mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-06 12:55:05 +00:00
195 lines
4.9 KiB
C
195 lines
4.9 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
|
||
|
/* Compute the complex DFT by combining R2HC RDFTs on the real
|
||
|
and imaginary parts. This could be useful for people just wanting
|
||
|
to link to the real codelets and not the complex ones. It could
|
||
|
also even be faster than the complex algorithms for split (as opposed
|
||
|
to interleaved) real/imag complex data. */
|
||
|
|
||
|
#include "rdft/rdft.h"
|
||
|
#include "dft/dft.h"
|
||
|
|
||
|
typedef struct {
|
||
|
solver super;
|
||
|
} S;
|
||
|
|
||
|
typedef struct {
|
||
|
plan_dft super;
|
||
|
plan *cld;
|
||
|
INT ishift, oshift;
|
||
|
INT os;
|
||
|
INT n;
|
||
|
} P;
|
||
|
|
||
|
static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
|
||
|
{
|
||
|
const P *ego = (const P *) ego_;
|
||
|
INT n;
|
||
|
|
||
|
UNUSED(ii);
|
||
|
|
||
|
{ /* transform vector of real & imag parts: */
|
||
|
plan_rdft *cld = (plan_rdft *) ego->cld;
|
||
|
cld->apply((plan *) cld, ri + ego->ishift, ro + ego->oshift);
|
||
|
}
|
||
|
|
||
|
n = ego->n;
|
||
|
if (n > 1) {
|
||
|
INT i, os = ego->os;
|
||
|
for (i = 1; i < (n + 1)/2; ++i) {
|
||
|
E rop, iop, iom, rom;
|
||
|
rop = ro[os * i];
|
||
|
iop = io[os * i];
|
||
|
rom = ro[os * (n - i)];
|
||
|
iom = io[os * (n - i)];
|
||
|
ro[os * i] = rop - iom;
|
||
|
io[os * i] = iop + rom;
|
||
|
ro[os * (n - i)] = rop + iom;
|
||
|
io[os * (n - i)] = iop - rom;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void awake(plan *ego_, enum wakefulness wakefulness)
|
||
|
{
|
||
|
P *ego = (P *) ego_;
|
||
|
X(plan_awake)(ego->cld, wakefulness);
|
||
|
}
|
||
|
|
||
|
static void destroy(plan *ego_)
|
||
|
{
|
||
|
P *ego = (P *) ego_;
|
||
|
X(plan_destroy_internal)(ego->cld);
|
||
|
}
|
||
|
|
||
|
static void print(const plan *ego_, printer *p)
|
||
|
{
|
||
|
const P *ego = (const P *) ego_;
|
||
|
p->print(p, "(dft-r2hc-%D%(%p%))", ego->n, ego->cld);
|
||
|
}
|
||
|
|
||
|
|
||
|
static int applicable0(const problem *p_)
|
||
|
{
|
||
|
const problem_dft *p = (const problem_dft *) p_;
|
||
|
return ((p->sz->rnk == 1 && p->vecsz->rnk == 0)
|
||
|
|| (p->sz->rnk == 0 && FINITE_RNK(p->vecsz->rnk))
|
||
|
);
|
||
|
}
|
||
|
|
||
|
static int splitp(R *r, R *i, INT n, INT s)
|
||
|
{
|
||
|
return ((r > i ? (r - i) : (i - r)) >= n * (s > 0 ? s : 0-s));
|
||
|
}
|
||
|
|
||
|
static int applicable(const problem *p_, const planner *plnr)
|
||
|
{
|
||
|
if (!applicable0(p_)) return 0;
|
||
|
|
||
|
{
|
||
|
const problem_dft *p = (const problem_dft *) p_;
|
||
|
|
||
|
/* rank-0 problems are always OK */
|
||
|
if (p->sz->rnk == 0) return 1;
|
||
|
|
||
|
/* this solver is ok for split arrays */
|
||
|
if (p->sz->rnk == 1 &&
|
||
|
splitp(p->ri, p->ii, p->sz->dims[0].n, p->sz->dims[0].is) &&
|
||
|
splitp(p->ro, p->io, p->sz->dims[0].n, p->sz->dims[0].os))
|
||
|
return 1;
|
||
|
|
||
|
return !(NO_DFT_R2HCP(plnr));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
||
|
{
|
||
|
P *pln;
|
||
|
const problem_dft *p;
|
||
|
plan *cld;
|
||
|
INT ishift = 0, oshift = 0;
|
||
|
|
||
|
static const plan_adt padt = {
|
||
|
X(dft_solve), awake, print, destroy
|
||
|
};
|
||
|
|
||
|
UNUSED(ego_);
|
||
|
if (!applicable(p_, plnr))
|
||
|
return (plan *)0;
|
||
|
|
||
|
p = (const problem_dft *) p_;
|
||
|
|
||
|
{
|
||
|
tensor *ri_vec = X(mktensor_1d)(2, p->ii - p->ri, p->io - p->ro);
|
||
|
tensor *cld_vec = X(tensor_append)(ri_vec, p->vecsz);
|
||
|
int i;
|
||
|
for (i = 0; i < cld_vec->rnk; ++i) { /* make all istrides > 0 */
|
||
|
if (cld_vec->dims[i].is < 0) {
|
||
|
INT nm1 = cld_vec->dims[i].n - 1;
|
||
|
ishift -= nm1 * (cld_vec->dims[i].is *= -1);
|
||
|
oshift -= nm1 * (cld_vec->dims[i].os *= -1);
|
||
|
}
|
||
|
}
|
||
|
cld = X(mkplan_d)(plnr,
|
||
|
X(mkproblem_rdft_1)(p->sz, cld_vec,
|
||
|
p->ri + ishift,
|
||
|
p->ro + oshift, R2HC));
|
||
|
X(tensor_destroy2)(ri_vec, cld_vec);
|
||
|
}
|
||
|
if (!cld) return (plan *)0;
|
||
|
|
||
|
pln = MKPLAN_DFT(P, &padt, apply);
|
||
|
|
||
|
if (p->sz->rnk == 0) {
|
||
|
pln->n = 1;
|
||
|
pln->os = 0;
|
||
|
}
|
||
|
else {
|
||
|
pln->n = p->sz->dims[0].n;
|
||
|
pln->os = p->sz->dims[0].os;
|
||
|
}
|
||
|
pln->ishift = ishift;
|
||
|
pln->oshift = oshift;
|
||
|
|
||
|
pln->cld = cld;
|
||
|
|
||
|
pln->super.super.ops = cld->ops;
|
||
|
pln->super.super.ops.other += 8 * ((pln->n - 1)/2);
|
||
|
pln->super.super.ops.add += 4 * ((pln->n - 1)/2);
|
||
|
pln->super.super.ops.other += 1; /* estimator hack for nop plans */
|
||
|
|
||
|
return &(pln->super.super);
|
||
|
}
|
||
|
|
||
|
/* constructor */
|
||
|
static solver *mksolver(void)
|
||
|
{
|
||
|
static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
|
||
|
S *slv = MKSOLVER(S, &sadt);
|
||
|
return &(slv->super);
|
||
|
}
|
||
|
|
||
|
void X(dft_r2hc_register)(planner *p)
|
||
|
{
|
||
|
REGISTER_SOLVER(p, mksolver());
|
||
|
}
|