mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-06 12:55:05 +00:00
498 lines
14 KiB
C
498 lines
14 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:46:50 EDT 2021 */
|
||
|
|
||
|
#include "rdft/codelet-rdft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include rdft/scalar/hb.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 96 FP additions, 88 FP multiplications,
|
||
|
* (or, 24 additions, 16 multiplications, 72 fused multiply/add),
|
||
|
* 53 stack variables, 10 constants, and 36 memory accesses
|
||
|
*/
|
||
|
#include "rdft/scalar/hb.h"
|
||
|
|
||
|
static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP954188894, +0.954188894138671133499268364187245676532219158);
|
||
|
DK(KP852868531, +0.852868531952443209628250963940074071936020296);
|
||
|
DK(KP984807753, +0.984807753012208059366743024589523013670643252);
|
||
|
DK(KP492403876, +0.492403876506104029683371512294761506835321626);
|
||
|
DK(KP777861913, +0.777861913430206160028177977318626690410586096);
|
||
|
DK(KP839099631, +0.839099631177280011763127298123181364687434283);
|
||
|
DK(KP176326980, +0.176326980708464973471090386868618986121633062);
|
||
|
DK(KP363970234, +0.363970234266202361351047882776834043890471784);
|
||
|
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) {
|
||
|
E T5, Tl, TQ, T1y, T1b, T1J, Tg, TE, Tw, Tz, T1E, T1L, T1B, T1K, T14;
|
||
|
E T1d, TX, T1c;
|
||
|
{
|
||
|
E T1, Th, T4, T1a, Tk, TP, TO, T19;
|
||
|
T1 = cr[0];
|
||
|
Th = ci[WS(rs, 8)];
|
||
|
{
|
||
|
E T2, T3, Ti, Tj;
|
||
|
T2 = cr[WS(rs, 3)];
|
||
|
T3 = ci[WS(rs, 2)];
|
||
|
T4 = T2 + T3;
|
||
|
T1a = T2 - T3;
|
||
|
Ti = ci[WS(rs, 5)];
|
||
|
Tj = cr[WS(rs, 6)];
|
||
|
Tk = Ti - Tj;
|
||
|
TP = Ti + Tj;
|
||
|
}
|
||
|
T5 = T1 + T4;
|
||
|
Tl = Th + Tk;
|
||
|
TO = FNMS(KP500000000, T4, T1);
|
||
|
TQ = FNMS(KP866025403, TP, TO);
|
||
|
T1y = FMA(KP866025403, TP, TO);
|
||
|
T19 = FNMS(KP500000000, Tk, Th);
|
||
|
T1b = FMA(KP866025403, T1a, T19);
|
||
|
T1J = FNMS(KP866025403, T1a, T19);
|
||
|
}
|
||
|
{
|
||
|
E T6, T9, TY, T12, Tm, Tp, TZ, T11, Tb, Te, TS, TU, Tr, Tu, TR;
|
||
|
E TV;
|
||
|
{
|
||
|
E T7, T8, Tn, To;
|
||
|
T6 = cr[WS(rs, 1)];
|
||
|
T7 = cr[WS(rs, 4)];
|
||
|
T8 = ci[WS(rs, 1)];
|
||
|
T9 = T7 + T8;
|
||
|
TY = FNMS(KP500000000, T9, T6);
|
||
|
T12 = T7 - T8;
|
||
|
Tm = ci[WS(rs, 7)];
|
||
|
Tn = ci[WS(rs, 4)];
|
||
|
To = cr[WS(rs, 7)];
|
||
|
Tp = Tn - To;
|
||
|
TZ = Tn + To;
|
||
|
T11 = FMS(KP500000000, Tp, Tm);
|
||
|
}
|
||
|
{
|
||
|
E Tc, Td, Ts, Tt;
|
||
|
Tb = cr[WS(rs, 2)];
|
||
|
Tc = ci[WS(rs, 3)];
|
||
|
Td = ci[0];
|
||
|
Te = Tc + Td;
|
||
|
TS = Td - Tc;
|
||
|
TU = FNMS(KP500000000, Te, Tb);
|
||
|
Tr = ci[WS(rs, 6)];
|
||
|
Ts = cr[WS(rs, 5)];
|
||
|
Tt = cr[WS(rs, 8)];
|
||
|
Tu = Ts + Tt;
|
||
|
TR = FMA(KP500000000, Tu, Tr);
|
||
|
TV = Ts - Tt;
|
||
|
}
|
||
|
{
|
||
|
E Ta, Tf, T1z, T1A;
|
||
|
Ta = T6 + T9;
|
||
|
Tf = Tb + Te;
|
||
|
Tg = Ta + Tf;
|
||
|
TE = Ta - Tf;
|
||
|
{
|
||
|
E Tq, Tv, T1C, T1D;
|
||
|
Tq = Tm + Tp;
|
||
|
Tv = Tr - Tu;
|
||
|
Tw = Tq + Tv;
|
||
|
Tz = Tv - Tq;
|
||
|
T1C = FNMS(KP866025403, TV, TU);
|
||
|
T1D = FMA(KP866025403, TS, TR);
|
||
|
T1E = FMA(KP363970234, T1D, T1C);
|
||
|
T1L = FNMS(KP363970234, T1C, T1D);
|
||
|
}
|
||
|
T1z = FMA(KP866025403, T12, T11);
|
||
|
T1A = FMA(KP866025403, TZ, TY);
|
||
|
T1B = FMA(KP176326980, T1A, T1z);
|
||
|
T1K = FNMS(KP176326980, T1z, T1A);
|
||
|
{
|
||
|
E T10, T13, TT, TW;
|
||
|
T10 = FNMS(KP866025403, TZ, TY);
|
||
|
T13 = FNMS(KP866025403, T12, T11);
|
||
|
T14 = FMA(KP839099631, T13, T10);
|
||
|
T1d = FNMS(KP839099631, T10, T13);
|
||
|
TT = FNMS(KP866025403, TS, TR);
|
||
|
TW = FMA(KP866025403, TV, TU);
|
||
|
TX = FNMS(KP176326980, TW, TT);
|
||
|
T1c = FMA(KP176326980, TT, TW);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
cr[0] = T5 + Tg;
|
||
|
ci[0] = Tl + Tw;
|
||
|
{
|
||
|
E TA, TI, TF, TL, Ty, TD;
|
||
|
Ty = FNMS(KP500000000, Tg, T5);
|
||
|
TA = FNMS(KP866025403, Tz, Ty);
|
||
|
TI = FMA(KP866025403, Tz, Ty);
|
||
|
TD = FNMS(KP500000000, Tw, Tl);
|
||
|
TF = FNMS(KP866025403, TE, TD);
|
||
|
TL = FMA(KP866025403, TE, TD);
|
||
|
{
|
||
|
E TB, TG, Tx, TC;
|
||
|
Tx = W[10];
|
||
|
TB = Tx * TA;
|
||
|
TG = Tx * TF;
|
||
|
TC = W[11];
|
||
|
cr[WS(rs, 6)] = FNMS(TC, TF, TB);
|
||
|
ci[WS(rs, 6)] = FMA(TC, TA, TG);
|
||
|
}
|
||
|
{
|
||
|
E TJ, TM, TH, TK;
|
||
|
TH = W[4];
|
||
|
TJ = TH * TI;
|
||
|
TM = TH * TL;
|
||
|
TK = W[5];
|
||
|
cr[WS(rs, 3)] = FNMS(TK, TL, TJ);
|
||
|
ci[WS(rs, 3)] = FMA(TK, TI, TM);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T16, T1s, T1k, T1f, T1v, T1p;
|
||
|
{
|
||
|
E T1j, T15, T1i, T1o, T1e, T1n;
|
||
|
T1j = FMA(KP777861913, T1d, T1c);
|
||
|
T15 = FNMS(KP777861913, T14, TX);
|
||
|
T1i = FMA(KP492403876, T15, TQ);
|
||
|
T16 = FNMS(KP984807753, T15, TQ);
|
||
|
T1s = FMA(KP852868531, T1j, T1i);
|
||
|
T1k = FNMS(KP852868531, T1j, T1i);
|
||
|
T1o = FMA(KP777861913, T14, TX);
|
||
|
T1e = FNMS(KP777861913, T1d, T1c);
|
||
|
T1n = FNMS(KP492403876, T1e, T1b);
|
||
|
T1f = FMA(KP984807753, T1e, T1b);
|
||
|
T1v = FMA(KP852868531, T1o, T1n);
|
||
|
T1p = FNMS(KP852868531, T1o, T1n);
|
||
|
}
|
||
|
{
|
||
|
E TN, T17, T18, T1g;
|
||
|
TN = W[0];
|
||
|
T17 = TN * T16;
|
||
|
T18 = W[1];
|
||
|
T1g = T18 * T16;
|
||
|
cr[WS(rs, 1)] = FNMS(T18, T1f, T17);
|
||
|
ci[WS(rs, 1)] = FMA(TN, T1f, T1g);
|
||
|
}
|
||
|
{
|
||
|
E T1t, T1w, T1r, T1u;
|
||
|
T1r = W[6];
|
||
|
T1t = T1r * T1s;
|
||
|
T1w = T1r * T1v;
|
||
|
T1u = W[7];
|
||
|
cr[WS(rs, 4)] = FNMS(T1u, T1v, T1t);
|
||
|
ci[WS(rs, 4)] = FMA(T1u, T1s, T1w);
|
||
|
}
|
||
|
{
|
||
|
E T1l, T1q, T1h, T1m;
|
||
|
T1h = W[12];
|
||
|
T1l = T1h * T1k;
|
||
|
T1q = T1h * T1p;
|
||
|
T1m = W[13];
|
||
|
cr[WS(rs, 7)] = FNMS(T1m, T1p, T1l);
|
||
|
ci[WS(rs, 7)] = FMA(T1m, T1k, T1q);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1W, T1N, T1V, T1G, T20, T1S;
|
||
|
T1W = FMA(KP954188894, T1E, T1B);
|
||
|
{
|
||
|
E T1M, T1R, T1F, T1Q;
|
||
|
T1M = FNMS(KP954188894, T1L, T1K);
|
||
|
T1N = FMA(KP984807753, T1M, T1J);
|
||
|
T1V = FNMS(KP492403876, T1M, T1J);
|
||
|
T1R = FMA(KP954188894, T1L, T1K);
|
||
|
T1F = FNMS(KP954188894, T1E, T1B);
|
||
|
T1Q = FNMS(KP492403876, T1F, T1y);
|
||
|
T1G = FMA(KP984807753, T1F, T1y);
|
||
|
T20 = FMA(KP852868531, T1R, T1Q);
|
||
|
T1S = FNMS(KP852868531, T1R, T1Q);
|
||
|
}
|
||
|
{
|
||
|
E T1H, T1O, T1x, T1I;
|
||
|
T1x = W[2];
|
||
|
T1H = T1x * T1G;
|
||
|
T1O = T1x * T1N;
|
||
|
T1I = W[3];
|
||
|
cr[WS(rs, 2)] = FNMS(T1I, T1N, T1H);
|
||
|
ci[WS(rs, 2)] = FMA(T1I, T1G, T1O);
|
||
|
}
|
||
|
{
|
||
|
E T23, T22, T24, T1Z, T21;
|
||
|
T23 = FNMS(KP852868531, T1W, T1V);
|
||
|
T22 = W[15];
|
||
|
T24 = T22 * T20;
|
||
|
T1Z = W[14];
|
||
|
T21 = T1Z * T20;
|
||
|
cr[WS(rs, 8)] = FNMS(T22, T23, T21);
|
||
|
ci[WS(rs, 8)] = FMA(T1Z, T23, T24);
|
||
|
}
|
||
|
{
|
||
|
E T1X, T1U, T1Y, T1P, T1T;
|
||
|
T1X = FMA(KP852868531, T1W, T1V);
|
||
|
T1U = W[9];
|
||
|
T1Y = T1U * T1S;
|
||
|
T1P = W[8];
|
||
|
T1T = T1P * T1S;
|
||
|
cr[WS(rs, 5)] = FNMS(T1U, T1X, T1T);
|
||
|
ci[WS(rs, 5)] = FMA(T1P, T1X, T1Y);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 1, 9 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, { 24, 16, 72, 0 } };
|
||
|
|
||
|
void X(codelet_hb_9) (planner *p) {
|
||
|
X(khc2hc_register) (p, hb_9, &desc);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include rdft/scalar/hb.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 96 FP additions, 72 FP multiplications,
|
||
|
* (or, 60 additions, 36 multiplications, 36 fused multiply/add),
|
||
|
* 53 stack variables, 8 constants, and 36 memory accesses
|
||
|
*/
|
||
|
#include "rdft/scalar/hb.h"
|
||
|
|
||
|
static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP984807753, +0.984807753012208059366743024589523013670643252);
|
||
|
DK(KP173648177, +0.173648177666930348851716626769314796000375677);
|
||
|
DK(KP342020143, +0.342020143325668733044099614682259580763083368);
|
||
|
DK(KP939692620, +0.939692620785908384054109277324731469936208134);
|
||
|
DK(KP642787609, +0.642787609686539326322643409907263432907559884);
|
||
|
DK(KP766044443, +0.766044443118978035202392650555416673935832457);
|
||
|
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) {
|
||
|
E T5, Tl, TM, T1o, T16, T1y, Ta, Tf, Tg, Tq, Tv, Tw, TT, T17, T1u;
|
||
|
E T1A, T1r, T1z, T10, T18;
|
||
|
{
|
||
|
E T1, Th, T4, T14, Tk, TL, TK, T15;
|
||
|
T1 = cr[0];
|
||
|
Th = ci[WS(rs, 8)];
|
||
|
{
|
||
|
E T2, T3, Ti, Tj;
|
||
|
T2 = cr[WS(rs, 3)];
|
||
|
T3 = ci[WS(rs, 2)];
|
||
|
T4 = T2 + T3;
|
||
|
T14 = KP866025403 * (T2 - T3);
|
||
|
Ti = ci[WS(rs, 5)];
|
||
|
Tj = cr[WS(rs, 6)];
|
||
|
Tk = Ti - Tj;
|
||
|
TL = KP866025403 * (Ti + Tj);
|
||
|
}
|
||
|
T5 = T1 + T4;
|
||
|
Tl = Th + Tk;
|
||
|
TK = FNMS(KP500000000, T4, T1);
|
||
|
TM = TK - TL;
|
||
|
T1o = TK + TL;
|
||
|
T15 = FNMS(KP500000000, Tk, Th);
|
||
|
T16 = T14 + T15;
|
||
|
T1y = T15 - T14;
|
||
|
}
|
||
|
{
|
||
|
E T6, T9, TN, TQ, Tm, Tp, TO, TR, Tb, Te, TU, TX, Tr, Tu, TV;
|
||
|
E TY;
|
||
|
{
|
||
|
E T7, T8, Tn, To;
|
||
|
T6 = cr[WS(rs, 1)];
|
||
|
T7 = cr[WS(rs, 4)];
|
||
|
T8 = ci[WS(rs, 1)];
|
||
|
T9 = T7 + T8;
|
||
|
TN = FNMS(KP500000000, T9, T6);
|
||
|
TQ = KP866025403 * (T7 - T8);
|
||
|
Tm = ci[WS(rs, 7)];
|
||
|
Tn = ci[WS(rs, 4)];
|
||
|
To = cr[WS(rs, 7)];
|
||
|
Tp = Tn - To;
|
||
|
TO = KP866025403 * (Tn + To);
|
||
|
TR = FNMS(KP500000000, Tp, Tm);
|
||
|
}
|
||
|
{
|
||
|
E Tc, Td, Ts, Tt;
|
||
|
Tb = cr[WS(rs, 2)];
|
||
|
Tc = ci[WS(rs, 3)];
|
||
|
Td = ci[0];
|
||
|
Te = Tc + Td;
|
||
|
TU = FNMS(KP500000000, Te, Tb);
|
||
|
TX = KP866025403 * (Tc - Td);
|
||
|
Tr = ci[WS(rs, 6)];
|
||
|
Ts = cr[WS(rs, 5)];
|
||
|
Tt = cr[WS(rs, 8)];
|
||
|
Tu = Ts + Tt;
|
||
|
TV = KP866025403 * (Ts - Tt);
|
||
|
TY = FMA(KP500000000, Tu, Tr);
|
||
|
}
|
||
|
{
|
||
|
E TP, TS, T1s, T1t;
|
||
|
Ta = T6 + T9;
|
||
|
Tf = Tb + Te;
|
||
|
Tg = Ta + Tf;
|
||
|
Tq = Tm + Tp;
|
||
|
Tv = Tr - Tu;
|
||
|
Tw = Tq + Tv;
|
||
|
TP = TN - TO;
|
||
|
TS = TQ + TR;
|
||
|
TT = FNMS(KP642787609, TS, KP766044443 * TP);
|
||
|
T17 = FMA(KP766044443, TS, KP642787609 * TP);
|
||
|
T1s = TU - TV;
|
||
|
T1t = TY - TX;
|
||
|
T1u = FMA(KP939692620, T1s, KP342020143 * T1t);
|
||
|
T1A = FNMS(KP939692620, T1t, KP342020143 * T1s);
|
||
|
{
|
||
|
E T1p, T1q, TW, TZ;
|
||
|
T1p = TN + TO;
|
||
|
T1q = TR - TQ;
|
||
|
T1r = FNMS(KP984807753, T1q, KP173648177 * T1p);
|
||
|
T1z = FMA(KP173648177, T1q, KP984807753 * T1p);
|
||
|
TW = TU + TV;
|
||
|
TZ = TX + TY;
|
||
|
T10 = FNMS(KP984807753, TZ, KP173648177 * TW);
|
||
|
T18 = FMA(KP984807753, TW, KP173648177 * TZ);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
cr[0] = T5 + Tg;
|
||
|
ci[0] = Tl + Tw;
|
||
|
{
|
||
|
E TA, TG, TE, TI;
|
||
|
{
|
||
|
E Ty, Tz, TC, TD;
|
||
|
Ty = FNMS(KP500000000, Tg, T5);
|
||
|
Tz = KP866025403 * (Tv - Tq);
|
||
|
TA = Ty - Tz;
|
||
|
TG = Ty + Tz;
|
||
|
TC = FNMS(KP500000000, Tw, Tl);
|
||
|
TD = KP866025403 * (Ta - Tf);
|
||
|
TE = TC - TD;
|
||
|
TI = TD + TC;
|
||
|
}
|
||
|
{
|
||
|
E Tx, TB, TF, TH;
|
||
|
Tx = W[10];
|
||
|
TB = W[11];
|
||
|
cr[WS(rs, 6)] = FNMS(TB, TE, Tx * TA);
|
||
|
ci[WS(rs, 6)] = FMA(Tx, TE, TB * TA);
|
||
|
TF = W[4];
|
||
|
TH = W[5];
|
||
|
cr[WS(rs, 3)] = FNMS(TH, TI, TF * TG);
|
||
|
ci[WS(rs, 3)] = FMA(TF, TI, TH * TG);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1d, T1h, T12, T1c, T1a, T1g, T11, T19, TJ, T13;
|
||
|
T1d = KP866025403 * (T18 - T17);
|
||
|
T1h = KP866025403 * (TT - T10);
|
||
|
T11 = TT + T10;
|
||
|
T12 = TM + T11;
|
||
|
T1c = FNMS(KP500000000, T11, TM);
|
||
|
T19 = T17 + T18;
|
||
|
T1a = T16 + T19;
|
||
|
T1g = FNMS(KP500000000, T19, T16);
|
||
|
TJ = W[0];
|
||
|
T13 = W[1];
|
||
|
cr[WS(rs, 1)] = FNMS(T13, T1a, TJ * T12);
|
||
|
ci[WS(rs, 1)] = FMA(T13, T12, TJ * T1a);
|
||
|
{
|
||
|
E T1k, T1m, T1j, T1l;
|
||
|
T1k = T1c + T1d;
|
||
|
T1m = T1h + T1g;
|
||
|
T1j = W[6];
|
||
|
T1l = W[7];
|
||
|
cr[WS(rs, 4)] = FNMS(T1l, T1m, T1j * T1k);
|
||
|
ci[WS(rs, 4)] = FMA(T1j, T1m, T1l * T1k);
|
||
|
}
|
||
|
{
|
||
|
E T1e, T1i, T1b, T1f;
|
||
|
T1e = T1c - T1d;
|
||
|
T1i = T1g - T1h;
|
||
|
T1b = W[12];
|
||
|
T1f = W[13];
|
||
|
cr[WS(rs, 7)] = FNMS(T1f, T1i, T1b * T1e);
|
||
|
ci[WS(rs, 7)] = FMA(T1b, T1i, T1f * T1e);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1F, T1J, T1w, T1E, T1C, T1I, T1v, T1B, T1n, T1x;
|
||
|
T1F = KP866025403 * (T1A - T1z);
|
||
|
T1J = KP866025403 * (T1r + T1u);
|
||
|
T1v = T1r - T1u;
|
||
|
T1w = T1o + T1v;
|
||
|
T1E = FNMS(KP500000000, T1v, T1o);
|
||
|
T1B = T1z + T1A;
|
||
|
T1C = T1y + T1B;
|
||
|
T1I = FNMS(KP500000000, T1B, T1y);
|
||
|
T1n = W[2];
|
||
|
T1x = W[3];
|
||
|
cr[WS(rs, 2)] = FNMS(T1x, T1C, T1n * T1w);
|
||
|
ci[WS(rs, 2)] = FMA(T1n, T1C, T1x * T1w);
|
||
|
{
|
||
|
E T1M, T1O, T1L, T1N;
|
||
|
T1M = T1F + T1E;
|
||
|
T1O = T1I + T1J;
|
||
|
T1L = W[8];
|
||
|
T1N = W[9];
|
||
|
cr[WS(rs, 5)] = FNMS(T1N, T1O, T1L * T1M);
|
||
|
ci[WS(rs, 5)] = FMA(T1N, T1M, T1L * T1O);
|
||
|
}
|
||
|
{
|
||
|
E T1G, T1K, T1D, T1H;
|
||
|
T1G = T1E - T1F;
|
||
|
T1K = T1I - T1J;
|
||
|
T1D = W[14];
|
||
|
T1H = W[15];
|
||
|
cr[WS(rs, 8)] = FNMS(T1H, T1K, T1D * T1G);
|
||
|
ci[WS(rs, 8)] = FMA(T1H, T1G, T1D * T1K);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 1, 9 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, { 60, 36, 36, 0 } };
|
||
|
|
||
|
void X(codelet_hb_9) (planner *p) {
|
||
|
X(khc2hc_register) (p, hb_9, &desc);
|
||
|
}
|
||
|
#endif
|