gl_shader_cache: Rework shader cache and remove post-specializations

Instead of pre-specializing shaders and then post-specializing them,
drop the later and only "specialize" the shader while decoding it.
This commit is contained in:
ReinUsesLisp 2020-02-26 16:13:47 -03:00
parent 22e825a3bc
commit bd8b9bbcee
19 changed files with 548 additions and 1100 deletions

View file

@ -57,8 +57,6 @@ set(HASH_FILES
"${VIDEO_CORE}/renderer_opengl/gl_shader_decompiler.h" "${VIDEO_CORE}/renderer_opengl/gl_shader_decompiler.h"
"${VIDEO_CORE}/renderer_opengl/gl_shader_disk_cache.cpp" "${VIDEO_CORE}/renderer_opengl/gl_shader_disk_cache.cpp"
"${VIDEO_CORE}/renderer_opengl/gl_shader_disk_cache.h" "${VIDEO_CORE}/renderer_opengl/gl_shader_disk_cache.h"
"${VIDEO_CORE}/renderer_opengl/gl_shader_gen.cpp"
"${VIDEO_CORE}/renderer_opengl/gl_shader_gen.h"
"${VIDEO_CORE}/shader/decode/arithmetic.cpp" "${VIDEO_CORE}/shader/decode/arithmetic.cpp"
"${VIDEO_CORE}/shader/decode/arithmetic_half.cpp" "${VIDEO_CORE}/shader/decode/arithmetic_half.cpp"
"${VIDEO_CORE}/shader/decode/arithmetic_half_immediate.cpp" "${VIDEO_CORE}/shader/decode/arithmetic_half_immediate.cpp"

View file

@ -38,8 +38,6 @@ add_custom_command(OUTPUT scm_rev.cpp
"${VIDEO_CORE}/renderer_opengl/gl_shader_decompiler.h" "${VIDEO_CORE}/renderer_opengl/gl_shader_decompiler.h"
"${VIDEO_CORE}/renderer_opengl/gl_shader_disk_cache.cpp" "${VIDEO_CORE}/renderer_opengl/gl_shader_disk_cache.cpp"
"${VIDEO_CORE}/renderer_opengl/gl_shader_disk_cache.h" "${VIDEO_CORE}/renderer_opengl/gl_shader_disk_cache.h"
"${VIDEO_CORE}/renderer_opengl/gl_shader_gen.cpp"
"${VIDEO_CORE}/renderer_opengl/gl_shader_gen.h"
"${VIDEO_CORE}/shader/decode/arithmetic.cpp" "${VIDEO_CORE}/shader/decode/arithmetic.cpp"
"${VIDEO_CORE}/shader/decode/arithmetic_half.cpp" "${VIDEO_CORE}/shader/decode/arithmetic_half.cpp"
"${VIDEO_CORE}/shader/decode/arithmetic_half_immediate.cpp" "${VIDEO_CORE}/shader/decode/arithmetic_half_immediate.cpp"

View file

@ -65,8 +65,6 @@ add_library(video_core STATIC
renderer_opengl/gl_shader_decompiler.h renderer_opengl/gl_shader_decompiler.h
renderer_opengl/gl_shader_disk_cache.cpp renderer_opengl/gl_shader_disk_cache.cpp
renderer_opengl/gl_shader_disk_cache.h renderer_opengl/gl_shader_disk_cache.h
renderer_opengl/gl_shader_gen.cpp
renderer_opengl/gl_shader_gen.h
renderer_opengl/gl_shader_manager.cpp renderer_opengl/gl_shader_manager.cpp
renderer_opengl/gl_shader_manager.h renderer_opengl/gl_shader_manager.h
renderer_opengl/gl_shader_util.cpp renderer_opengl/gl_shader_util.cpp

View file

@ -4,13 +4,15 @@
#include <algorithm> #include <algorithm>
#include <limits> #include <limits>
#include <vector>
#include "common/common_types.h"
#include "video_core/guest_driver.h" #include "video_core/guest_driver.h"
namespace VideoCore { namespace VideoCore {
void GuestDriverProfile::DeduceTextureHandlerSize(std::vector<u32>&& bound_offsets) { void GuestDriverProfile::DeduceTextureHandlerSize(std::vector<u32> bound_offsets) {
if (texture_handler_size_deduced) { if (texture_handler_size) {
return; return;
} }
const std::size_t size = bound_offsets.size(); const std::size_t size = bound_offsets.size();
@ -29,7 +31,6 @@ void GuestDriverProfile::DeduceTextureHandlerSize(std::vector<u32>&& bound_offse
if (min_val > 2) { if (min_val > 2) {
return; return;
} }
texture_handler_size_deduced = true;
texture_handler_size = min_texture_handler_size * min_val; texture_handler_size = min_texture_handler_size * min_val;
} }

View file

@ -4,6 +4,7 @@
#pragma once #pragma once
#include <optional>
#include <vector> #include <vector>
#include "common/common_types.h" #include "common/common_types.h"
@ -17,25 +18,29 @@ namespace VideoCore {
*/ */
class GuestDriverProfile { class GuestDriverProfile {
public: public:
void DeduceTextureHandlerSize(std::vector<u32>&& bound_offsets); explicit GuestDriverProfile() = default;
explicit GuestDriverProfile(std::optional<u32> texture_handler_size)
: texture_handler_size{texture_handler_size} {}
void DeduceTextureHandlerSize(std::vector<u32> bound_offsets);
u32 GetTextureHandlerSize() const { u32 GetTextureHandlerSize() const {
return texture_handler_size; return texture_handler_size.value_or(default_texture_handler_size);
} }
bool TextureHandlerSizeKnown() const { bool IsTextureHandlerSizeKnown() const {
return texture_handler_size_deduced; return texture_handler_size.has_value();
} }
private: private:
// Minimum size of texture handler any driver can use. // Minimum size of texture handler any driver can use.
static constexpr u32 min_texture_handler_size = 4; static constexpr u32 min_texture_handler_size = 4;
// This goes with Vulkan and OpenGL standards but Nvidia GPUs can easily
// use 4 bytes instead. Thus, certain drivers may squish the size. // This goes with Vulkan and OpenGL standards but Nvidia GPUs can easily use 4 bytes instead.
// Thus, certain drivers may squish the size.
static constexpr u32 default_texture_handler_size = 8; static constexpr u32 default_texture_handler_size = 8;
u32 texture_handler_size = default_texture_handler_size; std::optional<u32> texture_handler_size = default_texture_handler_size;
bool texture_handler_size_deduced = false;
}; };
} // namespace VideoCore } // namespace VideoCore

View file

@ -28,7 +28,6 @@
#include "video_core/renderer_opengl/gl_query_cache.h" #include "video_core/renderer_opengl/gl_query_cache.h"
#include "video_core/renderer_opengl/gl_rasterizer.h" #include "video_core/renderer_opengl/gl_rasterizer.h"
#include "video_core/renderer_opengl/gl_shader_cache.h" #include "video_core/renderer_opengl/gl_shader_cache.h"
#include "video_core/renderer_opengl/gl_shader_gen.h"
#include "video_core/renderer_opengl/maxwell_to_gl.h" #include "video_core/renderer_opengl/maxwell_to_gl.h"
#include "video_core/renderer_opengl/renderer_opengl.h" #include "video_core/renderer_opengl/renderer_opengl.h"
@ -76,7 +75,7 @@ Tegra::Texture::FullTextureInfo GetTextureInfo(const Engine& engine, const Entry
} }
std::size_t GetConstBufferSize(const Tegra::Engines::ConstBufferInfo& buffer, std::size_t GetConstBufferSize(const Tegra::Engines::ConstBufferInfo& buffer,
const GLShader::ConstBufferEntry& entry) { const ConstBufferEntry& entry) {
if (!entry.IsIndirect()) { if (!entry.IsIndirect()) {
return entry.GetSize(); return entry.GetSize();
} }
@ -272,9 +271,7 @@ void RasterizerOpenGL::SetupShaders(GLenum primitive_mode) {
SetupDrawTextures(stage, shader); SetupDrawTextures(stage, shader);
SetupDrawImages(stage, shader); SetupDrawImages(stage, shader);
const ProgramVariant variant(primitive_mode); const GLuint program_handle = shader->GetHandle();
const auto program_handle = shader->GetHandle(variant);
switch (program) { switch (program) {
case Maxwell::ShaderProgram::VertexA: case Maxwell::ShaderProgram::VertexA:
case Maxwell::ShaderProgram::VertexB: case Maxwell::ShaderProgram::VertexB:
@ -295,7 +292,7 @@ void RasterizerOpenGL::SetupShaders(GLenum primitive_mode) {
// When a clip distance is enabled but not set in the shader it crops parts of the screen // When a clip distance is enabled but not set in the shader it crops parts of the screen
// (sometimes it's half the screen, sometimes three quarters). To avoid this, enable the // (sometimes it's half the screen, sometimes three quarters). To avoid this, enable the
// clip distances only when it's written by a shader stage. // clip distances only when it's written by a shader stage.
clip_distances |= shader->GetShaderEntries().clip_distances; clip_distances |= shader->GetEntries().clip_distances;
// When VertexA is enabled, we have dual vertex shaders // When VertexA is enabled, we have dual vertex shaders
if (program == Maxwell::ShaderProgram::VertexA) { if (program == Maxwell::ShaderProgram::VertexA) {
@ -622,13 +619,7 @@ void RasterizerOpenGL::DispatchCompute(GPUVAddr code_addr) {
auto kernel = shader_cache.GetComputeKernel(code_addr); auto kernel = shader_cache.GetComputeKernel(code_addr);
SetupComputeTextures(kernel); SetupComputeTextures(kernel);
SetupComputeImages(kernel); SetupComputeImages(kernel);
glUseProgramStages(program_manager.GetHandle(), GL_COMPUTE_SHADER_BIT, kernel->GetHandle());
const auto& launch_desc = system.GPU().KeplerCompute().launch_description;
const ProgramVariant variant(launch_desc.block_dim_x, launch_desc.block_dim_y,
launch_desc.block_dim_z, launch_desc.shared_alloc,
launch_desc.local_pos_alloc);
glUseProgramStages(program_manager.GetHandle(), GL_COMPUTE_SHADER_BIT,
kernel->GetHandle(variant));
const std::size_t buffer_size = const std::size_t buffer_size =
Tegra::Engines::KeplerCompute::NumConstBuffers * Tegra::Engines::KeplerCompute::NumConstBuffers *
@ -646,6 +637,7 @@ void RasterizerOpenGL::DispatchCompute(GPUVAddr code_addr) {
bind_ubo_pushbuffer.Bind(); bind_ubo_pushbuffer.Bind();
bind_ssbo_pushbuffer.Bind(); bind_ssbo_pushbuffer.Bind();
const auto& launch_desc = system.GPU().KeplerCompute().launch_description;
glDispatchCompute(launch_desc.grid_dim_x, launch_desc.grid_dim_y, launch_desc.grid_dim_z); glDispatchCompute(launch_desc.grid_dim_x, launch_desc.grid_dim_y, launch_desc.grid_dim_z);
++num_queued_commands; ++num_queued_commands;
} }
@ -750,7 +742,7 @@ void RasterizerOpenGL::SetupDrawConstBuffers(std::size_t stage_index, const Shad
const auto& shader_stage = stages[stage_index]; const auto& shader_stage = stages[stage_index];
u32 binding = device.GetBaseBindings(stage_index).uniform_buffer; u32 binding = device.GetBaseBindings(stage_index).uniform_buffer;
for (const auto& entry : shader->GetShaderEntries().const_buffers) { for (const auto& entry : shader->GetEntries().const_buffers) {
const auto& buffer = shader_stage.const_buffers[entry.GetIndex()]; const auto& buffer = shader_stage.const_buffers[entry.GetIndex()];
SetupConstBuffer(binding++, buffer, entry); SetupConstBuffer(binding++, buffer, entry);
} }
@ -761,7 +753,7 @@ void RasterizerOpenGL::SetupComputeConstBuffers(const Shader& kernel) {
const auto& launch_desc = system.GPU().KeplerCompute().launch_description; const auto& launch_desc = system.GPU().KeplerCompute().launch_description;
u32 binding = 0; u32 binding = 0;
for (const auto& entry : kernel->GetShaderEntries().const_buffers) { for (const auto& entry : kernel->GetEntries().const_buffers) {
const auto& config = launch_desc.const_buffer_config[entry.GetIndex()]; const auto& config = launch_desc.const_buffer_config[entry.GetIndex()];
const std::bitset<8> mask = launch_desc.const_buffer_enable_mask.Value(); const std::bitset<8> mask = launch_desc.const_buffer_enable_mask.Value();
Tegra::Engines::ConstBufferInfo buffer; Tegra::Engines::ConstBufferInfo buffer;
@ -773,7 +765,7 @@ void RasterizerOpenGL::SetupComputeConstBuffers(const Shader& kernel) {
} }
void RasterizerOpenGL::SetupConstBuffer(u32 binding, const Tegra::Engines::ConstBufferInfo& buffer, void RasterizerOpenGL::SetupConstBuffer(u32 binding, const Tegra::Engines::ConstBufferInfo& buffer,
const GLShader::ConstBufferEntry& entry) { const ConstBufferEntry& entry) {
if (!buffer.enabled) { if (!buffer.enabled) {
// Set values to zero to unbind buffers // Set values to zero to unbind buffers
bind_ubo_pushbuffer.Push(binding, buffer_cache.GetEmptyBuffer(sizeof(float)), 0, bind_ubo_pushbuffer.Push(binding, buffer_cache.GetEmptyBuffer(sizeof(float)), 0,
@ -797,7 +789,7 @@ void RasterizerOpenGL::SetupDrawGlobalMemory(std::size_t stage_index, const Shad
const auto cbufs{gpu.Maxwell3D().state.shader_stages[stage_index]}; const auto cbufs{gpu.Maxwell3D().state.shader_stages[stage_index]};
u32 binding = device.GetBaseBindings(stage_index).shader_storage_buffer; u32 binding = device.GetBaseBindings(stage_index).shader_storage_buffer;
for (const auto& entry : shader->GetShaderEntries().global_memory_entries) { for (const auto& entry : shader->GetEntries().global_memory_entries) {
const auto addr{cbufs.const_buffers[entry.GetCbufIndex()].address + entry.GetCbufOffset()}; const auto addr{cbufs.const_buffers[entry.GetCbufIndex()].address + entry.GetCbufOffset()};
const auto gpu_addr{memory_manager.Read<u64>(addr)}; const auto gpu_addr{memory_manager.Read<u64>(addr)};
const auto size{memory_manager.Read<u32>(addr + 8)}; const auto size{memory_manager.Read<u32>(addr + 8)};
@ -811,7 +803,7 @@ void RasterizerOpenGL::SetupComputeGlobalMemory(const Shader& kernel) {
const auto cbufs{gpu.KeplerCompute().launch_description.const_buffer_config}; const auto cbufs{gpu.KeplerCompute().launch_description.const_buffer_config};
u32 binding = 0; u32 binding = 0;
for (const auto& entry : kernel->GetShaderEntries().global_memory_entries) { for (const auto& entry : kernel->GetEntries().global_memory_entries) {
const auto addr{cbufs[entry.GetCbufIndex()].Address() + entry.GetCbufOffset()}; const auto addr{cbufs[entry.GetCbufIndex()].Address() + entry.GetCbufOffset()};
const auto gpu_addr{memory_manager.Read<u64>(addr)}; const auto gpu_addr{memory_manager.Read<u64>(addr)};
const auto size{memory_manager.Read<u32>(addr + 8)}; const auto size{memory_manager.Read<u32>(addr + 8)};
@ -819,7 +811,7 @@ void RasterizerOpenGL::SetupComputeGlobalMemory(const Shader& kernel) {
} }
} }
void RasterizerOpenGL::SetupGlobalMemory(u32 binding, const GLShader::GlobalMemoryEntry& entry, void RasterizerOpenGL::SetupGlobalMemory(u32 binding, const GlobalMemoryEntry& entry,
GPUVAddr gpu_addr, std::size_t size) { GPUVAddr gpu_addr, std::size_t size) {
const auto alignment{device.GetShaderStorageBufferAlignment()}; const auto alignment{device.GetShaderStorageBufferAlignment()};
const auto [ssbo, buffer_offset] = const auto [ssbo, buffer_offset] =
@ -831,7 +823,7 @@ void RasterizerOpenGL::SetupDrawTextures(std::size_t stage_index, const Shader&
MICROPROFILE_SCOPE(OpenGL_Texture); MICROPROFILE_SCOPE(OpenGL_Texture);
const auto& maxwell3d = system.GPU().Maxwell3D(); const auto& maxwell3d = system.GPU().Maxwell3D();
u32 binding = device.GetBaseBindings(stage_index).sampler; u32 binding = device.GetBaseBindings(stage_index).sampler;
for (const auto& entry : shader->GetShaderEntries().samplers) { for (const auto& entry : shader->GetEntries().samplers) {
const auto shader_type = static_cast<ShaderType>(stage_index); const auto shader_type = static_cast<ShaderType>(stage_index);
for (std::size_t i = 0; i < entry.Size(); ++i) { for (std::size_t i = 0; i < entry.Size(); ++i) {
const auto texture = GetTextureInfo(maxwell3d, entry, shader_type, i); const auto texture = GetTextureInfo(maxwell3d, entry, shader_type, i);
@ -844,7 +836,7 @@ void RasterizerOpenGL::SetupComputeTextures(const Shader& kernel) {
MICROPROFILE_SCOPE(OpenGL_Texture); MICROPROFILE_SCOPE(OpenGL_Texture);
const auto& compute = system.GPU().KeplerCompute(); const auto& compute = system.GPU().KeplerCompute();
u32 binding = 0; u32 binding = 0;
for (const auto& entry : kernel->GetShaderEntries().samplers) { for (const auto& entry : kernel->GetEntries().samplers) {
for (std::size_t i = 0; i < entry.Size(); ++i) { for (std::size_t i = 0; i < entry.Size(); ++i) {
const auto texture = GetTextureInfo(compute, entry, ShaderType::Compute, i); const auto texture = GetTextureInfo(compute, entry, ShaderType::Compute, i);
SetupTexture(binding++, texture, entry); SetupTexture(binding++, texture, entry);
@ -853,7 +845,7 @@ void RasterizerOpenGL::SetupComputeTextures(const Shader& kernel) {
} }
void RasterizerOpenGL::SetupTexture(u32 binding, const Tegra::Texture::FullTextureInfo& texture, void RasterizerOpenGL::SetupTexture(u32 binding, const Tegra::Texture::FullTextureInfo& texture,
const GLShader::SamplerEntry& entry) { const SamplerEntry& entry) {
const auto view = texture_cache.GetTextureSurface(texture.tic, entry); const auto view = texture_cache.GetTextureSurface(texture.tic, entry);
if (!view) { if (!view) {
// Can occur when texture addr is null or its memory is unmapped/invalid // Can occur when texture addr is null or its memory is unmapped/invalid
@ -876,7 +868,7 @@ void RasterizerOpenGL::SetupTexture(u32 binding, const Tegra::Texture::FullTextu
void RasterizerOpenGL::SetupDrawImages(std::size_t stage_index, const Shader& shader) { void RasterizerOpenGL::SetupDrawImages(std::size_t stage_index, const Shader& shader) {
const auto& maxwell3d = system.GPU().Maxwell3D(); const auto& maxwell3d = system.GPU().Maxwell3D();
u32 binding = device.GetBaseBindings(stage_index).image; u32 binding = device.GetBaseBindings(stage_index).image;
for (const auto& entry : shader->GetShaderEntries().images) { for (const auto& entry : shader->GetEntries().images) {
const auto shader_type = static_cast<Tegra::Engines::ShaderType>(stage_index); const auto shader_type = static_cast<Tegra::Engines::ShaderType>(stage_index);
const auto tic = GetTextureInfo(maxwell3d, entry, shader_type).tic; const auto tic = GetTextureInfo(maxwell3d, entry, shader_type).tic;
SetupImage(binding++, tic, entry); SetupImage(binding++, tic, entry);
@ -886,14 +878,14 @@ void RasterizerOpenGL::SetupDrawImages(std::size_t stage_index, const Shader& sh
void RasterizerOpenGL::SetupComputeImages(const Shader& shader) { void RasterizerOpenGL::SetupComputeImages(const Shader& shader) {
const auto& compute = system.GPU().KeplerCompute(); const auto& compute = system.GPU().KeplerCompute();
u32 binding = 0; u32 binding = 0;
for (const auto& entry : shader->GetShaderEntries().images) { for (const auto& entry : shader->GetEntries().images) {
const auto tic = GetTextureInfo(compute, entry, Tegra::Engines::ShaderType::Compute).tic; const auto tic = GetTextureInfo(compute, entry, Tegra::Engines::ShaderType::Compute).tic;
SetupImage(binding++, tic, entry); SetupImage(binding++, tic, entry);
} }
} }
void RasterizerOpenGL::SetupImage(u32 binding, const Tegra::Texture::TICEntry& tic, void RasterizerOpenGL::SetupImage(u32 binding, const Tegra::Texture::TICEntry& tic,
const GLShader::ImageEntry& entry) { const ImageEntry& entry) {
const auto view = texture_cache.GetImageSurface(tic, entry); const auto view = texture_cache.GetImageSurface(tic, entry);
if (!view) { if (!view) {
glBindImageTexture(binding, 0, 0, GL_FALSE, 0, GL_READ_ONLY, GL_R8); glBindImageTexture(binding, 0, 0, GL_FALSE, 0, GL_READ_ONLY, GL_R8);

View file

@ -98,7 +98,7 @@ private:
/// Configures a constant buffer. /// Configures a constant buffer.
void SetupConstBuffer(u32 binding, const Tegra::Engines::ConstBufferInfo& buffer, void SetupConstBuffer(u32 binding, const Tegra::Engines::ConstBufferInfo& buffer,
const GLShader::ConstBufferEntry& entry); const ConstBufferEntry& entry);
/// Configures the current global memory entries to use for the draw command. /// Configures the current global memory entries to use for the draw command.
void SetupDrawGlobalMemory(std::size_t stage_index, const Shader& shader); void SetupDrawGlobalMemory(std::size_t stage_index, const Shader& shader);
@ -107,7 +107,7 @@ private:
void SetupComputeGlobalMemory(const Shader& kernel); void SetupComputeGlobalMemory(const Shader& kernel);
/// Configures a constant buffer. /// Configures a constant buffer.
void SetupGlobalMemory(u32 binding, const GLShader::GlobalMemoryEntry& entry, GPUVAddr gpu_addr, void SetupGlobalMemory(u32 binding, const GlobalMemoryEntry& entry, GPUVAddr gpu_addr,
std::size_t size); std::size_t size);
/// Configures the current textures to use for the draw command. /// Configures the current textures to use for the draw command.
@ -118,7 +118,7 @@ private:
/// Configures a texture. /// Configures a texture.
void SetupTexture(u32 binding, const Tegra::Texture::FullTextureInfo& texture, void SetupTexture(u32 binding, const Tegra::Texture::FullTextureInfo& texture,
const GLShader::SamplerEntry& entry); const SamplerEntry& entry);
/// Configures images in a graphics shader. /// Configures images in a graphics shader.
void SetupDrawImages(std::size_t stage_index, const Shader& shader); void SetupDrawImages(std::size_t stage_index, const Shader& shader);
@ -127,8 +127,7 @@ private:
void SetupComputeImages(const Shader& shader); void SetupComputeImages(const Shader& shader);
/// Configures an image. /// Configures an image.
void SetupImage(u32 binding, const Tegra::Texture::TICEntry& tic, void SetupImage(u32 binding, const Tegra::Texture::TICEntry& tic, const ImageEntry& entry);
const GLShader::ImageEntry& entry);
/// Syncs the viewport and depth range to match the guest state /// Syncs the viewport and depth range to match the guest state
void SyncViewport(); void SyncViewport();

View file

@ -2,12 +2,16 @@
// Licensed under GPLv2 or any later version // Licensed under GPLv2 or any later version
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include <atomic>
#include <functional>
#include <mutex> #include <mutex>
#include <optional> #include <optional>
#include <string> #include <string>
#include <thread> #include <thread>
#include <unordered_set> #include <unordered_set>
#include <boost/functional/hash.hpp> #include <boost/functional/hash.hpp>
#include "common/alignment.h" #include "common/alignment.h"
#include "common/assert.h" #include "common/assert.h"
#include "common/logging/log.h" #include "common/logging/log.h"
@ -56,7 +60,7 @@ constexpr bool IsSchedInstruction(std::size_t offset, std::size_t main_offset) {
} }
/// Calculates the size of a program stream /// Calculates the size of a program stream
std::size_t CalculateProgramSize(const GLShader::ProgramCode& program) { std::size_t CalculateProgramSize(const ProgramCode& program) {
constexpr std::size_t start_offset = 10; constexpr std::size_t start_offset = 10;
// This is the encoded version of BRA that jumps to itself. All Nvidia // This is the encoded version of BRA that jumps to itself. All Nvidia
// shaders end with one. // shaders end with one.
@ -109,32 +113,9 @@ constexpr GLenum GetGLShaderType(ShaderType shader_type) {
} }
} }
/// Describes primitive behavior on geometry shaders
constexpr std::pair<const char*, u32> GetPrimitiveDescription(GLenum primitive_mode) {
switch (primitive_mode) {
case GL_POINTS:
return {"points", 1};
case GL_LINES:
case GL_LINE_STRIP:
return {"lines", 2};
case GL_LINES_ADJACENCY:
case GL_LINE_STRIP_ADJACENCY:
return {"lines_adjacency", 4};
case GL_TRIANGLES:
case GL_TRIANGLE_STRIP:
case GL_TRIANGLE_FAN:
return {"triangles", 3};
case GL_TRIANGLES_ADJACENCY:
case GL_TRIANGLE_STRIP_ADJACENCY:
return {"triangles_adjacency", 6};
default:
return {"points", 1};
}
}
/// Hashes one (or two) program streams /// Hashes one (or two) program streams
u64 GetUniqueIdentifier(ShaderType shader_type, bool is_a, const ProgramCode& code, u64 GetUniqueIdentifier(ShaderType shader_type, bool is_a, const ProgramCode& code,
const ProgramCode& code_b) { const ProgramCode& code_b = {}) {
u64 unique_identifier = boost::hash_value(code); u64 unique_identifier = boost::hash_value(code);
if (is_a) { if (is_a) {
// VertexA programs include two programs // VertexA programs include two programs
@ -143,24 +124,6 @@ u64 GetUniqueIdentifier(ShaderType shader_type, bool is_a, const ProgramCode& co
return unique_identifier; return unique_identifier;
} }
/// Creates an unspecialized program from code streams
std::string GenerateGLSL(const Device& device, ShaderType shader_type, const ShaderIR& ir,
const std::optional<ShaderIR>& ir_b) {
switch (shader_type) {
case ShaderType::Vertex:
return GLShader::GenerateVertexShader(device, ir, ir_b ? &*ir_b : nullptr);
case ShaderType::Geometry:
return GLShader::GenerateGeometryShader(device, ir);
case ShaderType::Fragment:
return GLShader::GenerateFragmentShader(device, ir);
case ShaderType::Compute:
return GLShader::GenerateComputeShader(device, ir);
default:
UNIMPLEMENTED_MSG("Unimplemented shader_type={}", static_cast<u32>(shader_type));
return {};
}
}
constexpr const char* GetShaderTypeName(ShaderType shader_type) { constexpr const char* GetShaderTypeName(ShaderType shader_type) {
switch (shader_type) { switch (shader_type) {
case ShaderType::Vertex: case ShaderType::Vertex:
@ -196,102 +159,35 @@ constexpr ShaderType GetShaderType(Maxwell::ShaderProgram program_type) {
return {}; return {};
} }
std::string GetShaderId(u64 unique_identifier, ShaderType shader_type) { std::string MakeShaderID(u64 unique_identifier, ShaderType shader_type) {
return fmt::format("{}{:016X}", GetShaderTypeName(shader_type), unique_identifier); return fmt::format("{}{:016X}", GetShaderTypeName(shader_type), unique_identifier);
} }
Tegra::Engines::ConstBufferEngineInterface& GetConstBufferEngineInterface(Core::System& system, std::shared_ptr<ConstBufferLocker> MakeLocker(const ShaderDiskCacheEntry& entry) {
ShaderType shader_type) { const VideoCore::GuestDriverProfile guest_profile{entry.texture_handler_size};
if (shader_type == ShaderType::Compute) { auto locker = std::make_shared<ConstBufferLocker>(entry.type, guest_profile);
return system.GPU().KeplerCompute(); locker->SetBoundBuffer(entry.bound_buffer);
} else { for (const auto& [address, value] : entry.keys) {
return system.GPU().Maxwell3D(); const auto [buffer, offset] = address;
locker->InsertKey(buffer, offset, value);
} }
} for (const auto& [offset, sampler] : entry.bound_samplers) {
locker->InsertBoundSampler(offset, sampler);
std::unique_ptr<ConstBufferLocker> MakeLocker(Core::System& system, ShaderType shader_type) {
return std::make_unique<ConstBufferLocker>(shader_type,
GetConstBufferEngineInterface(system, shader_type));
}
void FillLocker(ConstBufferLocker& locker, const ShaderDiskCacheUsage& usage) {
locker.SetBoundBuffer(usage.bound_buffer);
for (const auto& key : usage.keys) {
const auto [buffer, offset] = key.first;
locker.InsertKey(buffer, offset, key.second);
} }
for (const auto& [offset, sampler] : usage.bound_samplers) { for (const auto& [key, sampler] : entry.bindless_samplers) {
locker.InsertBoundSampler(offset, sampler);
}
for (const auto& [key, sampler] : usage.bindless_samplers) {
const auto [buffer, offset] = key; const auto [buffer, offset] = key;
locker.InsertBindlessSampler(buffer, offset, sampler); locker->InsertBindlessSampler(buffer, offset, sampler);
} }
return locker;
} }
CachedProgram BuildShader(const Device& device, u64 unique_identifier, ShaderType shader_type, std::shared_ptr<OGLProgram> BuildShader(const Device& device, ShaderType shader_type,
const ProgramCode& code, const ProgramCode& code_b, u64 unique_identifier, const ShaderIR& ir,
ConstBufferLocker& locker, const ProgramVariant& variant,
bool hint_retrievable = false) { bool hint_retrievable = false) {
LOG_INFO(Render_OpenGL, "called. {}", GetShaderId(unique_identifier, shader_type)); LOG_INFO(Render_OpenGL, "{}", MakeShaderID(unique_identifier, shader_type));
const std::string glsl = DecompileShader(device, ir, shader_type);
const bool is_compute = shader_type == ShaderType::Compute;
const u32 main_offset = is_compute ? KERNEL_MAIN_OFFSET : STAGE_MAIN_OFFSET;
const ShaderIR ir(code, main_offset, COMPILER_SETTINGS, locker);
std::optional<ShaderIR> ir_b;
if (!code_b.empty()) {
ir_b.emplace(code_b, main_offset, COMPILER_SETTINGS, locker);
}
std::string source = fmt::format(R"(// {}
#version 430 core
#extension GL_ARB_separate_shader_objects : enable
)",
GetShaderId(unique_identifier, shader_type));
if (device.HasShaderBallot()) {
source += "#extension GL_ARB_shader_ballot : require\n";
}
if (device.HasVertexViewportLayer()) {
source += "#extension GL_ARB_shader_viewport_layer_array : require\n";
}
if (device.HasImageLoadFormatted()) {
source += "#extension GL_EXT_shader_image_load_formatted : require\n";
}
if (device.HasWarpIntrinsics()) {
source += "#extension GL_NV_gpu_shader5 : require\n"
"#extension GL_NV_shader_thread_group : require\n"
"#extension GL_NV_shader_thread_shuffle : require\n";
}
// This pragma stops Nvidia's driver from over optimizing math (probably using fp16 operations)
// on places where we don't want to.
// Thanks to Ryujinx for finding this workaround.
source += "#pragma optionNV(fastmath off)\n";
if (shader_type == ShaderType::Geometry) {
const auto [glsl_topology, max_vertices] = GetPrimitiveDescription(variant.primitive_mode);
source += fmt::format("#define MAX_VERTEX_INPUT {}\n", max_vertices);
source += fmt::format("layout ({}) in;\n", glsl_topology);
}
if (shader_type == ShaderType::Compute) {
if (variant.local_memory_size > 0) {
source += fmt::format("#define LOCAL_MEMORY_SIZE {}\n",
Common::AlignUp(variant.local_memory_size, 4) / 4);
}
source +=
fmt::format("layout (local_size_x = {}, local_size_y = {}, local_size_z = {}) in;\n",
variant.block_x, variant.block_y, variant.block_z);
if (variant.shared_memory_size > 0) {
// shared_memory_size is described in number of words
source += fmt::format("shared uint smem[{}];\n", variant.shared_memory_size);
}
}
source += '\n';
source += GenerateGLSL(device, shader_type, ir, ir_b);
OGLShader shader; OGLShader shader;
shader.Create(source.c_str(), GetGLShaderType(shader_type)); shader.Create(glsl.c_str(), GetGLShaderType(shader_type));
auto program = std::make_shared<OGLProgram>(); auto program = std::make_shared<OGLProgram>();
program->Create(true, hint_retrievable, shader.handle); program->Create(true, hint_retrievable, shader.handle);
@ -299,7 +195,7 @@ CachedProgram BuildShader(const Device& device, u64 unique_identifier, ShaderTyp
} }
std::unordered_set<GLenum> GetSupportedFormats() { std::unordered_set<GLenum> GetSupportedFormats() {
GLint num_formats{}; GLint num_formats;
glGetIntegerv(GL_NUM_PROGRAM_BINARY_FORMATS, &num_formats); glGetIntegerv(GL_NUM_PROGRAM_BINARY_FORMATS, &num_formats);
std::vector<GLint> formats(num_formats); std::vector<GLint> formats(num_formats);
@ -314,115 +210,81 @@ std::unordered_set<GLenum> GetSupportedFormats() {
} // Anonymous namespace } // Anonymous namespace
CachedShader::CachedShader(const ShaderParameters& params, ShaderType shader_type, CachedShader::CachedShader(const u8* host_ptr, VAddr cpu_addr, std::size_t size_in_bytes,
GLShader::ShaderEntries entries, ProgramCode code, ProgramCode code_b) std::shared_ptr<VideoCommon::Shader::ConstBufferLocker> locker,
: RasterizerCacheObject{params.host_ptr}, system{params.system}, ShaderEntries entries, std::shared_ptr<OGLProgram> program)
disk_cache{params.disk_cache}, device{params.device}, cpu_addr{params.cpu_addr}, : RasterizerCacheObject{host_ptr}, locker{std::move(locker)}, entries{std::move(entries)},
unique_identifier{params.unique_identifier}, shader_type{shader_type}, cpu_addr{cpu_addr}, size_in_bytes{size_in_bytes}, program{std::move(program)} {}
entries{std::move(entries)}, code{std::move(code)}, code_b{std::move(code_b)} {
if (!params.precompiled_variants) {
return;
}
for (const auto& pair : *params.precompiled_variants) {
auto locker = MakeLocker(system, shader_type);
const auto& usage = pair->first;
FillLocker(*locker, usage);
std::unique_ptr<LockerVariant>* locker_variant = nullptr; CachedShader::~CachedShader() = default;
const auto it =
std::find_if(locker_variants.begin(), locker_variants.end(), [&](const auto& variant) { GLuint CachedShader::GetHandle() const {
return variant->locker->HasEqualKeys(*locker); if (!locker->IsConsistent()) {
}); std::abort();
if (it == locker_variants.end()) {
locker_variant = &locker_variants.emplace_back();
*locker_variant = std::make_unique<LockerVariant>();
locker_variant->get()->locker = std::move(locker);
} else {
locker_variant = &*it;
}
locker_variant->get()->programs.emplace(usage.variant, pair->second);
} }
return program->handle;
} }
Shader CachedShader::CreateStageFromMemory(const ShaderParameters& params, Shader CachedShader::CreateStageFromMemory(const ShaderParameters& params,
Maxwell::ShaderProgram program_type, ProgramCode code, Maxwell::ShaderProgram program_type, ProgramCode code,
ProgramCode code_b) { ProgramCode code_b) {
const auto shader_type = GetShaderType(program_type); const auto shader_type = GetShaderType(program_type);
params.disk_cache.SaveRaw( const std::size_t size_in_bytes = code.size() * sizeof(u64);
ShaderDiskCacheRaw(params.unique_identifier, shader_type, code, code_b));
ConstBufferLocker locker(shader_type, params.system.GPU().Maxwell3D()); auto locker = std::make_shared<ConstBufferLocker>(shader_type, params.system.GPU().Maxwell3D());
const ShaderIR ir(code, STAGE_MAIN_OFFSET, COMPILER_SETTINGS, locker); const ShaderIR ir(code, STAGE_MAIN_OFFSET, COMPILER_SETTINGS, *locker);
// TODO(Rodrigo): Handle VertexA shaders // TODO(Rodrigo): Handle VertexA shaders
// std::optional<ShaderIR> ir_b; // std::optional<ShaderIR> ir_b;
// if (!code_b.empty()) { // if (!code_b.empty()) {
// ir_b.emplace(code_b, STAGE_MAIN_OFFSET); // ir_b.emplace(code_b, STAGE_MAIN_OFFSET);
// } // }
return std::shared_ptr<CachedShader>(new CachedShader( auto program = BuildShader(params.device, shader_type, params.unique_identifier, ir);
params, shader_type, GLShader::GetEntries(ir), std::move(code), std::move(code_b)));
ShaderDiskCacheEntry entry;
entry.type = shader_type;
entry.code = std::move(code);
entry.code_b = std::move(code_b);
entry.unique_identifier = params.unique_identifier;
entry.bound_buffer = locker->GetBoundBuffer();
entry.keys = locker->GetKeys();
entry.bound_samplers = locker->GetBoundSamplers();
entry.bindless_samplers = locker->GetBindlessSamplers();
params.disk_cache.SaveEntry(std::move(entry));
return std::shared_ptr<CachedShader>(new CachedShader(params.host_ptr, params.cpu_addr,
size_in_bytes, std::move(locker),
MakeEntries(ir), std::move(program)));
} }
Shader CachedShader::CreateKernelFromMemory(const ShaderParameters& params, ProgramCode code) { Shader CachedShader::CreateKernelFromMemory(const ShaderParameters& params, ProgramCode code) {
params.disk_cache.SaveRaw( const std::size_t size_in_bytes = code.size() * sizeof(u64);
ShaderDiskCacheRaw(params.unique_identifier, ShaderType::Compute, code));
ConstBufferLocker locker(Tegra::Engines::ShaderType::Compute, auto locker = std::make_shared<ConstBufferLocker>(Tegra::Engines::ShaderType::Compute,
params.system.GPU().KeplerCompute()); params.system.GPU().KeplerCompute());
const ShaderIR ir(code, KERNEL_MAIN_OFFSET, COMPILER_SETTINGS, locker); const ShaderIR ir(code, KERNEL_MAIN_OFFSET, COMPILER_SETTINGS, *locker);
return std::shared_ptr<CachedShader>(new CachedShader( auto program = BuildShader(params.device, ShaderType::Compute, params.unique_identifier, ir);
params, ShaderType::Compute, GLShader::GetEntries(ir), std::move(code), {}));
ShaderDiskCacheEntry entry;
entry.type = ShaderType::Compute;
entry.code = std::move(code);
entry.unique_identifier = params.unique_identifier;
entry.bound_buffer = locker->GetBoundBuffer();
entry.keys = locker->GetKeys();
entry.bound_samplers = locker->GetBoundSamplers();
entry.bindless_samplers = locker->GetBindlessSamplers();
params.disk_cache.SaveEntry(std::move(entry));
return std::shared_ptr<CachedShader>(new CachedShader(params.host_ptr, params.cpu_addr,
size_in_bytes, std::move(locker),
MakeEntries(ir), std::move(program)));
} }
Shader CachedShader::CreateFromCache(const ShaderParameters& params, Shader CachedShader::CreateFromCache(const ShaderParameters& params,
const UnspecializedShader& unspecialized) { const PrecompiledShader& precompiled_shader,
return std::shared_ptr<CachedShader>(new CachedShader(params, unspecialized.type, std::size_t size_in_bytes) {
unspecialized.entries, unspecialized.code, return std::shared_ptr<CachedShader>(
unspecialized.code_b)); new CachedShader(params.host_ptr, params.cpu_addr, size_in_bytes, precompiled_shader.locker,
} precompiled_shader.entries, precompiled_shader.program));
GLuint CachedShader::GetHandle(const ProgramVariant& variant) {
EnsureValidLockerVariant();
const auto [entry, is_cache_miss] = curr_locker_variant->programs.try_emplace(variant);
auto& program = entry->second;
if (!is_cache_miss) {
return program->handle;
}
program = BuildShader(device, unique_identifier, shader_type, code, code_b,
*curr_locker_variant->locker, variant);
disk_cache.SaveUsage(GetUsage(variant, *curr_locker_variant->locker));
LabelGLObject(GL_PROGRAM, program->handle, cpu_addr);
return program->handle;
}
bool CachedShader::EnsureValidLockerVariant() {
const auto previous_variant = curr_locker_variant;
if (curr_locker_variant && !curr_locker_variant->locker->IsConsistent()) {
curr_locker_variant = nullptr;
}
if (!curr_locker_variant) {
for (auto& variant : locker_variants) {
if (variant->locker->IsConsistent()) {
curr_locker_variant = variant.get();
}
}
}
if (!curr_locker_variant) {
auto& new_variant = locker_variants.emplace_back();
new_variant = std::make_unique<LockerVariant>();
new_variant->locker = MakeLocker(system, shader_type);
curr_locker_variant = new_variant.get();
}
return previous_variant == curr_locker_variant;
}
ShaderDiskCacheUsage CachedShader::GetUsage(const ProgramVariant& variant,
const ConstBufferLocker& locker) const {
return ShaderDiskCacheUsage{unique_identifier, variant,
locker.GetBoundBuffer(), locker.GetKeys(),
locker.GetBoundSamplers(), locker.GetBindlessSamplers()};
} }
ShaderCacheOpenGL::ShaderCacheOpenGL(RasterizerOpenGL& rasterizer, Core::System& system, ShaderCacheOpenGL::ShaderCacheOpenGL(RasterizerOpenGL& rasterizer, Core::System& system,
@ -432,16 +294,12 @@ ShaderCacheOpenGL::ShaderCacheOpenGL(RasterizerOpenGL& rasterizer, Core::System&
void ShaderCacheOpenGL::LoadDiskCache(const std::atomic_bool& stop_loading, void ShaderCacheOpenGL::LoadDiskCache(const std::atomic_bool& stop_loading,
const VideoCore::DiskResourceLoadCallback& callback) { const VideoCore::DiskResourceLoadCallback& callback) {
const auto transferable = disk_cache.LoadTransferable(); const std::optional transferable = disk_cache.LoadTransferable();
if (!transferable) { if (!transferable) {
return; return;
} }
const auto [raws, shader_usages] = *transferable;
if (!GenerateUnspecializedShaders(stop_loading, callback, raws) || stop_loading) {
return;
}
const auto dumps = disk_cache.LoadPrecompiled(); const std::vector gl_cache = disk_cache.LoadPrecompiled();
const auto supported_formats = GetSupportedFormats(); const auto supported_formats = GetSupportedFormats();
// Track if precompiled cache was altered during loading to know if we have to // Track if precompiled cache was altered during loading to know if we have to
@ -450,77 +308,82 @@ void ShaderCacheOpenGL::LoadDiskCache(const std::atomic_bool& stop_loading,
// Inform the frontend about shader build initialization // Inform the frontend about shader build initialization
if (callback) { if (callback) {
callback(VideoCore::LoadCallbackStage::Build, 0, shader_usages.size()); callback(VideoCore::LoadCallbackStage::Build, 0, transferable->size());
} }
std::mutex mutex; std::mutex mutex;
std::size_t built_shaders = 0; // It doesn't have be atomic since it's used behind a mutex std::size_t built_shaders = 0; // It doesn't have be atomic since it's used behind a mutex
std::atomic_bool compilation_failed = false; std::atomic_bool gl_cache_failed = false;
const auto Worker = [&](Core::Frontend::GraphicsContext* context, std::size_t begin, const auto find_precompiled = [&gl_cache](u64 id) {
std::size_t end, const std::vector<ShaderDiskCacheUsage>& shader_usages, return std::find_if(gl_cache.begin(), gl_cache.end(),
const ShaderDumpsMap& dumps) { [id](const auto& entry) { return entry.unique_identifier == id; });
};
const auto worker = [&](Core::Frontend::GraphicsContext* context, std::size_t begin,
std::size_t end) {
context->MakeCurrent(); context->MakeCurrent();
SCOPE_EXIT({ return context->DoneCurrent(); }); SCOPE_EXIT({ return context->DoneCurrent(); });
for (std::size_t i = begin; i < end; ++i) { for (std::size_t i = begin; i < end; ++i) {
if (stop_loading || compilation_failed) { if (stop_loading) {
return; return;
} }
const auto& usage{shader_usages[i]}; const auto& entry = (*transferable)[i];
const auto& unspecialized{unspecialized_shaders.at(usage.unique_identifier)}; const u64 unique_identifier = entry.unique_identifier;
const auto dump{dumps.find(usage)}; const auto it = find_precompiled(unique_identifier);
const auto precompiled_entry = it != gl_cache.end() ? &*it : nullptr;
CachedProgram shader; const bool is_compute = entry.type == ShaderType::Compute;
if (dump != dumps.end()) { const u32 main_offset = is_compute ? KERNEL_MAIN_OFFSET : STAGE_MAIN_OFFSET;
// If the shader is dumped, attempt to load it with auto locker = MakeLocker(entry);
shader = GeneratePrecompiledProgram(dump->second, supported_formats); const ShaderIR ir(entry.code, main_offset, COMPILER_SETTINGS, *locker);
if (!shader) {
compilation_failed = true;
return;
}
}
if (!shader) {
auto locker{MakeLocker(system, unspecialized.type)};
FillLocker(*locker, usage);
shader = BuildShader(device, usage.unique_identifier, unspecialized.type, std::shared_ptr<OGLProgram> program;
unspecialized.code, unspecialized.code_b, *locker, if (precompiled_entry) {
usage.variant, true); // If the shader is precompiled, attempt to load it with
program = GeneratePrecompiledProgram(entry, *precompiled_entry, supported_formats);
if (!program) {
gl_cache_failed = true;
} }
}
if (!program) {
// Otherwise compile it from GLSL
program = BuildShader(device, entry.type, unique_identifier, ir, true);
}
PrecompiledShader shader;
shader.program = std::move(program);
shader.locker = std::move(locker);
shader.entries = MakeEntries(ir);
std::scoped_lock lock{mutex}; std::scoped_lock lock{mutex};
if (callback) { if (callback) {
callback(VideoCore::LoadCallbackStage::Build, ++built_shaders, callback(VideoCore::LoadCallbackStage::Build, ++built_shaders,
shader_usages.size()); transferable->size());
} }
runtime_cache.emplace(entry.unique_identifier, std::move(shader));
precompiled_programs.emplace(usage, std::move(shader));
// TODO(Rodrigo): Is there a better way to do this?
precompiled_variants[usage.unique_identifier].push_back(
precompiled_programs.find(usage));
} }
}; };
const auto num_workers{static_cast<std::size_t>(std::thread::hardware_concurrency() + 1ULL)}; const auto num_workers{static_cast<std::size_t>(std::thread::hardware_concurrency() + 1ULL)};
const std::size_t bucket_size{shader_usages.size() / num_workers}; const std::size_t bucket_size{transferable->size() / num_workers};
std::vector<std::unique_ptr<Core::Frontend::GraphicsContext>> contexts(num_workers); std::vector<std::unique_ptr<Core::Frontend::GraphicsContext>> contexts(num_workers);
std::vector<std::thread> threads(num_workers); std::vector<std::thread> threads(num_workers);
for (std::size_t i = 0; i < num_workers; ++i) { for (std::size_t i = 0; i < num_workers; ++i) {
const bool is_last_worker = i + 1 == num_workers; const bool is_last_worker = i + 1 == num_workers;
const std::size_t start{bucket_size * i}; const std::size_t start{bucket_size * i};
const std::size_t end{is_last_worker ? shader_usages.size() : start + bucket_size}; const std::size_t end{is_last_worker ? transferable->size() : start + bucket_size};
// On some platforms the shared context has to be created from the GUI thread // On some platforms the shared context has to be created from the GUI thread
contexts[i] = emu_window.CreateSharedContext(); contexts[i] = emu_window.CreateSharedContext();
threads[i] = std::thread(Worker, contexts[i].get(), start, end, shader_usages, dumps); threads[i] = std::thread(worker, contexts[i].get(), start, end);
} }
for (auto& thread : threads) { for (auto& thread : threads) {
thread.join(); thread.join();
} }
if (compilation_failed) { if (gl_cache_failed) {
// Invalidate the precompiled cache if a shader dumped shader was rejected // Invalidate the precompiled cache if a shader dumped shader was rejected
disk_cache.InvalidatePrecompiled(); disk_cache.InvalidatePrecompiled();
precompiled_cache_altered = true; precompiled_cache_altered = true;
@ -533,11 +396,12 @@ void ShaderCacheOpenGL::LoadDiskCache(const std::atomic_bool& stop_loading,
// TODO(Rodrigo): Do state tracking for transferable shaders and do a dummy draw // TODO(Rodrigo): Do state tracking for transferable shaders and do a dummy draw
// before precompiling them // before precompiling them
for (std::size_t i = 0; i < shader_usages.size(); ++i) { for (std::size_t i = 0; i < transferable->size(); ++i) {
const auto& usage{shader_usages[i]}; const u64 id = (*transferable)[i].unique_identifier;
if (dumps.find(usage) == dumps.end()) { const auto it = find_precompiled(id);
const auto& program{precompiled_programs.at(usage)}; if (it == gl_cache.end()) {
disk_cache.SaveDump(usage, program->handle); const GLuint program = runtime_cache.at(id).program->handle;
disk_cache.SavePrecompiled(id, program);
precompiled_cache_altered = true; precompiled_cache_altered = true;
} }
} }
@ -547,80 +411,29 @@ void ShaderCacheOpenGL::LoadDiskCache(const std::atomic_bool& stop_loading,
} }
} }
const PrecompiledVariants* ShaderCacheOpenGL::GetPrecompiledVariants(u64 unique_identifier) const { std::shared_ptr<OGLProgram> ShaderCacheOpenGL::GeneratePrecompiledProgram(
const auto it = precompiled_variants.find(unique_identifier); const ShaderDiskCacheEntry& entry, const ShaderDiskCachePrecompiled& precompiled_entry,
return it == precompiled_variants.end() ? nullptr : &it->second; const std::unordered_set<GLenum>& supported_formats) {
} if (supported_formats.find(precompiled_entry.binary_format) == supported_formats.end()) {
LOG_INFO(Render_OpenGL, "Precompiled cache entry with unsupported format, removing");
CachedProgram ShaderCacheOpenGL::GeneratePrecompiledProgram(
const ShaderDiskCacheDump& dump, const std::unordered_set<GLenum>& supported_formats) {
if (supported_formats.find(dump.binary_format) == supported_formats.end()) {
LOG_INFO(Render_OpenGL, "Precompiled cache entry with unsupported format - removing");
return {}; return {};
} }
CachedProgram shader = std::make_shared<OGLProgram>(); auto program = std::make_shared<OGLProgram>();
shader->handle = glCreateProgram(); program->handle = glCreateProgram();
glProgramParameteri(shader->handle, GL_PROGRAM_SEPARABLE, GL_TRUE); glProgramParameteri(program->handle, GL_PROGRAM_SEPARABLE, GL_TRUE);
glProgramBinary(shader->handle, dump.binary_format, dump.binary.data(), glProgramBinary(program->handle, precompiled_entry.binary_format,
static_cast<GLsizei>(dump.binary.size())); precompiled_entry.binary.data(),
static_cast<GLsizei>(precompiled_entry.binary.size()));
GLint link_status{}; GLint link_status;
glGetProgramiv(shader->handle, GL_LINK_STATUS, &link_status); glGetProgramiv(program->handle, GL_LINK_STATUS, &link_status);
if (link_status == GL_FALSE) { if (link_status == GL_FALSE) {
LOG_INFO(Render_OpenGL, "Precompiled cache rejected by the driver - removing"); LOG_INFO(Render_OpenGL, "Precompiled cache rejected by the driver, removing");
return {}; return {};
} }
return shader; return program;
}
bool ShaderCacheOpenGL::GenerateUnspecializedShaders(
const std::atomic_bool& stop_loading, const VideoCore::DiskResourceLoadCallback& callback,
const std::vector<ShaderDiskCacheRaw>& raws) {
if (callback) {
callback(VideoCore::LoadCallbackStage::Decompile, 0, raws.size());
}
for (std::size_t i = 0; i < raws.size(); ++i) {
if (stop_loading) {
return false;
}
const auto& raw{raws[i]};
const u64 unique_identifier{raw.GetUniqueIdentifier()};
const u64 calculated_hash{
GetUniqueIdentifier(raw.GetType(), raw.HasProgramA(), raw.GetCode(), raw.GetCodeB())};
if (unique_identifier != calculated_hash) {
LOG_ERROR(Render_OpenGL,
"Invalid hash in entry={:016x} (obtained hash={:016x}) - "
"removing shader cache",
raw.GetUniqueIdentifier(), calculated_hash);
disk_cache.InvalidateTransferable();
return false;
}
const u32 main_offset =
raw.GetType() == ShaderType::Compute ? KERNEL_MAIN_OFFSET : STAGE_MAIN_OFFSET;
ConstBufferLocker locker(raw.GetType());
const ShaderIR ir(raw.GetCode(), main_offset, COMPILER_SETTINGS, locker);
// TODO(Rodrigo): Handle VertexA shaders
// std::optional<ShaderIR> ir_b;
// if (raw.HasProgramA()) {
// ir_b.emplace(raw.GetProgramCodeB(), main_offset);
// }
UnspecializedShader unspecialized;
unspecialized.entries = GLShader::GetEntries(ir);
unspecialized.type = raw.GetType();
unspecialized.code = raw.GetCode();
unspecialized.code_b = raw.GetCodeB();
unspecialized_shaders.emplace(raw.GetUniqueIdentifier(), unspecialized);
if (callback) {
callback(VideoCore::LoadCallbackStage::Decompile, i, raws.size());
}
}
return true;
} }
Shader ShaderCacheOpenGL::GetStageProgram(Maxwell::ShaderProgram program) { Shader ShaderCacheOpenGL::GetStageProgram(Maxwell::ShaderProgram program) {
@ -648,17 +461,17 @@ Shader ShaderCacheOpenGL::GetStageProgram(Maxwell::ShaderProgram program) {
const auto unique_identifier = GetUniqueIdentifier( const auto unique_identifier = GetUniqueIdentifier(
GetShaderType(program), program == Maxwell::ShaderProgram::VertexA, code, code_b); GetShaderType(program), program == Maxwell::ShaderProgram::VertexA, code, code_b);
const auto precompiled_variants = GetPrecompiledVariants(unique_identifier);
const auto cpu_addr{*memory_manager.GpuToCpuAddress(address)}; const auto cpu_addr{*memory_manager.GpuToCpuAddress(address)};
const ShaderParameters params{system, disk_cache, precompiled_variants, device, const ShaderParameters params{system, disk_cache, device,
cpu_addr, host_ptr, unique_identifier}; cpu_addr, host_ptr, unique_identifier};
const auto found = unspecialized_shaders.find(unique_identifier); const auto found = runtime_cache.find(unique_identifier);
if (found == unspecialized_shaders.end()) { if (found == runtime_cache.end()) {
shader = CachedShader::CreateStageFromMemory(params, program, std::move(code), shader = CachedShader::CreateStageFromMemory(params, program, std::move(code),
std::move(code_b)); std::move(code_b));
} else { } else {
shader = CachedShader::CreateFromCache(params, found->second); const std::size_t size_in_bytes = code.size() * sizeof(u64);
shader = CachedShader::CreateFromCache(params, found->second, size_in_bytes);
} }
Register(shader); Register(shader);
@ -673,19 +486,19 @@ Shader ShaderCacheOpenGL::GetComputeKernel(GPUVAddr code_addr) {
return kernel; return kernel;
} }
// No kernel found - create a new one // No kernel found, create a new one
auto code{GetShaderCode(memory_manager, code_addr, host_ptr)}; auto code{GetShaderCode(memory_manager, code_addr, host_ptr)};
const auto unique_identifier{GetUniqueIdentifier(ShaderType::Compute, false, code, {})}; const auto unique_identifier{GetUniqueIdentifier(ShaderType::Compute, false, code)};
const auto precompiled_variants = GetPrecompiledVariants(unique_identifier);
const auto cpu_addr{*memory_manager.GpuToCpuAddress(code_addr)}; const auto cpu_addr{*memory_manager.GpuToCpuAddress(code_addr)};
const ShaderParameters params{system, disk_cache, precompiled_variants, device, const ShaderParameters params{system, disk_cache, device,
cpu_addr, host_ptr, unique_identifier}; cpu_addr, host_ptr, unique_identifier};
const auto found = unspecialized_shaders.find(unique_identifier); const auto found = runtime_cache.find(unique_identifier);
if (found == unspecialized_shaders.end()) { if (found == runtime_cache.end()) {
kernel = CachedShader::CreateKernelFromMemory(params, std::move(code)); kernel = CachedShader::CreateKernelFromMemory(params, std::move(code));
} else { } else {
kernel = CachedShader::CreateFromCache(params, found->second); const std::size_t size_in_bytes = code.size() * sizeof(u64);
kernel = CachedShader::CreateFromCache(params, found->second, size_in_bytes);
} }
Register(kernel); Register(kernel);

View file

@ -41,22 +41,17 @@ class RasterizerOpenGL;
struct UnspecializedShader; struct UnspecializedShader;
using Shader = std::shared_ptr<CachedShader>; using Shader = std::shared_ptr<CachedShader>;
using CachedProgram = std::shared_ptr<OGLProgram>;
using Maxwell = Tegra::Engines::Maxwell3D::Regs; using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using PrecompiledPrograms = std::unordered_map<ShaderDiskCacheUsage, CachedProgram>;
using PrecompiledVariants = std::vector<PrecompiledPrograms::iterator>;
struct UnspecializedShader { struct PrecompiledShader {
GLShader::ShaderEntries entries; std::shared_ptr<OGLProgram> program;
Tegra::Engines::ShaderType type; std::shared_ptr<VideoCommon::Shader::ConstBufferLocker> locker;
ProgramCode code; ShaderEntries entries;
ProgramCode code_b;
}; };
struct ShaderParameters { struct ShaderParameters {
Core::System& system; Core::System& system;
ShaderDiskCacheOpenGL& disk_cache; ShaderDiskCacheOpenGL& disk_cache;
const PrecompiledVariants* precompiled_variants;
const Device& device; const Device& device;
VAddr cpu_addr; VAddr cpu_addr;
u8* host_ptr; u8* host_ptr;
@ -65,61 +60,45 @@ struct ShaderParameters {
class CachedShader final : public RasterizerCacheObject { class CachedShader final : public RasterizerCacheObject {
public: public:
~CachedShader();
/// Gets the GL program handle for the shader
GLuint GetHandle() const;
/// Returns the guest CPU address of the shader
VAddr GetCpuAddr() const override {
return cpu_addr;
}
/// Returns the size in bytes of the shader
std::size_t GetSizeInBytes() const override {
return size_in_bytes;
}
/// Gets the shader entries for the shader
const ShaderEntries& GetEntries() const {
return entries;
}
static Shader CreateStageFromMemory(const ShaderParameters& params, static Shader CreateStageFromMemory(const ShaderParameters& params,
Maxwell::ShaderProgram program_type, Maxwell::ShaderProgram program_type,
ProgramCode program_code, ProgramCode program_code_b); ProgramCode program_code, ProgramCode program_code_b);
static Shader CreateKernelFromMemory(const ShaderParameters& params, ProgramCode code); static Shader CreateKernelFromMemory(const ShaderParameters& params, ProgramCode code);
static Shader CreateFromCache(const ShaderParameters& params, static Shader CreateFromCache(const ShaderParameters& params,
const UnspecializedShader& unspecialized); const PrecompiledShader& precompiled_shader,
std::size_t size_in_bytes);
VAddr GetCpuAddr() const override {
return cpu_addr;
}
std::size_t GetSizeInBytes() const override {
return code.size() * sizeof(u64);
}
/// Gets the shader entries for the shader
const GLShader::ShaderEntries& GetShaderEntries() const {
return entries;
}
/// Gets the GL program handle for the shader
GLuint GetHandle(const ProgramVariant& variant);
private: private:
struct LockerVariant { explicit CachedShader(const u8* host_ptr, VAddr cpu_addr, std::size_t size_in_bytes,
std::unique_ptr<VideoCommon::Shader::ConstBufferLocker> locker; std::shared_ptr<VideoCommon::Shader::ConstBufferLocker> locker,
std::unordered_map<ProgramVariant, CachedProgram> programs; ShaderEntries entries, std::shared_ptr<OGLProgram> program);
};
explicit CachedShader(const ShaderParameters& params, Tegra::Engines::ShaderType shader_type, std::shared_ptr<VideoCommon::Shader::ConstBufferLocker> locker;
GLShader::ShaderEntries entries, ProgramCode program_code, ShaderEntries entries;
ProgramCode program_code_b); VAddr cpu_addr = 0;
std::size_t size_in_bytes = 0;
bool EnsureValidLockerVariant(); std::shared_ptr<OGLProgram> program;
ShaderDiskCacheUsage GetUsage(const ProgramVariant& variant,
const VideoCommon::Shader::ConstBufferLocker& locker) const;
Core::System& system;
ShaderDiskCacheOpenGL& disk_cache;
const Device& device;
VAddr cpu_addr{};
u64 unique_identifier{};
Tegra::Engines::ShaderType shader_type{};
GLShader::ShaderEntries entries;
ProgramCode code;
ProgramCode code_b;
LockerVariant* curr_locker_variant = nullptr;
std::vector<std::unique_ptr<LockerVariant>> locker_variants;
}; };
class ShaderCacheOpenGL final : public RasterizerCache<Shader> { class ShaderCacheOpenGL final : public RasterizerCache<Shader> {
@ -142,25 +121,15 @@ protected:
void FlushObjectInner(const Shader& object) override {} void FlushObjectInner(const Shader& object) override {}
private: private:
bool GenerateUnspecializedShaders(const std::atomic_bool& stop_loading, std::shared_ptr<OGLProgram> GeneratePrecompiledProgram(
const VideoCore::DiskResourceLoadCallback& callback, const ShaderDiskCacheEntry& entry, const ShaderDiskCachePrecompiled& precompiled_entry,
const std::vector<ShaderDiskCacheRaw>& raws);
CachedProgram GeneratePrecompiledProgram(const ShaderDiskCacheDump& dump,
const std::unordered_set<GLenum>& supported_formats); const std::unordered_set<GLenum>& supported_formats);
const PrecompiledVariants* GetPrecompiledVariants(u64 unique_identifier) const;
Core::System& system; Core::System& system;
Core::Frontend::EmuWindow& emu_window; Core::Frontend::EmuWindow& emu_window;
const Device& device; const Device& device;
ShaderDiskCacheOpenGL disk_cache; ShaderDiskCacheOpenGL disk_cache;
std::unordered_map<u64, PrecompiledShader> runtime_cache;
PrecompiledPrograms precompiled_programs;
std::unordered_map<u64, PrecompiledVariants> precompiled_variants;
std::unordered_map<u64, UnspecializedShader> unspecialized_shaders;
std::array<Shader, Maxwell::MaxShaderProgram> last_shaders; std::array<Shader, Maxwell::MaxShaderProgram> last_shaders;
}; };

View file

@ -24,7 +24,7 @@
#include "video_core/shader/node.h" #include "video_core/shader/node.h"
#include "video_core/shader/shader_ir.h" #include "video_core/shader/shader_ir.h"
namespace OpenGL::GLShader { namespace OpenGL {
namespace { namespace {
@ -56,6 +56,25 @@ using TextureIR = std::variant<TextureOffset, TextureDerivates, TextureArgument>
constexpr u32 MAX_CONSTBUFFER_ELEMENTS = constexpr u32 MAX_CONSTBUFFER_ELEMENTS =
static_cast<u32>(Maxwell::MaxConstBufferSize) / (4 * sizeof(float)); static_cast<u32>(Maxwell::MaxConstBufferSize) / (4 * sizeof(float));
std::string_view CommonDeclarations = R"(#define ftoi floatBitsToInt
#define ftou floatBitsToUint
#define itof intBitsToFloat
#define utof uintBitsToFloat
bvec2 HalfFloatNanComparison(bvec2 comparison, vec2 pair1, vec2 pair2) {{
bvec2 is_nan1 = isnan(pair1);
bvec2 is_nan2 = isnan(pair2);
return bvec2(comparison.x || is_nan1.x || is_nan2.x, comparison.y || is_nan1.y || is_nan2.y);
}}
const float fswzadd_modifiers_a[] = float[4](-1.0f, 1.0f, -1.0f, 0.0f );
const float fswzadd_modifiers_b[] = float[4](-1.0f, -1.0f, 1.0f, -1.0f );
layout (std140, binding = {}) uniform vs_config {{
float y_direction;
}};
)";
class ShaderWriter final { class ShaderWriter final {
public: public:
void AddExpression(std::string_view text) { void AddExpression(std::string_view text) {
@ -270,11 +289,16 @@ const char* GetImageTypeDeclaration(Tegra::Shader::ImageType image_type) {
} }
/// Generates code to use for a swizzle operation. /// Generates code to use for a swizzle operation.
constexpr const char* GetSwizzle(u32 element) { constexpr const char* GetSwizzle(std::size_t element) {
constexpr std::array swizzle = {".x", ".y", ".z", ".w"}; constexpr std::array swizzle = {".x", ".y", ".z", ".w"};
return swizzle.at(element); return swizzle.at(element);
} }
constexpr const char* GetColorSwizzle(std::size_t element) {
constexpr std::array swizzle = {".r", ".g", ".b", ".a"};
return swizzle.at(element);
}
/// Translate topology /// Translate topology
std::string GetTopologyName(Tegra::Shader::OutputTopology topology) { std::string GetTopologyName(Tegra::Shader::OutputTopology topology) {
switch (topology) { switch (topology) {
@ -344,9 +368,48 @@ std::string FlowStackTopName(MetaStackClass stack) {
class GLSLDecompiler final { class GLSLDecompiler final {
public: public:
explicit GLSLDecompiler(const Device& device, const ShaderIR& ir, ShaderType stage, explicit GLSLDecompiler(const Device& device, const ShaderIR& ir, ShaderType stage,
std::string suffix) std::string_view suffix)
: device{device}, ir{ir}, stage{stage}, suffix{suffix}, header{ir.GetHeader()} {} : device{device}, ir{ir}, stage{stage}, suffix{suffix}, header{ir.GetHeader()} {}
void Decompile() {
DeclareHeader();
DeclareVertex();
DeclareGeometry();
DeclareFragment();
DeclareRegisters();
DeclareCustomVariables();
DeclarePredicates();
DeclareLocalMemory();
DeclareInternalFlags();
DeclareInputAttributes();
DeclareOutputAttributes();
DeclareConstantBuffers();
DeclareGlobalMemory();
DeclareSamplers();
DeclareImages();
DeclarePhysicalAttributeReader();
code.AddLine("void main() {{");
++code.scope;
if (ir.IsDecompiled()) {
DecompileAST();
} else {
DecompileBranchMode();
}
--code.scope;
code.AddLine("}}");
}
std::string GetResult() {
return code.GetResult();
}
private:
friend class ASTDecompiler;
friend class ExprDecompiler;
void DecompileBranchMode() { void DecompileBranchMode() {
// VM's program counter // VM's program counter
const auto first_address = ir.GetBasicBlocks().begin()->first; const auto first_address = ir.GetBasicBlocks().begin()->first;
@ -387,42 +450,32 @@ public:
void DecompileAST(); void DecompileAST();
void Decompile() { void DeclareHeader() {
DeclareVertex(); code.AddLine("#version 450 compatibility");
DeclareGeometry(); code.AddLine("#extension GL_ARB_separate_shader_objects : enable");
DeclareRegisters(); if (device.HasShaderBallot()) {
DeclareCustomVariables(); code.AddLine("#extension GL_ARB_shader_ballot : require");
DeclarePredicates();
DeclareLocalMemory();
DeclareInternalFlags();
DeclareInputAttributes();
DeclareOutputAttributes();
DeclareConstantBuffers();
DeclareGlobalMemory();
DeclareSamplers();
DeclareImages();
DeclarePhysicalAttributeReader();
code.AddLine("void execute_{}() {{", suffix);
++code.scope;
if (ir.IsDecompiled()) {
DecompileAST();
} else {
DecompileBranchMode();
} }
if (device.HasVertexViewportLayer()) {
--code.scope; code.AddLine("#extension GL_ARB_shader_viewport_layer_array : require");
code.AddLine("}}");
} }
if (device.HasImageLoadFormatted()) {
std::string GetResult() { code.AddLine("#extension GL_EXT_shader_image_load_formatted : require");
return code.GetResult();
} }
if (device.HasWarpIntrinsics()) {
code.AddLine("#extension GL_NV_gpu_shader5 : require");
code.AddLine("#extension GL_NV_shader_thread_group : require");
code.AddLine("#extension GL_NV_shader_thread_shuffle : require");
}
// This pragma stops Nvidia's driver from over optimizing math (probably using fp16
// operations) on places where we don't want to.
// Thanks to Ryujinx for finding this workaround.
code.AddLine("#pragma optionNV(fastmath off)");
private: code.AddNewLine();
friend class ASTDecompiler;
friend class ExprDecompiler; code.AddLine(CommonDeclarations, EmulationUniformBlockBinding);
}
void DeclareVertex() { void DeclareVertex() {
if (!IsVertexShader(stage)) if (!IsVertexShader(stage))
@ -450,6 +503,24 @@ private:
DeclareVertexRedeclarations(); DeclareVertexRedeclarations();
} }
void DeclareFragment() {
if (stage != ShaderType::Fragment) {
return;
}
bool any = false;
for (u32 render_target = 0; render_target < Maxwell::NumRenderTargets; ++render_target) {
if (!IsRenderTargetEnabled(render_target)) {
continue;
}
code.AddLine("layout (location = {}) out vec4 frag_color{};", render_target, render_target);
any = true;
}
if (any) {
code.AddNewLine();
}
}
void DeclareVertexRedeclarations() { void DeclareVertexRedeclarations() {
code.AddLine("out gl_PerVertex {{"); code.AddLine("out gl_PerVertex {{");
++code.scope; ++code.scope;
@ -1945,7 +2016,7 @@ private:
// TODO(Subv): Figure out how dual-source blending is configured in the Switch. // TODO(Subv): Figure out how dual-source blending is configured in the Switch.
for (u32 component = 0; component < 4; ++component) { for (u32 component = 0; component < 4; ++component) {
if (header.ps.IsColorComponentOutputEnabled(render_target, component)) { if (header.ps.IsColorComponentOutputEnabled(render_target, component)) {
code.AddLine("FragColor{}[{}] = {};", render_target, component, code.AddLine("frag_color{}{} = {};", render_target, GetColorSwizzle(component),
SafeGetRegister(current_reg).AsFloat()); SafeGetRegister(current_reg).AsFloat());
++current_reg; ++current_reg;
} }
@ -2298,7 +2369,11 @@ private:
} }
std::string GetLocalMemory() const { std::string GetLocalMemory() const {
return "lmem_" + suffix; if (suffix.empty()) {
return "lmem";
} else {
return "lmem_" + std::string{suffix};
}
} }
std::string GetInternalFlag(InternalFlag flag) const { std::string GetInternalFlag(InternalFlag flag) const {
@ -2307,8 +2382,12 @@ private:
const auto index = static_cast<u32>(flag); const auto index = static_cast<u32>(flag);
ASSERT(index < static_cast<u32>(InternalFlag::Amount)); ASSERT(index < static_cast<u32>(InternalFlag::Amount));
if (suffix.empty()) {
return InternalFlagNames[index];
} else {
return fmt::format("{}_{}", InternalFlagNames[index], suffix); return fmt::format("{}_{}", InternalFlagNames[index], suffix);
} }
}
std::string GetSampler(const Sampler& sampler) const { std::string GetSampler(const Sampler& sampler) const {
return GetDeclarationWithSuffix(static_cast<u32>(sampler.GetIndex()), "sampler"); return GetDeclarationWithSuffix(static_cast<u32>(sampler.GetIndex()), "sampler");
@ -2319,7 +2398,11 @@ private:
} }
std::string GetDeclarationWithSuffix(u32 index, std::string_view name) const { std::string GetDeclarationWithSuffix(u32 index, std::string_view name) const {
return fmt::format("{}_{}_{}", name, index, suffix); if (suffix.empty()) {
return fmt::format("{}{}", name, index);
} else {
return fmt::format("{}{}_{}", name, index, suffix);
}
} }
u32 GetNumPhysicalInputAttributes() const { u32 GetNumPhysicalInputAttributes() const {
@ -2334,17 +2417,26 @@ private:
return std::min<u32>(device.GetMaxVaryings(), Maxwell::NumVaryings); return std::min<u32>(device.GetMaxVaryings(), Maxwell::NumVaryings);
} }
bool IsRenderTargetEnabled(u32 render_target) const {
for (u32 component = 0; component < 4; ++component) {
if (header.ps.IsColorComponentOutputEnabled(render_target, component)) {
return true;
}
}
return false;
}
const Device& device; const Device& device;
const ShaderIR& ir; const ShaderIR& ir;
const ShaderType stage; const ShaderType stage;
const std::string suffix; const std::string_view suffix;
const Header header; const Header header;
ShaderWriter code; ShaderWriter code;
}; };
std::string GetFlowVariable(u32 i) { std::string GetFlowVariable(u32 index) {
return fmt::format("flow_var_{}", i); return fmt::format("flow_var{}", index);
} }
class ExprDecompiler { class ExprDecompiler {
@ -2531,7 +2623,7 @@ void GLSLDecompiler::DecompileAST() {
} // Anonymous namespace } // Anonymous namespace
ShaderEntries GetEntries(const VideoCommon::Shader::ShaderIR& ir) { ShaderEntries MakeEntries(const VideoCommon::Shader::ShaderIR& ir) {
ShaderEntries entries; ShaderEntries entries;
for (const auto& cbuf : ir.GetConstantBuffers()) { for (const auto& cbuf : ir.GetConstantBuffers()) {
entries.const_buffers.emplace_back(cbuf.second.GetMaxOffset(), cbuf.second.IsIndirect(), entries.const_buffers.emplace_back(cbuf.second.GetMaxOffset(), cbuf.second.IsIndirect(),
@ -2555,28 +2647,11 @@ ShaderEntries GetEntries(const VideoCommon::Shader::ShaderIR& ir) {
return entries; return entries;
} }
std::string GetCommonDeclarations() { std::string DecompileShader(const Device& device, const ShaderIR& ir, ShaderType stage,
return R"(#define ftoi floatBitsToInt std::string_view suffix) {
#define ftou floatBitsToUint
#define itof intBitsToFloat
#define utof uintBitsToFloat
bvec2 HalfFloatNanComparison(bvec2 comparison, vec2 pair1, vec2 pair2) {
bvec2 is_nan1 = isnan(pair1);
bvec2 is_nan2 = isnan(pair2);
return bvec2(comparison.x || is_nan1.x || is_nan2.x, comparison.y || is_nan1.y || is_nan2.y);
}
const float fswzadd_modifiers_a[] = float[4](-1.0f, 1.0f, -1.0f, 0.0f );
const float fswzadd_modifiers_b[] = float[4](-1.0f, -1.0f, 1.0f, -1.0f );
)";
}
std::string Decompile(const Device& device, const ShaderIR& ir, ShaderType stage,
const std::string& suffix) {
GLSLDecompiler decompiler(device, ir, stage, suffix); GLSLDecompiler decompiler(device, ir, stage, suffix);
decompiler.Decompile(); decompiler.Decompile();
return decompiler.GetResult(); return decompiler.GetResult();
} }
} // namespace OpenGL::GLShader } // namespace OpenGL

View file

@ -6,6 +6,7 @@
#include <array> #include <array>
#include <string> #include <string>
#include <string_view>
#include <utility> #include <utility>
#include <vector> #include <vector>
#include "common/common_types.h" #include "common/common_types.h"
@ -18,10 +19,8 @@ class ShaderIR;
} }
namespace OpenGL { namespace OpenGL {
class Device;
}
namespace OpenGL::GLShader { class Device;
using Maxwell = Tegra::Engines::Maxwell3D::Regs; using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using SamplerEntry = VideoCommon::Shader::Sampler; using SamplerEntry = VideoCommon::Shader::Sampler;
@ -78,11 +77,9 @@ struct ShaderEntries {
std::size_t shader_length{}; std::size_t shader_length{};
}; };
ShaderEntries GetEntries(const VideoCommon::Shader::ShaderIR& ir); ShaderEntries MakeEntries(const VideoCommon::Shader::ShaderIR& ir);
std::string GetCommonDeclarations(); std::string DecompileShader(const Device& device, const VideoCommon::Shader::ShaderIR& ir,
Tegra::Engines::ShaderType stage, std::string_view suffix = {});
std::string Decompile(const Device& device, const VideoCommon::Shader::ShaderIR& ir, } // namespace OpenGL
Tegra::Engines::ShaderType stage, const std::string& suffix);
} // namespace OpenGL::GLShader

View file

@ -31,32 +31,24 @@ namespace {
using ShaderCacheVersionHash = std::array<u8, 64>; using ShaderCacheVersionHash = std::array<u8, 64>;
enum class TransferableEntryKind : u32 {
Raw,
Usage,
};
struct ConstBufferKey { struct ConstBufferKey {
u32 cbuf{}; u32 cbuf = 0;
u32 offset{}; u32 offset = 0;
u32 value{}; u32 value = 0;
}; };
struct BoundSamplerKey { struct BoundSamplerKey {
u32 offset{}; u32 offset = 0;
Tegra::Engines::SamplerDescriptor sampler{}; Tegra::Engines::SamplerDescriptor sampler;
}; };
struct BindlessSamplerKey { struct BindlessSamplerKey {
u32 cbuf{}; u32 cbuf = 0;
u32 offset{}; u32 offset = 0;
Tegra::Engines::SamplerDescriptor sampler{}; Tegra::Engines::SamplerDescriptor sampler;
}; };
constexpr u32 NativeVersion = 12; constexpr u32 NativeVersion = 16;
// Making sure sizes doesn't change by accident
static_assert(sizeof(ProgramVariant) == 20);
ShaderCacheVersionHash GetShaderCacheVersionHash() { ShaderCacheVersionHash GetShaderCacheVersionHash() {
ShaderCacheVersionHash hash{}; ShaderCacheVersionHash hash{};
@ -67,61 +59,122 @@ ShaderCacheVersionHash GetShaderCacheVersionHash() {
} // Anonymous namespace } // Anonymous namespace
ShaderDiskCacheRaw::ShaderDiskCacheRaw(u64 unique_identifier, ShaderType type, ProgramCode code, ShaderDiskCacheEntry::ShaderDiskCacheEntry() = default;
ProgramCode code_b)
: unique_identifier{unique_identifier}, type{type}, code{std::move(code)}, code_b{std::move(
code_b)} {}
ShaderDiskCacheRaw::ShaderDiskCacheRaw() = default; ShaderDiskCacheEntry::~ShaderDiskCacheEntry() = default;
ShaderDiskCacheRaw::~ShaderDiskCacheRaw() = default; bool ShaderDiskCacheEntry::Load(FileUtil::IOFile& file) {
if (file.ReadBytes(&type, sizeof(u32)) != sizeof(u32)) {
bool ShaderDiskCacheRaw::Load(FileUtil::IOFile& file) {
if (file.ReadBytes(&unique_identifier, sizeof(u64)) != sizeof(u64) ||
file.ReadBytes(&type, sizeof(u32)) != sizeof(u32)) {
return false; return false;
} }
u32 code_size{}; u32 code_size;
u32 code_size_b{}; u32 code_size_b;
if (file.ReadBytes(&code_size, sizeof(u32)) != sizeof(u32) || if (file.ReadBytes(&code_size, sizeof(u32)) != sizeof(u32) ||
file.ReadBytes(&code_size_b, sizeof(u32)) != sizeof(u32)) { file.ReadBytes(&code_size_b, sizeof(u32)) != sizeof(u32)) {
return false; return false;
} }
code.resize(code_size); code.resize(code_size);
code_b.resize(code_size_b); code_b.resize(code_size_b);
if (file.ReadArray(code.data(), code_size) != code_size) if (file.ReadArray(code.data(), code_size) != code_size) {
return false; return false;
}
if (HasProgramA() && file.ReadArray(code_b.data(), code_size_b) != code_size_b) { if (HasProgramA() && file.ReadArray(code_b.data(), code_size_b) != code_size_b) {
return false; return false;
} }
bool is_texture_handler_size_known;
u32 texture_handler_size_value;
u32 num_keys;
u32 num_bound_samplers;
u32 num_bindless_samplers;
if (file.ReadArray(&unique_identifier, 1) != 1 || file.ReadArray(&bound_buffer, 1) != 1 ||
file.ReadArray(&is_texture_handler_size_known, 1) != 1 ||
file.ReadArray(&texture_handler_size_value, 1) != 1 || file.ReadArray(&num_keys, 1) != 1 ||
file.ReadArray(&num_bound_samplers, 1) != 1 ||
file.ReadArray(&num_bindless_samplers, 1) != 1) {
return false;
}
if (is_texture_handler_size_known) {
texture_handler_size = texture_handler_size_value;
}
std::vector<ConstBufferKey> flat_keys(num_keys);
std::vector<BoundSamplerKey> flat_bound_samplers(num_bound_samplers);
std::vector<BindlessSamplerKey> flat_bindless_samplers(num_bindless_samplers);
if (file.ReadArray(flat_keys.data(), flat_keys.size()) != flat_keys.size() ||
file.ReadArray(flat_bound_samplers.data(), flat_bound_samplers.size()) !=
flat_bound_samplers.size() ||
file.ReadArray(flat_bindless_samplers.data(), flat_bindless_samplers.size()) !=
flat_bindless_samplers.size()) {
return false;
}
for (const auto& key : flat_keys) {
keys.insert({{key.cbuf, key.offset}, key.value});
}
for (const auto& key : flat_bound_samplers) {
bound_samplers.emplace(key.offset, key.sampler);
}
for (const auto& key : flat_bindless_samplers) {
bindless_samplers.insert({{key.cbuf, key.offset}, key.sampler});
}
return true; return true;
} }
bool ShaderDiskCacheRaw::Save(FileUtil::IOFile& file) const { bool ShaderDiskCacheEntry::Save(FileUtil::IOFile& file) const {
if (file.WriteObject(unique_identifier) != 1 || file.WriteObject(static_cast<u32>(type)) != 1 || if (file.WriteObject(static_cast<u32>(type)) != 1 ||
file.WriteObject(static_cast<u32>(code.size())) != 1 || file.WriteObject(static_cast<u32>(code.size())) != 1 ||
file.WriteObject(static_cast<u32>(code_b.size())) != 1) { file.WriteObject(static_cast<u32>(code_b.size())) != 1) {
return false; return false;
} }
if (file.WriteArray(code.data(), code.size()) != code.size()) {
if (file.WriteArray(code.data(), code.size()) != code.size())
return false; return false;
}
if (HasProgramA() && file.WriteArray(code_b.data(), code_b.size()) != code_b.size()) { if (HasProgramA() && file.WriteArray(code_b.data(), code_b.size()) != code_b.size()) {
return false; return false;
} }
return true;
if (file.WriteObject(unique_identifier) != 1 || file.WriteObject(bound_buffer) != 1 ||
file.WriteObject(texture_handler_size.has_value()) != 1 ||
file.WriteObject(texture_handler_size.value_or(0)) != 1 ||
file.WriteObject(static_cast<u32>(keys.size())) != 1 ||
file.WriteObject(static_cast<u32>(bound_samplers.size())) != 1 ||
file.WriteObject(static_cast<u32>(bindless_samplers.size())) != 1) {
return false;
}
std::vector<ConstBufferKey> flat_keys;
flat_keys.reserve(keys.size());
for (const auto& [address, value] : keys) {
flat_keys.push_back(ConstBufferKey{address.first, address.second, value});
}
std::vector<BoundSamplerKey> flat_bound_samplers;
flat_bound_samplers.reserve(bound_samplers.size());
for (const auto& [address, sampler] : bound_samplers) {
flat_bound_samplers.push_back(BoundSamplerKey{address, sampler});
}
std::vector<BindlessSamplerKey> flat_bindless_samplers;
flat_bindless_samplers.reserve(bindless_samplers.size());
for (const auto& [address, sampler] : bindless_samplers) {
flat_bindless_samplers.push_back(
BindlessSamplerKey{address.first, address.second, sampler});
}
return file.WriteArray(flat_keys.data(), flat_keys.size()) == flat_keys.size() &&
file.WriteArray(flat_bound_samplers.data(), flat_bound_samplers.size()) ==
flat_bound_samplers.size() &&
file.WriteArray(flat_bindless_samplers.data(), flat_bindless_samplers.size()) ==
flat_bindless_samplers.size();
} }
ShaderDiskCacheOpenGL::ShaderDiskCacheOpenGL(Core::System& system) : system{system} {} ShaderDiskCacheOpenGL::ShaderDiskCacheOpenGL(Core::System& system) : system{system} {}
ShaderDiskCacheOpenGL::~ShaderDiskCacheOpenGL() = default; ShaderDiskCacheOpenGL::~ShaderDiskCacheOpenGL() = default;
std::optional<std::pair<std::vector<ShaderDiskCacheRaw>, std::vector<ShaderDiskCacheUsage>>> std::optional<std::vector<ShaderDiskCacheEntry>> ShaderDiskCacheOpenGL::LoadTransferable() {
ShaderDiskCacheOpenGL::LoadTransferable() {
// Skip games without title id // Skip games without title id
const bool has_title_id = system.CurrentProcess()->GetTitleID() != 0; const bool has_title_id = system.CurrentProcess()->GetTitleID() != 0;
if (!Settings::values.use_disk_shader_cache || !has_title_id) { if (!Settings::values.use_disk_shader_cache || !has_title_id) {
@ -130,17 +183,14 @@ ShaderDiskCacheOpenGL::LoadTransferable() {
FileUtil::IOFile file(GetTransferablePath(), "rb"); FileUtil::IOFile file(GetTransferablePath(), "rb");
if (!file.IsOpen()) { if (!file.IsOpen()) {
LOG_INFO(Render_OpenGL, "No transferable shader cache found for game with title id={}", LOG_INFO(Render_OpenGL, "No transferable shader cache found");
GetTitleID());
is_usable = true; is_usable = true;
return {}; return {};
} }
u32 version{}; u32 version{};
if (file.ReadBytes(&version, sizeof(version)) != sizeof(version)) { if (file.ReadBytes(&version, sizeof(version)) != sizeof(version)) {
LOG_ERROR(Render_OpenGL, LOG_ERROR(Render_OpenGL, "Failed to get transferable cache version, skipping it");
"Failed to get transferable cache version for title id={}, skipping",
GetTitleID());
return {}; return {};
} }
@ -158,105 +208,42 @@ ShaderDiskCacheOpenGL::LoadTransferable() {
} }
// Version is valid, load the shaders // Version is valid, load the shaders
constexpr const char error_loading[] = "Failed to load transferable raw entry, skipping"; std::vector<ShaderDiskCacheEntry> entries;
std::vector<ShaderDiskCacheRaw> raws;
std::vector<ShaderDiskCacheUsage> usages;
while (file.Tell() < file.GetSize()) { while (file.Tell() < file.GetSize()) {
TransferableEntryKind kind{}; ShaderDiskCacheEntry& entry = entries.emplace_back();
if (file.ReadBytes(&kind, sizeof(u32)) != sizeof(u32)) {
LOG_ERROR(Render_OpenGL, "Failed to read transferable file, skipping");
return {};
}
switch (kind) {
case TransferableEntryKind::Raw: {
ShaderDiskCacheRaw entry;
if (!entry.Load(file)) { if (!entry.Load(file)) {
LOG_ERROR(Render_OpenGL, error_loading); LOG_ERROR(Render_OpenGL, "Failed to load transferable raw entry, skipping");
return {};
}
transferable.insert({entry.GetUniqueIdentifier(), {}});
raws.push_back(std::move(entry));
break;
}
case TransferableEntryKind::Usage: {
ShaderDiskCacheUsage usage;
u32 num_keys{};
u32 num_bound_samplers{};
u32 num_bindless_samplers{};
if (file.ReadArray(&usage.unique_identifier, 1) != 1 ||
file.ReadArray(&usage.variant, 1) != 1 ||
file.ReadArray(&usage.bound_buffer, 1) != 1 || file.ReadArray(&num_keys, 1) != 1 ||
file.ReadArray(&num_bound_samplers, 1) != 1 ||
file.ReadArray(&num_bindless_samplers, 1) != 1) {
LOG_ERROR(Render_OpenGL, error_loading);
return {};
}
std::vector<ConstBufferKey> keys(num_keys);
std::vector<BoundSamplerKey> bound_samplers(num_bound_samplers);
std::vector<BindlessSamplerKey> bindless_samplers(num_bindless_samplers);
if (file.ReadArray(keys.data(), keys.size()) != keys.size() ||
file.ReadArray(bound_samplers.data(), bound_samplers.size()) !=
bound_samplers.size() ||
file.ReadArray(bindless_samplers.data(), bindless_samplers.size()) !=
bindless_samplers.size()) {
LOG_ERROR(Render_OpenGL, error_loading);
return {};
}
for (const auto& key : keys) {
usage.keys.insert({{key.cbuf, key.offset}, key.value});
}
for (const auto& key : bound_samplers) {
usage.bound_samplers.emplace(key.offset, key.sampler);
}
for (const auto& key : bindless_samplers) {
usage.bindless_samplers.insert({{key.cbuf, key.offset}, key.sampler});
}
usages.push_back(std::move(usage));
break;
}
default:
LOG_ERROR(Render_OpenGL, "Unknown transferable shader cache entry kind={}, skipping",
static_cast<u32>(kind));
return {}; return {};
} }
} }
is_usable = true; is_usable = true;
return {{std::move(raws), std::move(usages)}}; return {std::move(entries)};
} }
std::unordered_map<ShaderDiskCacheUsage, ShaderDiskCacheDump> std::vector<ShaderDiskCachePrecompiled> ShaderDiskCacheOpenGL::LoadPrecompiled() {
ShaderDiskCacheOpenGL::LoadPrecompiled() {
if (!is_usable) { if (!is_usable) {
return {}; return {};
} }
std::string path = GetPrecompiledPath(); FileUtil::IOFile file(GetPrecompiledPath(), "rb");
FileUtil::IOFile file(path, "rb");
if (!file.IsOpen()) { if (!file.IsOpen()) {
LOG_INFO(Render_OpenGL, "No precompiled shader cache found for game with title id={}", LOG_INFO(Render_OpenGL, "No precompiled shader cache found");
GetTitleID());
return {}; return {};
} }
const auto result = LoadPrecompiledFile(file); if (const auto result = LoadPrecompiledFile(file)) {
if (!result) { return *result;
LOG_INFO(Render_OpenGL, }
"Failed to load precompiled cache for game with title id={}, removing",
GetTitleID()); LOG_INFO(Render_OpenGL, "Failed to load precompiled cache");
file.Close(); file.Close();
InvalidatePrecompiled(); InvalidatePrecompiled();
return {}; return {};
}
return *result;
} }
std::optional<std::unordered_map<ShaderDiskCacheUsage, ShaderDiskCacheDump>> std::optional<std::vector<ShaderDiskCachePrecompiled>> ShaderDiskCacheOpenGL::LoadPrecompiledFile(
ShaderDiskCacheOpenGL::LoadPrecompiledFile(FileUtil::IOFile& file) { FileUtil::IOFile& file) {
// Read compressed file from disk and decompress to virtual precompiled cache file // Read compressed file from disk and decompress to virtual precompiled cache file
std::vector<u8> compressed(file.GetSize()); std::vector<u8> compressed(file.GetSize());
file.ReadBytes(compressed.data(), compressed.size()); file.ReadBytes(compressed.data(), compressed.size());
@ -275,58 +262,22 @@ ShaderDiskCacheOpenGL::LoadPrecompiledFile(FileUtil::IOFile& file) {
return {}; return {};
} }
ShaderDumpsMap dumps; std::vector<ShaderDiskCachePrecompiled> entries;
while (precompiled_cache_virtual_file_offset < precompiled_cache_virtual_file.GetSize()) { while (precompiled_cache_virtual_file_offset < precompiled_cache_virtual_file.GetSize()) {
u32 num_keys{}; u32 binary_size;
u32 num_bound_samplers{}; auto& entry = entries.emplace_back();
u32 num_bindless_samplers{}; if (!LoadObjectFromPrecompiled(entry.unique_identifier) ||
ShaderDiskCacheUsage usage; !LoadObjectFromPrecompiled(entry.binary_format) ||
if (!LoadObjectFromPrecompiled(usage.unique_identifier) || !LoadObjectFromPrecompiled(binary_size)) {
!LoadObjectFromPrecompiled(usage.variant) ||
!LoadObjectFromPrecompiled(usage.bound_buffer) ||
!LoadObjectFromPrecompiled(num_keys) ||
!LoadObjectFromPrecompiled(num_bound_samplers) ||
!LoadObjectFromPrecompiled(num_bindless_samplers)) {
return {};
}
std::vector<ConstBufferKey> keys(num_keys);
std::vector<BoundSamplerKey> bound_samplers(num_bound_samplers);
std::vector<BindlessSamplerKey> bindless_samplers(num_bindless_samplers);
if (!LoadArrayFromPrecompiled(keys.data(), keys.size()) ||
!LoadArrayFromPrecompiled(bound_samplers.data(), bound_samplers.size()) !=
bound_samplers.size() ||
!LoadArrayFromPrecompiled(bindless_samplers.data(), bindless_samplers.size()) !=
bindless_samplers.size()) {
return {};
}
for (const auto& key : keys) {
usage.keys.insert({{key.cbuf, key.offset}, key.value});
}
for (const auto& key : bound_samplers) {
usage.bound_samplers.emplace(key.offset, key.sampler);
}
for (const auto& key : bindless_samplers) {
usage.bindless_samplers.insert({{key.cbuf, key.offset}, key.sampler});
}
ShaderDiskCacheDump dump;
if (!LoadObjectFromPrecompiled(dump.binary_format)) {
return {}; return {};
} }
u32 binary_length{}; entry.binary.resize(binary_size);
if (!LoadObjectFromPrecompiled(binary_length)) { if (!LoadArrayFromPrecompiled(entry.binary.data(), entry.binary.size())) {
return {}; return {};
} }
dump.binary.resize(binary_length);
if (!LoadArrayFromPrecompiled(dump.binary.data(), dump.binary.size())) {
return {};
} }
return entries;
dumps.emplace(std::move(usage), dump);
}
return dumps;
} }
void ShaderDiskCacheOpenGL::InvalidateTransferable() { void ShaderDiskCacheOpenGL::InvalidateTransferable() {
@ -346,13 +297,13 @@ void ShaderDiskCacheOpenGL::InvalidatePrecompiled() {
} }
} }
void ShaderDiskCacheOpenGL::SaveRaw(const ShaderDiskCacheRaw& entry) { void ShaderDiskCacheOpenGL::SaveEntry(const ShaderDiskCacheEntry& entry) {
if (!is_usable) { if (!is_usable) {
return; return;
} }
const u64 id = entry.GetUniqueIdentifier(); const u64 id = entry.unique_identifier;
if (transferable.find(id) != transferable.end()) { if (stored_transferable.find(id) != stored_transferable.end()) {
// The shader already exists // The shader already exists
return; return;
} }
@ -361,71 +312,17 @@ void ShaderDiskCacheOpenGL::SaveRaw(const ShaderDiskCacheRaw& entry) {
if (!file.IsOpen()) { if (!file.IsOpen()) {
return; return;
} }
if (file.WriteObject(TransferableEntryKind::Raw) != 1 || !entry.Save(file)) { if (!entry.Save(file)) {
LOG_ERROR(Render_OpenGL, "Failed to save raw transferable cache entry, removing"); LOG_ERROR(Render_OpenGL, "Failed to save raw transferable cache entry, removing");
file.Close(); file.Close();
InvalidateTransferable(); InvalidateTransferable();
return; return;
} }
transferable.insert({id, {}});
stored_transferable.insert(id);
} }
void ShaderDiskCacheOpenGL::SaveUsage(const ShaderDiskCacheUsage& usage) { void ShaderDiskCacheOpenGL::SavePrecompiled(u64 unique_identifier, GLuint program) {
if (!is_usable) {
return;
}
const auto it = transferable.find(usage.unique_identifier);
ASSERT_MSG(it != transferable.end(), "Saving shader usage without storing raw previously");
auto& usages{it->second};
if (usages.find(usage) != usages.end()) {
// Skip this variant since the shader is already stored.
return;
}
usages.insert(usage);
FileUtil::IOFile file = AppendTransferableFile();
if (!file.IsOpen())
return;
const auto Close = [&] {
LOG_ERROR(Render_OpenGL, "Failed to save usage transferable cache entry, removing");
file.Close();
InvalidateTransferable();
};
if (file.WriteObject(TransferableEntryKind::Usage) != 1 ||
file.WriteObject(usage.unique_identifier) != 1 || file.WriteObject(usage.variant) != 1 ||
file.WriteObject(usage.bound_buffer) != 1 ||
file.WriteObject(static_cast<u32>(usage.keys.size())) != 1 ||
file.WriteObject(static_cast<u32>(usage.bound_samplers.size())) != 1 ||
file.WriteObject(static_cast<u32>(usage.bindless_samplers.size())) != 1) {
Close();
return;
}
for (const auto& [pair, value] : usage.keys) {
const auto [cbuf, offset] = pair;
if (file.WriteObject(ConstBufferKey{cbuf, offset, value}) != 1) {
Close();
return;
}
}
for (const auto& [offset, sampler] : usage.bound_samplers) {
if (file.WriteObject(BoundSamplerKey{offset, sampler}) != 1) {
Close();
return;
}
}
for (const auto& [pair, sampler] : usage.bindless_samplers) {
const auto [cbuf, offset] = pair;
if (file.WriteObject(BindlessSamplerKey{cbuf, offset, sampler}) != 1) {
Close();
return;
}
}
}
void ShaderDiskCacheOpenGL::SaveDump(const ShaderDiskCacheUsage& usage, GLuint program) {
if (!is_usable) { if (!is_usable) {
return; return;
} }
@ -437,51 +334,19 @@ void ShaderDiskCacheOpenGL::SaveDump(const ShaderDiskCacheUsage& usage, GLuint p
SavePrecompiledHeaderToVirtualPrecompiledCache(); SavePrecompiledHeaderToVirtualPrecompiledCache();
} }
GLint binary_length{}; GLint binary_length;
glGetProgramiv(program, GL_PROGRAM_BINARY_LENGTH, &binary_length); glGetProgramiv(program, GL_PROGRAM_BINARY_LENGTH, &binary_length);
GLenum binary_format{}; GLenum binary_format;
std::vector<u8> binary(binary_length); std::vector<u8> binary(binary_length);
glGetProgramBinary(program, binary_length, nullptr, &binary_format, binary.data()); glGetProgramBinary(program, binary_length, nullptr, &binary_format, binary.data());
const auto Close = [&] { if (!SaveObjectToPrecompiled(unique_identifier) || !SaveObjectToPrecompiled(binary_format) ||
LOG_ERROR(Render_OpenGL, "Failed to save binary program file in shader={:016X}, removing", !SaveObjectToPrecompiled(static_cast<u32>(binary.size())) ||
usage.unique_identifier);
InvalidatePrecompiled();
};
if (!SaveObjectToPrecompiled(usage.unique_identifier) ||
!SaveObjectToPrecompiled(usage.variant) || !SaveObjectToPrecompiled(usage.bound_buffer) ||
!SaveObjectToPrecompiled(static_cast<u32>(usage.keys.size())) ||
!SaveObjectToPrecompiled(static_cast<u32>(usage.bound_samplers.size())) ||
!SaveObjectToPrecompiled(static_cast<u32>(usage.bindless_samplers.size()))) {
Close();
return;
}
for (const auto& [pair, value] : usage.keys) {
const auto [cbuf, offset] = pair;
if (SaveObjectToPrecompiled(ConstBufferKey{cbuf, offset, value}) != 1) {
Close();
return;
}
}
for (const auto& [offset, sampler] : usage.bound_samplers) {
if (SaveObjectToPrecompiled(BoundSamplerKey{offset, sampler}) != 1) {
Close();
return;
}
}
for (const auto& [pair, sampler] : usage.bindless_samplers) {
const auto [cbuf, offset] = pair;
if (SaveObjectToPrecompiled(BindlessSamplerKey{cbuf, offset, sampler}) != 1) {
Close();
return;
}
}
if (!SaveObjectToPrecompiled(static_cast<u32>(binary_format)) ||
!SaveObjectToPrecompiled(static_cast<u32>(binary_length)) ||
!SaveArrayToPrecompiled(binary.data(), binary.size())) { !SaveArrayToPrecompiled(binary.data(), binary.size())) {
Close(); LOG_ERROR(Render_OpenGL, "Failed to save binary program file in shader={:016X}, removing",
unique_identifier);
InvalidatePrecompiled();
} }
} }
@ -534,7 +399,6 @@ void ShaderDiskCacheOpenGL::SaveVirtualPrecompiledFile() {
if (file.WriteBytes(compressed.data(), compressed.size()) != compressed.size()) { if (file.WriteBytes(compressed.data(), compressed.size()) != compressed.size()) {
LOG_ERROR(Render_OpenGL, "Failed to write precompiled cache version in path={}", LOG_ERROR(Render_OpenGL, "Failed to write precompiled cache version in path={}",
precompiled_path); precompiled_path);
return;
} }
} }

View file

@ -19,7 +19,6 @@
#include "common/common_types.h" #include "common/common_types.h"
#include "core/file_sys/vfs_vector.h" #include "core/file_sys/vfs_vector.h"
#include "video_core/engines/shader_type.h" #include "video_core/engines/shader_type.h"
#include "video_core/renderer_opengl/gl_shader_gen.h"
#include "video_core/shader/const_buffer_locker.h" #include "video_core/shader/const_buffer_locker.h"
namespace Core { namespace Core {
@ -32,139 +31,37 @@ class IOFile;
namespace OpenGL { namespace OpenGL {
struct ShaderDiskCacheUsage;
struct ShaderDiskCacheDump;
using ProgramCode = std::vector<u64>; using ProgramCode = std::vector<u64>;
using ShaderDumpsMap = std::unordered_map<ShaderDiskCacheUsage, ShaderDiskCacheDump>;
/// Describes the different variants a program can be compiled with. /// Describes a shader and how it's used by the guest GPU
struct ProgramVariant final { struct ShaderDiskCacheEntry {
ProgramVariant() = default; ShaderDiskCacheEntry();
~ShaderDiskCacheEntry();
/// Graphics constructor.
explicit constexpr ProgramVariant(GLenum primitive_mode) noexcept
: primitive_mode{primitive_mode} {}
/// Compute constructor.
explicit constexpr ProgramVariant(u32 block_x, u32 block_y, u32 block_z, u32 shared_memory_size,
u32 local_memory_size) noexcept
: block_x{block_x}, block_y{static_cast<u16>(block_y)}, block_z{static_cast<u16>(block_z)},
shared_memory_size{shared_memory_size}, local_memory_size{local_memory_size} {}
// Graphics specific parameters.
GLenum primitive_mode{};
// Compute specific parameters.
u32 block_x{};
u16 block_y{};
u16 block_z{};
u32 shared_memory_size{};
u32 local_memory_size{};
bool operator==(const ProgramVariant& rhs) const noexcept {
return std::tie(primitive_mode, block_x, block_y, block_z, shared_memory_size,
local_memory_size) == std::tie(rhs.primitive_mode, rhs.block_x, rhs.block_y,
rhs.block_z, rhs.shared_memory_size,
rhs.local_memory_size);
}
bool operator!=(const ProgramVariant& rhs) const noexcept {
return !operator==(rhs);
}
};
static_assert(std::is_trivially_copyable_v<ProgramVariant>);
/// Describes how a shader is used.
struct ShaderDiskCacheUsage {
u64 unique_identifier{};
ProgramVariant variant;
u32 bound_buffer{};
VideoCommon::Shader::KeyMap keys;
VideoCommon::Shader::BoundSamplerMap bound_samplers;
VideoCommon::Shader::BindlessSamplerMap bindless_samplers;
bool operator==(const ShaderDiskCacheUsage& rhs) const {
return std::tie(unique_identifier, variant, keys, bound_samplers, bindless_samplers) ==
std::tie(rhs.unique_identifier, rhs.variant, rhs.keys, rhs.bound_samplers,
rhs.bindless_samplers);
}
bool operator!=(const ShaderDiskCacheUsage& rhs) const {
return !operator==(rhs);
}
};
} // namespace OpenGL
namespace std {
template <>
struct hash<OpenGL::ProgramVariant> {
std::size_t operator()(const OpenGL::ProgramVariant& variant) const noexcept {
return (static_cast<std::size_t>(variant.primitive_mode) << 6) ^
static_cast<std::size_t>(variant.block_x) ^
(static_cast<std::size_t>(variant.block_y) << 32) ^
(static_cast<std::size_t>(variant.block_z) << 48) ^
(static_cast<std::size_t>(variant.shared_memory_size) << 16) ^
(static_cast<std::size_t>(variant.local_memory_size) << 36);
}
};
template <>
struct hash<OpenGL::ShaderDiskCacheUsage> {
std::size_t operator()(const OpenGL::ShaderDiskCacheUsage& usage) const noexcept {
return static_cast<std::size_t>(usage.unique_identifier) ^
std::hash<OpenGL::ProgramVariant>{}(usage.variant);
}
};
} // namespace std
namespace OpenGL {
/// Describes a shader how it's used by the guest GPU
class ShaderDiskCacheRaw {
public:
explicit ShaderDiskCacheRaw(u64 unique_identifier, Tegra::Engines::ShaderType type,
ProgramCode code, ProgramCode code_b = {});
ShaderDiskCacheRaw();
~ShaderDiskCacheRaw();
bool Load(FileUtil::IOFile& file); bool Load(FileUtil::IOFile& file);
bool Save(FileUtil::IOFile& file) const; bool Save(FileUtil::IOFile& file) const;
u64 GetUniqueIdentifier() const {
return unique_identifier;
}
bool HasProgramA() const { bool HasProgramA() const {
return !code.empty() && !code_b.empty(); return !code.empty() && !code_b.empty();
} }
Tegra::Engines::ShaderType GetType() const {
return type;
}
const ProgramCode& GetCode() const {
return code;
}
const ProgramCode& GetCodeB() const {
return code_b;
}
private:
u64 unique_identifier{};
Tegra::Engines::ShaderType type{}; Tegra::Engines::ShaderType type{};
ProgramCode code; ProgramCode code;
ProgramCode code_b; ProgramCode code_b;
u64 unique_identifier = 0;
u32 bound_buffer = 0;
std::optional<u32> texture_handler_size;
VideoCommon::Shader::KeyMap keys;
VideoCommon::Shader::BoundSamplerMap bound_samplers;
VideoCommon::Shader::BindlessSamplerMap bindless_samplers;
}; };
/// Contains an OpenGL dumped binary program /// Contains an OpenGL dumped binary program
struct ShaderDiskCacheDump { struct ShaderDiskCachePrecompiled {
GLenum binary_format{}; u64 unique_identifier = 0;
GLenum binary_format = 0;
std::vector<u8> binary; std::vector<u8> binary;
}; };
@ -174,11 +71,10 @@ public:
~ShaderDiskCacheOpenGL(); ~ShaderDiskCacheOpenGL();
/// Loads transferable cache. If file has a old version or on failure, it deletes the file. /// Loads transferable cache. If file has a old version or on failure, it deletes the file.
std::optional<std::pair<std::vector<ShaderDiskCacheRaw>, std::vector<ShaderDiskCacheUsage>>> std::optional<std::vector<ShaderDiskCacheEntry>> LoadTransferable();
LoadTransferable();
/// Loads current game's precompiled cache. Invalidates on failure. /// Loads current game's precompiled cache. Invalidates on failure.
std::unordered_map<ShaderDiskCacheUsage, ShaderDiskCacheDump> LoadPrecompiled(); std::vector<ShaderDiskCachePrecompiled> LoadPrecompiled();
/// Removes the transferable (and precompiled) cache file. /// Removes the transferable (and precompiled) cache file.
void InvalidateTransferable(); void InvalidateTransferable();
@ -187,21 +83,18 @@ public:
void InvalidatePrecompiled(); void InvalidatePrecompiled();
/// Saves a raw dump to the transferable file. Checks for collisions. /// Saves a raw dump to the transferable file. Checks for collisions.
void SaveRaw(const ShaderDiskCacheRaw& entry); void SaveEntry(const ShaderDiskCacheEntry& entry);
/// Saves shader usage to the transferable file. Does not check for collisions.
void SaveUsage(const ShaderDiskCacheUsage& usage);
/// Saves a dump entry to the precompiled file. Does not check for collisions. /// Saves a dump entry to the precompiled file. Does not check for collisions.
void SaveDump(const ShaderDiskCacheUsage& usage, GLuint program); void SavePrecompiled(u64 unique_identifier, GLuint program);
/// Serializes virtual precompiled shader cache file to real file /// Serializes virtual precompiled shader cache file to real file
void SaveVirtualPrecompiledFile(); void SaveVirtualPrecompiledFile();
private: private:
/// Loads the transferable cache. Returns empty on failure. /// Loads the transferable cache. Returns empty on failure.
std::optional<std::unordered_map<ShaderDiskCacheUsage, ShaderDiskCacheDump>> std::optional<std::vector<ShaderDiskCachePrecompiled>> LoadPrecompiledFile(
LoadPrecompiledFile(FileUtil::IOFile& file); FileUtil::IOFile& file);
/// Opens current game's transferable file and write it's header if it doesn't exist /// Opens current game's transferable file and write it's header if it doesn't exist
FileUtil::IOFile AppendTransferableFile() const; FileUtil::IOFile AppendTransferableFile() const;
@ -270,7 +163,7 @@ private:
std::size_t precompiled_cache_virtual_file_offset = 0; std::size_t precompiled_cache_virtual_file_offset = 0;
// Stored transferable shaders // Stored transferable shaders
std::unordered_map<u64, std::unordered_set<ShaderDiskCacheUsage>> transferable; std::unordered_set<u64> stored_transferable;
// The cache has been loaded at boot // The cache has been loaded at boot
bool is_usable{}; bool is_usable{};

View file

@ -1,109 +0,0 @@
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <string>
#include <fmt/format.h>
#include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/shader_type.h"
#include "video_core/renderer_opengl/gl_device.h"
#include "video_core/renderer_opengl/gl_shader_decompiler.h"
#include "video_core/renderer_opengl/gl_shader_gen.h"
#include "video_core/shader/shader_ir.h"
namespace OpenGL::GLShader {
using Tegra::Engines::Maxwell3D;
using Tegra::Engines::ShaderType;
using VideoCommon::Shader::CompileDepth;
using VideoCommon::Shader::CompilerSettings;
using VideoCommon::Shader::ProgramCode;
using VideoCommon::Shader::ShaderIR;
std::string GenerateVertexShader(const Device& device, const ShaderIR& ir, const ShaderIR* ir_b) {
std::string out = GetCommonDeclarations();
out += fmt::format(R"(
layout (std140, binding = {}) uniform vs_config {{
float y_direction;
}};
)",
EmulationUniformBlockBinding);
out += Decompile(device, ir, ShaderType::Vertex, "vertex");
if (ir_b) {
out += Decompile(device, *ir_b, ShaderType::Vertex, "vertex_b");
}
out += R"(
void main() {
gl_Position = vec4(0.0f, 0.0f, 0.0f, 1.0f);
execute_vertex();
)";
if (ir_b) {
out += " execute_vertex_b();";
}
out += "}\n";
return out;
}
std::string GenerateGeometryShader(const Device& device, const ShaderIR& ir) {
std::string out = GetCommonDeclarations();
out += fmt::format(R"(
layout (std140, binding = {}) uniform gs_config {{
float y_direction;
}};
)",
EmulationUniformBlockBinding);
out += Decompile(device, ir, ShaderType::Geometry, "geometry");
out += R"(
void main() {
execute_geometry();
}
)";
return out;
}
std::string GenerateFragmentShader(const Device& device, const ShaderIR& ir) {
std::string out = GetCommonDeclarations();
out += fmt::format(R"(
layout (location = 0) out vec4 FragColor0;
layout (location = 1) out vec4 FragColor1;
layout (location = 2) out vec4 FragColor2;
layout (location = 3) out vec4 FragColor3;
layout (location = 4) out vec4 FragColor4;
layout (location = 5) out vec4 FragColor5;
layout (location = 6) out vec4 FragColor6;
layout (location = 7) out vec4 FragColor7;
layout (std140, binding = {}) uniform fs_config {{
float y_direction;
}};
)",
EmulationUniformBlockBinding);
out += Decompile(device, ir, ShaderType::Fragment, "fragment");
out += R"(
void main() {
execute_fragment();
}
)";
return out;
}
std::string GenerateComputeShader(const Device& device, const ShaderIR& ir) {
std::string out = GetCommonDeclarations();
out += Decompile(device, ir, ShaderType::Compute, "compute");
out += R"(
void main() {
execute_compute();
}
)";
return out;
}
} // namespace OpenGL::GLShader

View file

@ -1,34 +0,0 @@
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <vector>
#include "common/common_types.h"
#include "video_core/renderer_opengl/gl_shader_decompiler.h"
#include "video_core/shader/shader_ir.h"
namespace OpenGL {
class Device;
}
namespace OpenGL::GLShader {
using VideoCommon::Shader::ProgramCode;
using VideoCommon::Shader::ShaderIR;
/// Generates the GLSL vertex shader program source code for the given VS program
std::string GenerateVertexShader(const Device& device, const ShaderIR& ir, const ShaderIR* ir_b);
/// Generates the GLSL geometry shader program source code for the given GS program
std::string GenerateGeometryShader(const Device& device, const ShaderIR& ir);
/// Generates the GLSL fragment shader program source code for the given FS program
std::string GenerateFragmentShader(const Device& device, const ShaderIR& ir);
/// Generates the GLSL compute shader program source code for the given CS program
std::string GenerateComputeShader(const Device& device, const ShaderIR& ir);
} // namespace OpenGL::GLShader

View file

@ -14,8 +14,9 @@ namespace VideoCommon::Shader {
using Tegra::Engines::SamplerDescriptor; using Tegra::Engines::SamplerDescriptor;
ConstBufferLocker::ConstBufferLocker(Tegra::Engines::ShaderType shader_stage) ConstBufferLocker::ConstBufferLocker(Tegra::Engines::ShaderType shader_stage,
: stage{shader_stage} {} VideoCore::GuestDriverProfile stored_guest_driver_profile)
: stage{shader_stage}, stored_guest_driver_profile{stored_guest_driver_profile} {}
ConstBufferLocker::ConstBufferLocker(Tegra::Engines::ShaderType shader_stage, ConstBufferLocker::ConstBufferLocker(Tegra::Engines::ShaderType shader_stage,
Tegra::Engines::ConstBufferEngineInterface& engine) Tegra::Engines::ConstBufferEngineInterface& engine)
@ -97,7 +98,7 @@ void ConstBufferLocker::SetBoundBuffer(u32 buffer) {
bool ConstBufferLocker::IsConsistent() const { bool ConstBufferLocker::IsConsistent() const {
if (!engine) { if (!engine) {
return false; return true;
} }
return std::all_of(keys.begin(), keys.end(), return std::all_of(keys.begin(), keys.end(),
[this](const auto& pair) { [this](const auto& pair) {

View file

@ -26,7 +26,8 @@ using BindlessSamplerMap =
*/ */
class ConstBufferLocker { class ConstBufferLocker {
public: public:
explicit ConstBufferLocker(Tegra::Engines::ShaderType shader_stage); explicit ConstBufferLocker(Tegra::Engines::ShaderType shader_stage,
VideoCore::GuestDriverProfile stored_guest_driver_profile);
explicit ConstBufferLocker(Tegra::Engines::ShaderType shader_stage, explicit ConstBufferLocker(Tegra::Engines::ShaderType shader_stage,
Tegra::Engines::ConstBufferEngineInterface& engine); Tegra::Engines::ConstBufferEngineInterface& engine);
@ -83,15 +84,13 @@ public:
} }
/// Obtains access to the guest driver's profile. /// Obtains access to the guest driver's profile.
VideoCore::GuestDriverProfile* AccessGuestDriverProfile() const { VideoCore::GuestDriverProfile& AccessGuestDriverProfile() {
if (engine) { return engine ? engine->AccessGuestDriverProfile() : stored_guest_driver_profile;
return &engine->AccessGuestDriverProfile();
}
return nullptr;
} }
private: private:
const Tegra::Engines::ShaderType stage; const Tegra::Engines::ShaderType stage;
VideoCore::GuestDriverProfile stored_guest_driver_profile;
Tegra::Engines::ConstBufferEngineInterface* engine = nullptr; Tegra::Engines::ConstBufferEngineInterface* engine = nullptr;
KeyMap keys; KeyMap keys;
BoundSamplerMap bound_samplers; BoundSamplerMap bound_samplers;

View file

@ -34,13 +34,9 @@ constexpr bool IsSchedInstruction(u32 offset, u32 main_offset) {
return (absolute_offset % SchedPeriod) == 0; return (absolute_offset % SchedPeriod) == 0;
} }
void DeduceTextureHandlerSize(VideoCore::GuestDriverProfile* gpu_driver, void DeduceTextureHandlerSize(VideoCore::GuestDriverProfile& gpu_driver,
const std::list<Sampler>& used_samplers) { const std::list<Sampler>& used_samplers) {
if (gpu_driver == nullptr) { if (gpu_driver.IsTextureHandlerSizeKnown() || used_samplers.size() <= 1) {
LOG_CRITICAL(HW_GPU, "GPU driver profile has not been created yet");
return;
}
if (gpu_driver->TextureHandlerSizeKnown() || used_samplers.size() <= 1) {
return; return;
} }
u32 count{}; u32 count{};
@ -53,17 +49,13 @@ void DeduceTextureHandlerSize(VideoCore::GuestDriverProfile* gpu_driver,
bound_offsets.emplace_back(sampler.GetOffset()); bound_offsets.emplace_back(sampler.GetOffset());
} }
if (count > 1) { if (count > 1) {
gpu_driver->DeduceTextureHandlerSize(std::move(bound_offsets)); gpu_driver.DeduceTextureHandlerSize(std::move(bound_offsets));
} }
} }
std::optional<u32> TryDeduceSamplerSize(const Sampler& sampler_to_deduce, std::optional<u32> TryDeduceSamplerSize(const Sampler& sampler_to_deduce,
VideoCore::GuestDriverProfile* gpu_driver, VideoCore::GuestDriverProfile& gpu_driver,
const std::list<Sampler>& used_samplers) { const std::list<Sampler>& used_samplers) {
if (gpu_driver == nullptr) {
LOG_CRITICAL(HW_GPU, "GPU Driver profile has not been created yet");
return std::nullopt;
}
const u32 base_offset = sampler_to_deduce.GetOffset(); const u32 base_offset = sampler_to_deduce.GetOffset();
u32 max_offset{std::numeric_limits<u32>::max()}; u32 max_offset{std::numeric_limits<u32>::max()};
for (const auto& sampler : used_samplers) { for (const auto& sampler : used_samplers) {
@ -77,7 +69,7 @@ std::optional<u32> TryDeduceSamplerSize(const Sampler& sampler_to_deduce,
if (max_offset == std::numeric_limits<u32>::max()) { if (max_offset == std::numeric_limits<u32>::max()) {
return std::nullopt; return std::nullopt;
} }
return ((max_offset - base_offset) * 4) / gpu_driver->GetTextureHandlerSize(); return ((max_offset - base_offset) * 4) / gpu_driver.GetTextureHandlerSize();
} }
} // Anonymous namespace } // Anonymous namespace

View file

@ -94,13 +94,10 @@ std::tuple<Node, TrackSampler> ShaderIR::TrackBindlessSampler(Node tracked, cons
} }
auto [gpr, base_offset] = *pair; auto [gpr, base_offset] = *pair;
const auto offset_inm = std::get_if<ImmediateNode>(&*base_offset); const auto offset_inm = std::get_if<ImmediateNode>(&*base_offset);
auto gpu_driver = locker.AccessGuestDriverProfile(); const auto& gpu_driver = locker.AccessGuestDriverProfile();
if (gpu_driver == nullptr) {
return {};
}
const u32 bindless_cv = NewCustomVariable(); const u32 bindless_cv = NewCustomVariable();
const Node op = Operation(OperationCode::UDiv, NO_PRECISE, gpr, const Node op =
Immediate(gpu_driver->GetTextureHandlerSize())); Operation(OperationCode::UDiv, gpr, Immediate(gpu_driver.GetTextureHandlerSize()));
const Node cv_node = GetCustomVariable(bindless_cv); const Node cv_node = GetCustomVariable(bindless_cv);
Node amend_op = Operation(OperationCode::Assign, cv_node, std::move(op)); Node amend_op = Operation(OperationCode::Assign, cv_node, std::move(op));