Remove usage of AsynchronousExecutor library in favor or a simpler implementation.

This commit is contained in:
LexManos 2016-05-03 19:54:04 -07:00
parent d8249b7886
commit 3177d55579
5 changed files with 198 additions and 577 deletions

View file

@ -1,32 +1,130 @@
package net.minecraftforge.common.chunkio; package net.minecraftforge.common.chunkio;
import net.minecraftforge.common.util.AsynchronousExecutor; import java.util.Iterator;
import java.util.Map;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
public class ChunkIOExecutor { import com.google.common.collect.Maps;
import net.minecraft.world.World;
import net.minecraft.world.chunk.Chunk;
import net.minecraft.world.chunk.storage.AnvilChunkLoader;
import net.minecraft.world.gen.ChunkProviderServer;
import net.minecraftforge.fml.common.FMLLog;
public class ChunkIOExecutor
{
static final int BASE_THREADS = 1; static final int BASE_THREADS = 1;
static final int PLAYERS_PER_THREAD = 50; static final int PLAYERS_PER_THREAD = 50;
private static final AsynchronousExecutor<QueuedChunk, net.minecraft.world.chunk.Chunk, Runnable, RuntimeException> instance = new AsynchronousExecutor<QueuedChunk, net.minecraft.world.chunk.Chunk, Runnable, RuntimeException>(new ChunkIOProvider(), BASE_THREADS); private static final Map<QueuedChunk, ChunkIOProvider> tasks = Maps.newConcurrentMap();
private static final ThreadPoolExecutor pool = new ThreadPoolExecutor(BASE_THREADS, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS,
new LinkedBlockingQueue<Runnable>(),
new ThreadFactory()
{
private AtomicInteger count = new AtomicInteger(1);
@Override
public Thread newThread(Runnable r)
{
Thread thread = new Thread(r, "Chunk I/O Executor Thread-" + count.getAndIncrement());
thread.setDaemon(true);
return thread;
}
}
);
public static net.minecraft.world.chunk.Chunk syncChunkLoad(net.minecraft.world.World world, net.minecraft.world.chunk.storage.AnvilChunkLoader loader, net.minecraft.world.gen.ChunkProviderServer provider, int x, int z) { //Load the chunk completely in this thread. Dequeue as needed...
return instance.getSkipQueue(new QueuedChunk(x, z, loader, world, provider)); public static Chunk syncChunkLoad(World world, AnvilChunkLoader loader, ChunkProviderServer provider, int x, int z)
{
QueuedChunk key = new QueuedChunk(x, z, loader, world, provider);
ChunkIOProvider task = tasks.get(key);
if (task != null)
{
if (!pool.remove(task) && !task.runFinished()) // If it wasn't in the pool, and run hasn't finished, then wait for the async thread.
{
synchronized(task)
{
try
{
task.wait();
}
catch (InterruptedException e)
{
e.printStackTrace(); // Something happened? Log it?
}
}
}
}
else
{
task = new ChunkIOProvider(key);
task.run();
}
task.syncCallback();
return task.getChunk();
} }
public static void queueChunkLoad(net.minecraft.world.World world, net.minecraft.world.chunk.storage.AnvilChunkLoader loader, net.minecraft.world.gen.ChunkProviderServer provider, int x, int z, Runnable runnable) { //Queue the chunk to be loaded, and call the runnable when finished
instance.add(new QueuedChunk(x, z, loader, world, provider), runnable); public static void queueChunkLoad(World world, AnvilChunkLoader loader, ChunkProviderServer provider, int x, int z, Runnable runnable)
{
QueuedChunk key = new QueuedChunk(x, z, loader, world, provider);
ChunkIOProvider task = tasks.get(key);
if (task == null)
{
task = new ChunkIOProvider(key);
task.addCallback(runnable); // Add before calling execute for thread safety
tasks.put(key, task);
pool.execute(task);
}
else
{
task.addCallback(runnable);
}
} }
// Abuses the fact that hashCode and equals for QueuedChunk only use world and coords // Abuses the fact that hashCode and equals for QueuedChunk only use world and coords
public static void dropQueuedChunkLoad(net.minecraft.world.World world, int x, int z, Runnable runnable) { // Remove the chunk from the queue if it's in the list.
instance.drop(new QueuedChunk(x, z, null, world, null), runnable); public static void dropQueuedChunkLoad(World world, int x, int z, Runnable runnable)
{
QueuedChunk key = new QueuedChunk(x, z, null, world, null);
ChunkIOProvider task = tasks.get(key);
if (task == null)
{
FMLLog.warning("Attempted to dequeue chunk that wasn't queued? %d @ (%d, %d)", world.provider.getDimension(), x, z);
return;
} }
public static void adjustPoolSize(int players) { task.removeCallback(runnable);
if (!task.hasCallback())
{
tasks.remove(key);
pool.remove(task);
}
}
public static void adjustPoolSize(int players)
{
int size = Math.max(BASE_THREADS, (int) Math.ceil(players / PLAYERS_PER_THREAD)); int size = Math.max(BASE_THREADS, (int) Math.ceil(players / PLAYERS_PER_THREAD));
instance.setActiveThreads(size); pool.setCorePoolSize(size);
} }
public static void tick() { public static void tick()
instance.finishActive(); {
Iterator<ChunkIOProvider> itr = tasks.values().iterator();
while (itr.hasNext())
{
ChunkIOProvider task = itr.next();
if (task.runFinished() && task.hasCallback())
{
task.syncCallback();
}
itr.remove();
}
} }
} }

View file

@ -1,64 +1,113 @@
package net.minecraftforge.common.chunkio; package net.minecraftforge.common.chunkio;
import net.minecraft.world.ChunkCoordIntPair; import net.minecraft.world.ChunkCoordIntPair;
import net.minecraft.world.chunk.Chunk;
import net.minecraft.world.chunk.storage.AnvilChunkLoader;
import net.minecraft.world.gen.ChunkProviderServer;
import net.minecraft.nbt.NBTTagCompound;
import net.minecraftforge.common.MinecraftForge; import net.minecraftforge.common.MinecraftForge;
import net.minecraftforge.common.util.AsynchronousExecutor;
import net.minecraftforge.event.world.ChunkDataEvent; import net.minecraftforge.event.world.ChunkDataEvent;
import java.io.IOException; import java.io.IOException;
import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.ConcurrentLinkedQueue;
class ChunkIOProvider implements AsynchronousExecutor.CallBackProvider<QueuedChunk, net.minecraft.world.chunk.Chunk, Runnable, RuntimeException> { class ChunkIOProvider implements Runnable
private final AtomicInteger threadNumber = new AtomicInteger(1); {
private QueuedChunk chunkInfo;
private Chunk chunk;
private NBTTagCompound nbt;
private ConcurrentLinkedQueue<Runnable> callbacks = new ConcurrentLinkedQueue<Runnable>();
private boolean ran = false;
// async stuff ChunkIOProvider(QueuedChunk chunk)
public net.minecraft.world.chunk.Chunk callStage1(QueuedChunk queuedChunk) throws RuntimeException { {
net.minecraft.world.chunk.storage.AnvilChunkLoader loader = queuedChunk.loader; this.chunkInfo = chunk;
}
public void addCallback(Runnable callback)
{
this.callbacks.add(callback);
}
public void removeCallback(Runnable callback)
{
this.callbacks.remove(callback);
}
@Override
public void run() // async stuff
{
synchronized(this)
{
AnvilChunkLoader loader = chunkInfo.loader;
Object[] data = null; Object[] data = null;
try { try
data = loader.loadChunk__Async(queuedChunk.world, queuedChunk.x, queuedChunk.z); {
} catch (IOException e) { data = loader.loadChunk__Async(chunkInfo.world, chunkInfo.x, chunkInfo.z);
}
catch (IOException e)
{
e.printStackTrace(); e.printStackTrace();
} }
if (data != null) { if (data != null)
queuedChunk.compound = (net.minecraft.nbt.NBTTagCompound) data[1]; {
return (net.minecraft.world.chunk.Chunk) data[0]; this.nbt = (NBTTagCompound)data[1];
this.chunk = (Chunk)data[0];
} }
return null; this.ran = true;
this.notifyAll();
}
} }
// sync stuff // sync stuff
public void callStage2(QueuedChunk queuedChunk, net.minecraft.world.chunk.Chunk chunk) throws RuntimeException { public void syncCallback()
if(chunk == null) { {
ChunkProviderServer provider = this.chunkInfo.provider;
if (chunk == null)
{
// If the chunk loading failed just do it synchronously (may generate) // If the chunk loading failed just do it synchronously (may generate)
queuedChunk.provider.originalLoadChunk(queuedChunk.x, queuedChunk.z); provider.originalLoadChunk(this.chunkInfo.x, this.chunkInfo.z);
return; return;
} }
queuedChunk.loader.loadEntities(queuedChunk.world, queuedChunk.compound.getCompoundTag("Level"), chunk); // Load Entities
MinecraftForge.EVENT_BUS.post(new ChunkDataEvent.Load(chunk, queuedChunk.compound)); // Don't call ChunkDataEvent.Load async this.chunkInfo.loader.loadEntities(this.chunkInfo.world, this.nbt.getCompoundTag("Level"), this.chunk);
chunk.setLastSaveTime(queuedChunk.provider.worldObj.getTotalWorldTime());
queuedChunk.provider.id2ChunkMap.add(ChunkCoordIntPair.chunkXZ2Int(queuedChunk.x, queuedChunk.z), chunk);
queuedChunk.provider.loadedChunks.add(chunk);
chunk.onChunkLoad();
if (queuedChunk.provider.chunkGenerator != null) { MinecraftForge.EVENT_BUS.post(new ChunkDataEvent.Load(this.chunk, this.nbt)); // Don't call ChunkDataEvent.Load async
queuedChunk.provider.chunkGenerator.recreateStructures(chunk, queuedChunk.x, queuedChunk.z);
this.chunk.setLastSaveTime(provider.worldObj.getTotalWorldTime());
provider.id2ChunkMap.add(ChunkCoordIntPair.chunkXZ2Int(this.chunkInfo.x, this.chunkInfo.z), this.chunk);
provider.loadedChunks.add(this.chunk);
this.chunk.onChunkLoad();
if (provider.chunkGenerator != null)
{
provider.chunkGenerator.recreateStructures(this.chunk, this.chunkInfo.x, this.chunkInfo.z);
} }
chunk.populateChunk(queuedChunk.provider, queuedChunk.provider.chunkGenerator); this.chunk.populateChunk(provider, provider.chunkGenerator);
for (Runnable r : this.callbacks)
{
r.run();
} }
public void callStage3(QueuedChunk queuedChunk, net.minecraft.world.chunk.Chunk chunk, Runnable runnable) throws RuntimeException { this.callbacks.clear();
runnable.run();
} }
public Thread newThread(Runnable runnable) { public Chunk getChunk()
Thread thread = new Thread(runnable, "Chunk I/O Executor Thread-" + threadNumber.getAndIncrement()); {
thread.setDaemon(true); return this.chunk;
return thread; }
public boolean runFinished()
{
return this.ran;
}
public boolean hasCallback()
{
return this.callbacks.size() > 0;
} }
} }

View file

@ -7,7 +7,6 @@ class QueuedChunk {
final net.minecraft.world.chunk.storage.AnvilChunkLoader loader; final net.minecraft.world.chunk.storage.AnvilChunkLoader loader;
final net.minecraft.world.World world; final net.minecraft.world.World world;
final net.minecraft.world.gen.ChunkProviderServer provider; final net.minecraft.world.gen.ChunkProviderServer provider;
net.minecraft.nbt.NBTTagCompound compound;
public QueuedChunk(int x, int z, net.minecraft.world.chunk.storage.AnvilChunkLoader loader, net.minecraft.world.World world, net.minecraft.world.gen.ChunkProviderServer provider) { public QueuedChunk(int x, int z, net.minecraft.world.chunk.storage.AnvilChunkLoader loader, net.minecraft.world.World world, net.minecraft.world.gen.ChunkProviderServer provider) {
this.x = x; this.x = x;

View file

@ -1,360 +0,0 @@
package net.minecraftforge.common.util;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Queue;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicIntegerFieldUpdater;
import net.minecraftforge.fml.common.FMLLog;
/**
* Executes tasks using a multi-stage process executor. Synchronous executions are via {@link AsynchronousExecutor#finishActive()} or the {@link AsynchronousExecutor#get(Object)} methods.
* <li \> Stage 1 creates the object from a parameter, and is usually called asynchronously.
* <li \> Stage 2 takes the parameter and object from stage 1 and does any synchronous processing to prepare it.
* <li \> Stage 3 takes the parameter and object from stage 1, as well as a callback that was registered, and performs any synchronous calculations.
*
* @param <P> The type of parameter you provide to make the object that will be created. It should implement {@link Object#hashCode()} and {@link Object#equals(Object)} if you want to get the value early.
* @param <T> The type of object you provide. This is created in stage 1, and passed to stage 2, 3, and returned if get() is called.
* @param <C> The type of callback you provide. You may register many of these to be passed to the provider in stage 3, one at a time.
* @param <E> A type of exception you may throw and expect to be handled by the main thread
* @author Wesley Wolfe (c) 2012, 2014
*/
public final class AsynchronousExecutor<P, T, C, E extends Throwable> {
public static interface CallBackProvider<P, T, C, E extends Throwable> extends ThreadFactory {
/**
* Normally an asynchronous call, but can be synchronous
*
* @param parameter parameter object provided
* @return the created object
*/
T callStage1(P parameter) throws E;
/**
* Synchronous call
*
* @param parameter parameter object provided
* @param object the previously created object
*/
void callStage2(P parameter, T object) throws E;
/**
* Synchronous call, called multiple times, once per registered callback
*
* @param parameter parameter object provided
* @param object the previously created object
* @param callback the current callback to execute
*/
void callStage3(P parameter, T object, C callback) throws E;
}
private static class StateHolder {
protected static final int PENDING = 0x0;
protected static final int STAGE_1_ASYNC = PENDING + 1;
protected static final int STAGE_1_SYNC = STAGE_1_ASYNC + 1;
protected static final int STAGE_1_COMPLETE = STAGE_1_SYNC + 1;
protected static final int FINISHED = STAGE_1_COMPLETE + 1;
protected volatile int state = PENDING;
protected static final AtomicIntegerFieldUpdater<StateHolder> STATE = AtomicIntegerFieldUpdater.newUpdater(StateHolder.class, "state");
}
private class Task extends StateHolder implements Runnable {
private final P parameter;
private T object;
private final List<C> callbacks = new LinkedList<C>();
private E t = null;
private Task(final P parameter) {
this.parameter = parameter;
}
public void run() {
if (initAsync()) {
finished.add(this);
}
}
private boolean initAsync() {
if (STATE.compareAndSet(this, PENDING, STAGE_1_ASYNC)) {
boolean ret = true;
try {
init();
} finally {
if (STATE.compareAndSet(this, STAGE_1_ASYNC, STAGE_1_COMPLETE)) {
// No one is/will be waiting
} else {
// We know that the sync thread will be waiting
synchronized (this) {
if (state != STAGE_1_SYNC) {
// They beat us to the synchronized block
this.notifyAll();
} else {
// We beat them to the synchronized block
}
state = STAGE_1_COMPLETE; // They're already synchronized, atomic locks are not needed
}
// We want to return false, because we know a synchronous task already handled the finish()
ret = false; // Don't return inside finally; VERY bad practice.
}
}
return ret;
} else {
return false;
}
}
private void initSync() {
if (STATE.compareAndSet(this, PENDING, STAGE_1_COMPLETE)) {
// If we succeed that variable switch, good as done
init();
} else if (STATE.compareAndSet(this, STAGE_1_ASYNC, STAGE_1_SYNC)) {
// Async thread is running, but this shouldn't be likely; we need to sync to wait on them because of it.
synchronized (this) {
if (STATE.compareAndSet(this, STAGE_1_SYNC, PENDING)) { // They might NOT synchronized yet, atomic lock IS needed
// We are the first into the lock
while (state != STAGE_1_COMPLETE) {
try {
this.wait();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
throw new RuntimeException("Unable to handle interruption on " + parameter, e);
}
}
} else {
// They beat us to the synchronized block
}
}
} else {
// Async thread is not pending, the more likely situation for a task not pending
}
}
@SuppressWarnings("unchecked")
private void init() {
try {
object = provider.callStage1(parameter);
} catch (final Throwable t) {
this.t = (E) t;
}
}
@SuppressWarnings("unchecked")
private T get() throws E {
initSync();
if (callbacks.isEmpty()) {
// 'this' is a placeholder to prevent callbacks from being empty during finish call
// See get method below
callbacks.add((C) this);
}
finish();
return object;
}
private void finish() throws E {
switch (state) {
default:
case PENDING:
case STAGE_1_ASYNC:
case STAGE_1_SYNC:
throw new IllegalStateException("Attempting to finish unprepared(" + state + ") task(" + parameter + ")");
case STAGE_1_COMPLETE:
try {
if (t != null) {
throw t;
}
if (callbacks.isEmpty()) {
return;
}
final CallBackProvider<P, T, C, E> provider = AsynchronousExecutor.this.provider;
final P parameter = this.parameter;
final T object = this.object;
provider.callStage2(parameter, object);
for (C callback : callbacks) {
if (callback == this) {
// 'this' is a placeholder to prevent callbacks from being empty on a get() call
// See get method above
continue;
}
provider.callStage3(parameter, object, callback);
}
} finally {
tasks.remove(parameter);
state = FINISHED;
}
case FINISHED:
}
}
private boolean drop() {
if (STATE.compareAndSet(this, PENDING, FINISHED)) {
// If we succeed that variable switch, good as forgotten
tasks.remove(parameter);
return true;
} else {
// We need the async thread to finish normally to properly dispose of the task
return false;
}
}
}
private final CallBackProvider<P, T, C, E> provider;
private final Queue<Task> finished = new ConcurrentLinkedQueue<Task>();
private final Map<P, Task> tasks = new HashMap<P, Task>();
private final ThreadPoolExecutor pool;
/**
* Uses a thread pool to pass executions to the provider.
* @see AsynchronousExecutor
*/
public AsynchronousExecutor(final CallBackProvider<P, T, C, E> provider, final int coreSize) {
if (provider == null) {
throw new IllegalArgumentException("Provider cannot be null");
}
this.provider = provider;
// We have an unbound queue size so do not need a max thread size
pool = new ThreadPoolExecutor(coreSize, Integer.MAX_VALUE, 60l, TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>(), provider);
}
/**
* Adds a callback to the parameter provided, adding parameter to the queue if needed.
* <p>
* This should always be synchronous.
*/
public void add(P parameter, C callback) {
Task task = tasks.get(parameter);
if (task == null) {
tasks.put(parameter, task = new Task(parameter));
pool.execute(task);
}
task.callbacks.add(callback);
}
/**
* This removes a particular callback from the specified parameter.
* <p>
* If no callbacks remain for a given parameter, then the {@link CallBackProvider CallBackProvider's} stages may be omitted from execution.
* Stage 3 will have no callbacks, stage 2 will be skipped unless a {@link #get(Object)} is used, and stage 1 will be avoided on a best-effort basis.
* <p>
* Subsequent calls to {@link #getSkipQueue(Object)} will always work.
* <p>
* Subsequent calls to {@link #get(Object)} might work.
* <p>
* This should always be synchronous
* @return true if no further execution for the parameter is possible, such that, no exceptions will be thrown in {@link #finishActive()} for the parameter, and {@link #get(Object)} will throw an {@link IllegalStateException}, false otherwise
* @throws IllegalStateException if parameter is not in the queue anymore
* @throws IllegalStateException if the callback was not specified for given parameter
*/
public boolean drop(P parameter, C callback) throws IllegalStateException {
final Task task = tasks.get(parameter);
if (task == null) {
// Print debug info for QueuedChunk and avoid crash
//throw new IllegalStateException("Unknown " + parameter);
FMLLog.info("Unknown %s", parameter);
FMLLog.info("This should not happen. Please report this error to Forge.");
return false;
}
if (!task.callbacks.remove(callback)) {
throw new IllegalStateException("Unknown " + callback + " for " + parameter);
}
if (task.callbacks.isEmpty()) {
return task.drop();
}
return false;
}
/**
* This method attempts to skip the waiting period for said parameter.
* <p>
* This should always be synchronous.
* @throws IllegalStateException if the parameter is not in the queue anymore, or sometimes if called from asynchronous thread
*/
public T get(P parameter) throws E, IllegalStateException {
final Task task = tasks.get(parameter);
if (task == null) {
throw new IllegalStateException("Unknown " + parameter);
}
return task.get();
}
/**
* Processes a parameter as if it was in the queue, without ever passing to another thread.
*/
public T getSkipQueue(P parameter) throws E {
return skipQueue(parameter);
}
/**
* Processes a parameter as if it was in the queue, without ever passing to another thread.
*/
public T getSkipQueue(P parameter, C callback) throws E {
final T object = skipQueue(parameter);
provider.callStage3(parameter, object, callback);
return object;
}
/**
* Processes a parameter as if it was in the queue, without ever passing to another thread.
*/
public T getSkipQueue(P parameter, C... callbacks) throws E {
final CallBackProvider<P, T, C, E> provider = this.provider;
final T object = skipQueue(parameter);
for (C callback : callbacks) {
provider.callStage3(parameter, object, callback);
}
return object;
}
/**
* Processes a parameter as if it was in the queue, without ever passing to another thread.
*/
public T getSkipQueue(P parameter, Iterable<C> callbacks) throws E {
final CallBackProvider<P, T, C, E> provider = this.provider;
final T object = skipQueue(parameter);
for (C callback : callbacks) {
provider.callStage3(parameter, object, callback);
}
return object;
}
private T skipQueue(P parameter) throws E {
Task task = tasks.get(parameter);
if (task != null) {
return task.get();
}
T object = provider.callStage1(parameter);
provider.callStage2(parameter, object);
return object;
}
/**
* This is the 'heartbeat' that should be called synchronously to finish any pending tasks
*/
public void finishActive() throws E {
final Queue<Task> finished = this.finished;
while (!finished.isEmpty()) {
finished.poll().finish();
}
}
public void setActiveThreads(final int coreSize) {
pool.setCorePoolSize(coreSize);
}
}

View file

@ -1,165 +0,0 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.
0. Additional Definitions.
As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.
"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.
An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.
A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".
The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.
The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.
You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.
If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:
a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or
b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.
3. Object Code Incorporating Material from Library Header Files.
The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:
a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this license
document.
4. Combined Works.
You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:
a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.
c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.
d) Do one of the following:
0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.
1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user's computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.
e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)
5. Combined Libraries.
You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:
a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.
b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.
6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.
If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.