furnace/extern/fftw/genfft/twiddle.ml

189 lines
5.7 KiB
OCaml
Raw Normal View History

(*
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*)
(* policies for loading/computing twiddle factors *)
open Complex
open Util
type twop = TW_FULL | TW_CEXP | TW_NEXT
let optostring = function
| TW_CEXP -> "TW_CEXP"
| TW_NEXT -> "TW_NEXT"
| TW_FULL -> "TW_FULL"
type twinstr = (twop * int * int)
let rec unroll_twfull l = match l with
| [] -> []
| (TW_FULL, v, n) :: b ->
(forall [] cons 1 n (fun i -> (TW_CEXP, v, i)))
@ unroll_twfull b
| a :: b -> a :: unroll_twfull b
let twinstr_to_c_string l =
let one (op, a, b) = Printf.sprintf "{ %s, %d, %d }" (optostring op) a b
in let rec loop first = function
| [] -> ""
| a :: b -> (if first then "\n" else ",\n") ^ (one a) ^ (loop false b)
in "{" ^ (loop true l) ^ "}"
let twinstr_to_simd_string vl l =
let one sep = function
| (TW_NEXT, 1, 0) -> sep ^ "{TW_NEXT, " ^ vl ^ ", 0}"
| (TW_NEXT, _, _) -> failwith "twinstr_to_simd_string"
| (TW_CEXP, v, b) -> sep ^ (Printf.sprintf "VTW(%d,%d)" v b)
| _ -> failwith "twinstr_to_simd_string"
in let rec loop first = function
| [] -> ""
| a :: b -> (one (if first then "\n" else ",\n") a) ^ (loop false b)
in "{" ^ (loop true (unroll_twfull l)) ^ "}"
let rec pow m n =
if (n = 0) then 1
else m * pow m (n - 1)
let rec is_pow m n =
n = 1 || ((n mod m) = 0 && is_pow m (n / m))
let rec log m n = if n = 1 then 0 else 1 + log m (n / m)
let rec largest_power_smaller_than m i =
if (is_pow m i) then i
else largest_power_smaller_than m (i - 1)
let rec smallest_power_larger_than m i =
if (is_pow m i) then i
else smallest_power_larger_than m (i + 1)
let rec_array n f =
let g = ref (fun i -> Complex.zero) in
let a = Array.init n (fun i -> lazy (!g i)) in
let h i = f (fun i -> Lazy.force a.(i)) i in
begin
g := h;
h
end
let ctimes use_complex_arith a b =
if use_complex_arith then
Complex.ctimes a b
else
Complex.times a b
let ctimesj use_complex_arith a b =
if use_complex_arith then
Complex.ctimesj a b
else
Complex.times (Complex.conj a) b
let make_bytwiddle sign use_complex_arith g f i =
if i = 0 then
f i
else if sign = 1 then
ctimes use_complex_arith (g i) (f i)
else
ctimesj use_complex_arith (g i) (f i)
(* various policies for computing/loading twiddle factors *)
let twiddle_policy_load_all v use_complex_arith =
let bytwiddle n sign w f =
make_bytwiddle sign use_complex_arith (fun i -> w (i - 1)) f
and twidlen n = 2 * (n - 1)
and twdesc r = [(TW_FULL, v, r);(TW_NEXT, 1, 0)]
in bytwiddle, twidlen, twdesc
(*
* if i is a power of two, then load w (log i)
* else let x = largest power of 2 less than i in
* let y = i - x in
* compute w^{x+y} = w^x * w^y
*)
let twiddle_policy_log2 v use_complex_arith =
let bytwiddle n sign w f =
let g = rec_array n (fun self i ->
if i = 0 then Complex.one
else if is_pow 2 i then w (log 2 i)
else let x = largest_power_smaller_than 2 i in
let y = i - x in
ctimes use_complex_arith (self x) (self y))
in make_bytwiddle sign use_complex_arith g f
and twidlen n = 2 * (log 2 (largest_power_smaller_than 2 (2 * n - 1)))
and twdesc n =
(List.flatten
(List.map
(fun i ->
if i > 0 && is_pow 2 i then
[TW_CEXP, v, i]
else
[])
(iota n)))
@ [(TW_NEXT, 1, 0)]
in bytwiddle, twidlen, twdesc
let twiddle_policy_log3 v use_complex_arith =
let rec terms_needed i pi s n =
if (s >= n - 1) then i
else terms_needed (i + 1) (3 * pi) (s + pi) n
in
let rec bytwiddle n sign w f =
let nterms = terms_needed 0 1 0 n in
let maxterm = pow 3 (nterms - 1) in
let g = rec_array (3 * n) (fun self i ->
if i = 0 then Complex.one
else if is_pow 3 i then w (log 3 i)
else if i = (n - 1) && maxterm >= n then
w (nterms - 1)
else let x = smallest_power_larger_than 3 i in
if (i + i >= x) then
let x = min x (n - 1) in
ctimesj use_complex_arith (self (x - i)) (self x)
else let x = largest_power_smaller_than 3 i in
ctimes use_complex_arith (self (i - x)) (self x))
in make_bytwiddle sign use_complex_arith g f
and twidlen n = 2 * (terms_needed 0 1 0 n)
and twdesc n =
(List.map
(fun i ->
let x = min (pow 3 i) (n - 1) in
TW_CEXP, v, x)
(iota ((twidlen n) / 2)))
@ [(TW_NEXT, 1, 0)]
in bytwiddle, twidlen, twdesc
let current_twiddle_policy = ref twiddle_policy_load_all
let twiddle_policy use_complex_arith =
!current_twiddle_policy use_complex_arith
let set_policy x = Arg.Unit (fun () -> current_twiddle_policy := x)
let set_policy_int x = Arg.Int (fun i -> current_twiddle_policy := x i)
let undocumented = " Undocumented twiddle policy"
let speclist = [
"-twiddle-load-all", set_policy twiddle_policy_load_all, undocumented;
"-twiddle-log2", set_policy twiddle_policy_log2, undocumented;
"-twiddle-log3", set_policy twiddle_policy_log3, undocumented;
]