furnace/extern/fftw/dft/generic.c

170 lines
4.2 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "dft/dft.h"
typedef struct {
solver super;
} S;
typedef struct {
plan_dft super;
twid *td;
INT n, is, os;
} P;
static void cdot(INT n, const E *x, const R *w,
R *or0, R *oi0, R *or1, R *oi1)
{
INT i;
E rr = x[0], ri = 0, ir = x[1], ii = 0;
x += 2;
for (i = 1; i + i < n; ++i) {
rr += x[0] * w[0];
ir += x[1] * w[0];
ri += x[2] * w[1];
ii += x[3] * w[1];
x += 4; w += 2;
}
*or0 = rr + ii;
*oi0 = ir - ri;
*or1 = rr - ii;
*oi1 = ir + ri;
}
static void hartley(INT n, const R *xr, const R *xi, INT xs, E *o,
R *pr, R *pi)
{
INT i;
E sr, si;
o[0] = sr = xr[0]; o[1] = si = xi[0]; o += 2;
for (i = 1; i + i < n; ++i) {
sr += (o[0] = xr[i * xs] + xr[(n - i) * xs]);
si += (o[1] = xi[i * xs] + xi[(n - i) * xs]);
o[2] = xr[i * xs] - xr[(n - i) * xs];
o[3] = xi[i * xs] - xi[(n - i) * xs];
o += 4;
}
*pr = sr;
*pi = si;
}
static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
{
const P *ego = (const P *) ego_;
INT i;
INT n = ego->n, is = ego->is, os = ego->os;
const R *W = ego->td->W;
E *buf;
size_t bufsz = n * 2 * sizeof(E);
BUF_ALLOC(E *, buf, bufsz);
hartley(n, ri, ii, is, buf, ro, io);
for (i = 1; i + i < n; ++i) {
cdot(n, buf, W,
ro + i * os, io + i * os,
ro + (n - i) * os, io + (n - i) * os);
W += n - 1;
}
BUF_FREE(buf, bufsz);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
static const tw_instr half_tw[] = {
{ TW_HALF, 1, 0 },
{ TW_NEXT, 1, 0 }
};
X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n,
(ego->n - 1) / 2);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(dft-generic-%D)", ego->n);
}
static int applicable(const solver *ego, const problem *p_,
const planner *plnr)
{
const problem_dft *p = (const problem_dft *) p_;
UNUSED(ego);
return (1
&& p->sz->rnk == 1
&& p->vecsz->rnk == 0
&& (p->sz->dims[0].n % 2) == 1
&& CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD)
&& CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW)
&& X(is_prime)(p->sz->dims[0].n)
);
}
static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
{
const problem_dft *p;
P *pln;
INT n;
static const plan_adt padt = {
X(dft_solve), awake, print, X(plan_null_destroy)
};
if (!applicable(ego, p_, plnr))
return (plan *)0;
pln = MKPLAN_DFT(P, &padt, apply);
p = (const problem_dft *) p_;
pln->n = n = p->sz->dims[0].n;
pln->is = p->sz->dims[0].is;
pln->os = p->sz->dims[0].os;
pln->td = 0;
pln->super.super.ops.add = (n-1) * 5;
pln->super.super.ops.mul = 0;
pln->super.super.ops.fma = (n-1) * (n-1) ;
#if 0 /* these are nice pipelined sequential loads and should cost nothing */
pln->super.super.ops.other = (n-1)*(4 + 1 + 2 * (n-1)); /* approximate */
#endif
return &(pln->super.super);
}
static solver *mksolver(void)
{
static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
return &(slv->super);
}
void X(dft_generic_register)(planner *p)
{
REGISTER_SOLVER(p, mksolver());
}