
{
|
||
|
E T5, T6, Ti, Tj;
|
||
|
T5 = ri[WS(is, 2)];
|
||
|
T6 = ri[WS(is, 5)];
|
||
|
T7 = T5 + T6;
|
||
|
Ts = T6 - T5;
|
||
|
Ti = ii[WS(is, 2)];
|
||
|
Tj = ii[WS(is, 5)];
|
||
|
Tk = Ti - Tj;
|
||
|
Tv = Ti + Tj;
|
||
|
}
|
||
|
{
|
||
|
E T8, T9, Tf, Tg;
|
||
|
T8 = ri[WS(is, 3)];
|
||
|
T9 = ri[WS(is, 4)];
|
||
|
Ta = T8 + T9;
|
||
|
Tr = T9 - T8;
|
||
|
Tf = ii[WS(is, 3)];
|
||
|
Tg = ii[WS(is, 4)];
|
||
|
Th = Tf - Tg;
|
||
|
Tw = Tf + Tg;
|
||
|
}
|
||
|
ro[0] = T1 + T4 + T7 + Ta;
|
||
|
io[0] = Tu + Tx + Tv + Tw;
|
||
|
{
|
||
|
E Tl, Tb, TB, TC;
|
||
|
Tl = FNMS(KP781831482, Th, KP974927912 * Te) - (KP433883739 * Tk);
|
||
|
Tb = FMA(KP623489801, Ta, T1) + FNMA(KP900968867, T7, KP222520933 * T4);
|
||
|
ro[WS(os, 5)] = Tb - Tl;
|
||
|
ro[WS(os, 2)] = Tb + Tl;
|
||
|
TB = FNMS(KP781831482, Tr, KP974927912 * Tq) - (KP433883739 * Ts);
|
||
|
TC = FMA(KP623489801, Tw, Tu) + FNMA(KP900968867, Tv, KP222520933 * Tx);
|
||
|
io[WS(os, 2)] = TB + TC;
|
||
|
io[WS(os, 5)] = TC - TB;
|
||
|
}
|
||
|
{
|
||
|
E Tn, Tm, Tz, TA;
|
||
|
Tn = FMA(KP781831482, Te, KP974927912 * Tk) + (KP433883739 * Th);
|
||
|
Tm = FMA(KP623489801, T4, T1) + FNMA(KP900968867, Ta, KP222520933 * T7);
|
||
|
ro[WS(os, 6)] = Tm - Tn;
|
||
|
ro[WS(os, 1)] = Tm + Tn;
|
||
|
Tz = FMA(KP781831482, Tq, KP974927912 * Ts) + (KP433883739 * Tr);
|
||
|
TA = FMA(KP623489801, Tx, Tu) + FNMA(KP900968867, Tw, KP222520933 * Tv);
|
||
|
io[WS(os, 1)] = Tz + TA;
|
||
|
io[WS(os, 6)] = TA - Tz;
|
||
|
}
|
||
|
{
|
||
|
E Tp, To, Tt, Ty;
|
||
|
Tp = FMA(KP433883739, Te, KP974927912 * Th) - (KP781831482 * Tk);
|
||
|
To = FMA(KP623489801, T7, T1) + FNMA(KP222520933, Ta, KP900968867 * T4);
|
||
|
ro[WS(os, 4)] = To - Tp;
|
||
|
ro[WS(os, 3)] = To + Tp;
|
||
|
Tt = FMA(KP433883739, Tq, KP974927912 * Tr) - (KP781831482 * Ts);
|
||
|
Ty = FMA(KP623489801, Tv, Tu) + FNMA(KP222520933, Tw, KP900968867 * Tx);
|
||
|
io[WS(os, 3)] = Tt + Ty;
|
||
|
io[WS(os, 4)] = Ty - Tt;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const kdft_desc desc = { 7, "n1_7", { 36, 12, 24, 0 }, &GENUS, 0, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_n1_7) (planner *p) { X(kdft_register) (p, n1_7, &desc);
|
||
|
}
|
||
|
|
||
|
#endif
|