mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-06 12:55:05 +00:00
256 lines
10 KiB
C
256 lines
10 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:44:59 EDT 2021 */
|
||
|
|
||
|
#include "dft/codelet-dft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name n1fv_9 -include dft/simd/n1f.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 46 FP additions, 38 FP multiplications,
|
||
|
* (or, 12 additions, 4 multiplications, 34 fused multiply/add),
|
||
|
* 50 stack variables, 19 constants, and 18 memory accesses
|
||
|
*/
|
||
|
#include "dft/simd/n1f.h"
|
||
|
|
||
|
static void n1fv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DVK(KP666666666, +0.666666666666666666666666666666666666666666667);
|
||
|
DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
|
||
|
DVK(KP673648177, +0.673648177666930348851716626769314796000375677);
|
||
|
DVK(KP898197570, +0.898197570222573798468955502359086394667167570);
|
||
|
DVK(KP879385241, +0.879385241571816768108218554649462939872416269);
|
||
|
DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
|
||
|
DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
|
||
|
DVK(KP826351822, +0.826351822333069651148283373230685203999624323);
|
||
|
DVK(KP420276625, +0.420276625461206169731530603237061658838781920);
|
||
|
DVK(KP907603734, +0.907603734547952313649323976213898122064543220);
|
||
|
DVK(KP347296355, +0.347296355333860697703433253538629592000751354);
|
||
|
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
DVK(KP726681596, +0.726681596905677465811651808188092531873167623);
|
||
|
DVK(KP968908795, +0.968908795874236621082202410917456709164223497);
|
||
|
DVK(KP586256827, +0.586256827714544512072145703099641959914944179);
|
||
|
DVK(KP203604859, +0.203604859554852403062088995281827210665664861);
|
||
|
DVK(KP152703644, +0.152703644666139302296566746461370407999248646);
|
||
|
DVK(KP439692620, +0.439692620785908384054109277324731469936208134);
|
||
|
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
{
|
||
|
INT i;
|
||
|
const R *xi;
|
||
|
R *xo;
|
||
|
xi = ri;
|
||
|
xo = ro;
|
||
|
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) {
|
||
|
V T5, Tv, Tj, Tl, Tm, Ta, Tf, Tk, Ts, TB, Tx, Tn, To, TC, Ty;
|
||
|
V Ti, Tg, Th;
|
||
|
{
|
||
|
V T1, T2, T3, T4;
|
||
|
T1 = LD(&(xi[0]), ivs, &(xi[0]));
|
||
|
T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
||
|
T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
|
||
|
T4 = VADD(T2, T3);
|
||
|
T5 = VADD(T1, T4);
|
||
|
Tv = VSUB(T3, T2);
|
||
|
Tj = VFNMS(LDK(KP500000000), T4, T1);
|
||
|
}
|
||
|
{
|
||
|
V T6, Tb, T9, Te;
|
||
|
T6 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
||
|
Tb = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
||
|
{
|
||
|
V T7, T8, Tc, Td;
|
||
|
T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
||
|
T8 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
|
||
|
T9 = VADD(T7, T8);
|
||
|
Tl = VSUB(T7, T8);
|
||
|
Tc = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
||
|
Td = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
|
||
|
Te = VADD(Tc, Td);
|
||
|
Tm = VSUB(Td, Tc);
|
||
|
}
|
||
|
Ta = VADD(T6, T9);
|
||
|
Tf = VADD(Tb, Te);
|
||
|
Tk = VFNMS(LDK(KP500000000), Te, Tb);
|
||
|
Ts = VFNMS(LDK(KP439692620), Tl, Tk);
|
||
|
TB = VFNMS(LDK(KP152703644), Tm, Tk);
|
||
|
Tx = VFMA(LDK(KP203604859), Tk, Tm);
|
||
|
Tn = VFNMS(LDK(KP500000000), T9, T6);
|
||
|
To = VFNMS(LDK(KP586256827), Tn, Tm);
|
||
|
TC = VFMA(LDK(KP968908795), Tn, Tl);
|
||
|
Ty = VFNMS(LDK(KP726681596), Tl, Tn);
|
||
|
}
|
||
|
Ti = VMUL(LDK(KP866025403), VSUB(Tf, Ta));
|
||
|
Tg = VADD(Ta, Tf);
|
||
|
Th = VFNMS(LDK(KP500000000), Tg, T5);
|
||
|
ST(&(xo[0]), VADD(T5, Tg), ovs, &(xo[0]));
|
||
|
ST(&(xo[WS(os, 3)]), VFMAI(Ti, Th), ovs, &(xo[WS(os, 1)]));
|
||
|
ST(&(xo[WS(os, 6)]), VFNMSI(Ti, Th), ovs, &(xo[0]));
|
||
|
{
|
||
|
V Tq, Tu, Tp, Tt, Tr, Tw;
|
||
|
Tp = VFNMS(LDK(KP347296355), To, Tl);
|
||
|
Tq = VFNMS(LDK(KP907603734), Tp, Tk);
|
||
|
Tt = VFNMS(LDK(KP420276625), Ts, Tm);
|
||
|
Tu = VFNMS(LDK(KP826351822), Tt, Tn);
|
||
|
Tr = VFNMS(LDK(KP939692620), Tq, Tj);
|
||
|
Tw = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), Tv, Tu));
|
||
|
ST(&(xo[WS(os, 2)]), VFNMSI(Tw, Tr), ovs, &(xo[0]));
|
||
|
ST(&(xo[WS(os, 7)]), VFMAI(Tw, Tr), ovs, &(xo[WS(os, 1)]));
|
||
|
}
|
||
|
{
|
||
|
V TA, TG, TE, TJ, TH, TK;
|
||
|
{
|
||
|
V Tz, TF, TD, TI;
|
||
|
Tz = VFMA(LDK(KP898197570), Ty, Tx);
|
||
|
TF = VFNMS(LDK(KP673648177), TC, TB);
|
||
|
TA = VFMA(LDK(KP852868531), Tz, Tj);
|
||
|
TG = VFNMS(LDK(KP500000000), Tz, TF);
|
||
|
TD = VFMA(LDK(KP673648177), TC, TB);
|
||
|
TI = VFNMS(LDK(KP898197570), Ty, Tx);
|
||
|
TE = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), Tv, TD));
|
||
|
TJ = VFMA(LDK(KP666666666), TD, TI);
|
||
|
}
|
||
|
ST(&(xo[WS(os, 1)]), VFNMSI(TE, TA), ovs, &(xo[WS(os, 1)]));
|
||
|
ST(&(xo[WS(os, 8)]), VFMAI(TE, TA), ovs, &(xo[0]));
|
||
|
TH = VFMA(LDK(KP852868531), TG, Tj);
|
||
|
TK = VMUL(LDK(KP866025403), VFMA(LDK(KP852868531), TJ, Tv));
|
||
|
ST(&(xo[WS(os, 5)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
|
||
|
ST(&(xo[WS(os, 4)]), VFMAI(TK, TH), ovs, &(xo[0]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
VLEAVE();
|
||
|
}
|
||
|
|
||
|
static const kdft_desc desc = { 9, XSIMD_STRING("n1fv_9"), { 12, 4, 34, 0 }, &GENUS, 0, 0, 0, 0 };
|
||
|
|
||
|
void XSIMD(codelet_n1fv_9) (planner *p) { X(kdft_register) (p, n1fv_9, &desc);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name n1fv_9 -include dft/simd/n1f.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 46 FP additions, 26 FP multiplications,
|
||
|
* (or, 30 additions, 10 multiplications, 16 fused multiply/add),
|
||
|
* 41 stack variables, 14 constants, and 18 memory accesses
|
||
|
*/
|
||
|
#include "dft/simd/n1f.h"
|
||
|
|
||
|
static void n1fv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DVK(KP342020143, +0.342020143325668733044099614682259580763083368);
|
||
|
DVK(KP813797681, +0.813797681349373692844693217248393223289101568);
|
||
|
DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
|
||
|
DVK(KP296198132, +0.296198132726023843175338011893050938967728390);
|
||
|
DVK(KP642787609, +0.642787609686539326322643409907263432907559884);
|
||
|
DVK(KP663413948, +0.663413948168938396205421319635891297216863310);
|
||
|
DVK(KP556670399, +0.556670399226419366452912952047023132968291906);
|
||
|
DVK(KP766044443, +0.766044443118978035202392650555416673935832457);
|
||
|
DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
|
||
|
DVK(KP150383733, +0.150383733180435296639271897612501926072238258);
|
||
|
DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
|
||
|
DVK(KP173648177, +0.173648177666930348851716626769314796000375677);
|
||
|
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
{
|
||
|
INT i;
|
||
|
const R *xi;
|
||
|
R *xo;
|
||
|
xi = ri;
|
||
|
xo = ro;
|
||
|
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) {
|
||
|
V T5, Ts, Tj, To, Tf, Tn, Tp, Tu, Tl, Ta, Tk, Tm, Tt;
|
||
|
{
|
||
|
V T1, T2, T3, T4;
|
||
|
T1 = LD(&(xi[0]), ivs, &(xi[0]));
|
||
|
T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
||
|
T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
|
||
|
T4 = VADD(T2, T3);
|
||
|
T5 = VADD(T1, T4);
|
||
|
Ts = VMUL(LDK(KP866025403), VSUB(T3, T2));
|
||
|
Tj = VFNMS(LDK(KP500000000), T4, T1);
|
||
|
}
|
||
|
{
|
||
|
V Tb, Te, Tc, Td;
|
||
|
Tb = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
||
|
Tc = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
||
|
Td = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
|
||
|
Te = VADD(Tc, Td);
|
||
|
To = VSUB(Td, Tc);
|
||
|
Tf = VADD(Tb, Te);
|
||
|
Tn = VFNMS(LDK(KP500000000), Te, Tb);
|
||
|
Tp = VFMA(LDK(KP173648177), Tn, VMUL(LDK(KP852868531), To));
|
||
|
Tu = VFNMS(LDK(KP984807753), Tn, VMUL(LDK(KP150383733), To));
|
||
|
}
|
||
|
{
|
||
|
V T6, T9, T7, T8;
|
||
|
T6 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
||
|
T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
||
|
T8 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
|
||
|
T9 = VADD(T7, T8);
|
||
|
Tl = VSUB(T8, T7);
|
||
|
Ta = VADD(T6, T9);
|
||
|
Tk = VFNMS(LDK(KP500000000), T9, T6);
|
||
|
Tm = VFMA(LDK(KP766044443), Tk, VMUL(LDK(KP556670399), Tl));
|
||
|
Tt = VFNMS(LDK(KP642787609), Tk, VMUL(LDK(KP663413948), Tl));
|
||
|
}
|
||
|
{
|
||
|
V Ti, Tg, Th, Tz, TA;
|
||
|
Ti = VBYI(VMUL(LDK(KP866025403), VSUB(Tf, Ta)));
|
||
|
Tg = VADD(Ta, Tf);
|
||
|
Th = VFNMS(LDK(KP500000000), Tg, T5);
|
||
|
ST(&(xo[0]), VADD(T5, Tg), ovs, &(xo[0]));
|
||
|
ST(&(xo[WS(os, 3)]), VADD(Th, Ti), ovs, &(xo[WS(os, 1)]));
|
||
|
ST(&(xo[WS(os, 6)]), VSUB(Th, Ti), ovs, &(xo[0]));
|
||
|
Tz = VFMA(LDK(KP173648177), Tk, VFNMS(LDK(KP296198132), To, VFNMS(LDK(KP939692620), Tn, VFNMS(LDK(KP852868531), Tl, Tj))));
|
||
|
TA = VBYI(VSUB(VFNMS(LDK(KP342020143), Tn, VFNMS(LDK(KP150383733), Tl, VFNMS(LDK(KP984807753), Tk, VMUL(LDK(KP813797681), To)))), Ts));
|
||
|
ST(&(xo[WS(os, 7)]), VSUB(Tz, TA), ovs, &(xo[WS(os, 1)]));
|
||
|
ST(&(xo[WS(os, 2)]), VADD(Tz, TA), ovs, &(xo[0]));
|
||
|
{
|
||
|
V Tr, Tx, Tw, Ty, Tq, Tv;
|
||
|
Tq = VADD(Tm, Tp);
|
||
|
Tr = VADD(Tj, Tq);
|
||
|
Tx = VFMA(LDK(KP866025403), VSUB(Tt, Tu), VFNMS(LDK(KP500000000), Tq, Tj));
|
||
|
Tv = VADD(Tt, Tu);
|
||
|
Tw = VBYI(VADD(Ts, Tv));
|
||
|
Ty = VBYI(VADD(Ts, VFNMS(LDK(KP500000000), Tv, VMUL(LDK(KP866025403), VSUB(Tp, Tm)))));
|
||
|
ST(&(xo[WS(os, 8)]), VSUB(Tr, Tw), ovs, &(xo[0]));
|
||
|
ST(&(xo[WS(os, 4)]), VADD(Tx, Ty), ovs, &(xo[0]));
|
||
|
ST(&(xo[WS(os, 1)]), VADD(Tw, Tr), ovs, &(xo[WS(os, 1)]));
|
||
|
ST(&(xo[WS(os, 5)]), VSUB(Tx, Ty), ovs, &(xo[WS(os, 1)]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
VLEAVE();
|
||
|
}
|
||
|
|
||
|
static const kdft_desc desc = { 9, XSIMD_STRING("n1fv_9"), { 30, 10, 16, 0 }, &GENUS, 0, 0, 0, 0 };
|
||
|
|
||
|
void XSIMD(codelet_n1fv_9) (planner *p) { X(kdft_register) (p, n1fv_9, &desc);
|
||
|
}
|
||
|
|
||
|
#endif
|