video_core: Reimplement the buffer cache

Reimplement the buffer cache using cached bindings and page level
granularity for modification tracking. This also drops the usage of
shared pointers and virtual functions from the cache.

- Bindings are cached, allowing to skip work when the game changes few
  bits between draws.
- OpenGL Assembly shaders no longer copy when a region has been modified
  from the GPU to emulate constant buffers, instead GL_EXT_memory_object
  is used to alias sub-buffers within the same allocation.
- OpenGL Assembly shaders stream constant buffer data using
  glProgramBufferParametersIuivNV, from NV_parameter_buffer_object. In
  theory this should save one hash table resolve inside the driver
  compared to glBufferSubData.
- A new OpenGL stream buffer is implemented based on fences for drivers
  that are not Nvidia's proprietary, due to their low performance on
  partial glBufferSubData calls synchronized with 3D rendering (that
  some games use a lot).
- Most optimizations are shared between APIs now, allowing Vulkan to
  cache more bindings than before, skipping unnecesarry work.

This commit adds the necessary infrastructure to use Vulkan object from
OpenGL. Overall, it improves performance and fixes some bugs present on
the old cache. There are still some edge cases hit by some games that
harm performance on some vendors, this are planned to be fixed in later
commits.
This commit is contained in:
ReinUsesLisp 2021-01-16 20:48:58 -03:00
parent a39d9c5194
commit 82c2601555
67 changed files with 2555 additions and 2648 deletions

View file

@ -2,10 +2,8 @@ add_subdirectory(host_shaders)
add_library(video_core STATIC add_library(video_core STATIC
buffer_cache/buffer_base.h buffer_cache/buffer_base.h
buffer_cache/buffer_block.h buffer_cache/buffer_cache.cpp
buffer_cache/buffer_cache.h buffer_cache/buffer_cache.h
buffer_cache/map_interval.cpp
buffer_cache/map_interval.h
cdma_pusher.cpp cdma_pusher.cpp
cdma_pusher.h cdma_pusher.h
command_classes/codecs/codec.cpp command_classes/codecs/codec.cpp
@ -152,8 +150,6 @@ add_library(video_core STATIC
renderer_vulkan/vk_staging_buffer_pool.h renderer_vulkan/vk_staging_buffer_pool.h
renderer_vulkan/vk_state_tracker.cpp renderer_vulkan/vk_state_tracker.cpp
renderer_vulkan/vk_state_tracker.h renderer_vulkan/vk_state_tracker.h
renderer_vulkan/vk_stream_buffer.cpp
renderer_vulkan/vk_stream_buffer.h
renderer_vulkan/vk_swapchain.cpp renderer_vulkan/vk_swapchain.cpp
renderer_vulkan/vk_swapchain.h renderer_vulkan/vk_swapchain.h
renderer_vulkan/vk_texture_cache.cpp renderer_vulkan/vk_texture_cache.cpp

View file

@ -1,62 +0,0 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/common_types.h"
namespace VideoCommon {
class BufferBlock {
public:
[[nodiscard]] bool Overlaps(VAddr start, VAddr end) const {
return (cpu_addr < end) && (cpu_addr_end > start);
}
[[nodiscard]] bool IsInside(VAddr other_start, VAddr other_end) const {
return cpu_addr <= other_start && other_end <= cpu_addr_end;
}
[[nodiscard]] std::size_t Offset(VAddr in_addr) const {
return static_cast<std::size_t>(in_addr - cpu_addr);
}
[[nodiscard]] VAddr CpuAddr() const {
return cpu_addr;
}
[[nodiscard]] VAddr CpuAddrEnd() const {
return cpu_addr_end;
}
void SetCpuAddr(VAddr new_addr) {
cpu_addr = new_addr;
cpu_addr_end = new_addr + size;
}
[[nodiscard]] std::size_t Size() const {
return size;
}
[[nodiscard]] u64 Epoch() const {
return epoch;
}
void SetEpoch(u64 new_epoch) {
epoch = new_epoch;
}
protected:
explicit BufferBlock(VAddr cpu_addr_, std::size_t size_) : size{size_} {
SetCpuAddr(cpu_addr_);
}
private:
VAddr cpu_addr{};
VAddr cpu_addr_end{};
std::size_t size{};
u64 epoch{};
};
} // namespace VideoCommon

View file

@ -0,0 +1,13 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/microprofile.h"
namespace VideoCommon {
MICROPROFILE_DEFINE(GPU_PrepareBuffers, "GPU", "Prepare buffers", MP_RGB(224, 128, 128));
MICROPROFILE_DEFINE(GPU_BindUploadBuffers, "GPU", "Bind and upload buffers", MP_RGB(224, 128, 128));
MICROPROFILE_DEFINE(GPU_DownloadMemory, "GPU", "Download buffers", MP_RGB(224, 128, 128));
} // namespace VideoCommon

File diff suppressed because it is too large Load diff

View file

@ -1,33 +0,0 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <array>
#include <cstddef>
#include <memory>
#include "video_core/buffer_cache/map_interval.h"
namespace VideoCommon {
MapIntervalAllocator::MapIntervalAllocator() {
FillFreeList(first_chunk);
}
MapIntervalAllocator::~MapIntervalAllocator() = default;
void MapIntervalAllocator::AllocateNewChunk() {
*new_chunk = std::make_unique<Chunk>();
FillFreeList(**new_chunk);
new_chunk = &(*new_chunk)->next;
}
void MapIntervalAllocator::FillFreeList(Chunk& chunk) {
const std::size_t old_size = free_list.size();
free_list.resize(old_size + chunk.data.size());
std::transform(chunk.data.rbegin(), chunk.data.rend(), free_list.begin() + old_size,
[](MapInterval& interval) { return &interval; });
}
} // namespace VideoCommon

View file

@ -1,93 +0,0 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <cstddef>
#include <memory>
#include <vector>
#include <boost/intrusive/set_hook.hpp>
#include "common/common_types.h"
#include "video_core/gpu.h"
namespace VideoCommon {
struct MapInterval : public boost::intrusive::set_base_hook<boost::intrusive::optimize_size<true>> {
MapInterval() = default;
/*implicit*/ MapInterval(VAddr start_) noexcept : start{start_} {}
explicit MapInterval(VAddr start_, VAddr end_, GPUVAddr gpu_addr_) noexcept
: start{start_}, end{end_}, gpu_addr{gpu_addr_} {}
bool IsInside(VAddr other_start, VAddr other_end) const noexcept {
return start <= other_start && other_end <= end;
}
bool Overlaps(VAddr other_start, VAddr other_end) const noexcept {
return start < other_end && other_start < end;
}
void MarkAsModified(bool is_modified_, u64 ticks_) noexcept {
is_modified = is_modified_;
ticks = ticks_;
}
boost::intrusive::set_member_hook<> member_hook_;
VAddr start = 0;
VAddr end = 0;
GPUVAddr gpu_addr = 0;
u64 ticks = 0;
bool is_written = false;
bool is_modified = false;
bool is_registered = false;
bool is_memory_marked = false;
bool is_sync_pending = false;
};
struct MapIntervalCompare {
constexpr bool operator()(const MapInterval& lhs, const MapInterval& rhs) const noexcept {
return lhs.start < rhs.start;
}
};
class MapIntervalAllocator {
public:
MapIntervalAllocator();
~MapIntervalAllocator();
MapInterval* Allocate() {
if (free_list.empty()) {
AllocateNewChunk();
}
MapInterval* const interval = free_list.back();
free_list.pop_back();
return interval;
}
void Release(MapInterval* interval) {
free_list.push_back(interval);
}
private:
struct Chunk {
std::unique_ptr<Chunk> next;
std::array<MapInterval, 0x8000> data;
};
void AllocateNewChunk();
void FillFreeList(Chunk& chunk);
std::vector<MapInterval*> free_list;
Chunk first_chunk;
std::unique_ptr<Chunk>* new_chunk = &first_chunk.next;
};
} // namespace VideoCommon

View file

@ -110,12 +110,10 @@ void Vic::Execute() {
converted_frame_buffer.get(), block_height, 0, 0); converted_frame_buffer.get(), block_height, 0, 0);
gpu.MemoryManager().WriteBlock(output_surface_luma_address, swizzled_data.data(), size); gpu.MemoryManager().WriteBlock(output_surface_luma_address, swizzled_data.data(), size);
gpu.Maxwell3D().OnMemoryWrite();
} else { } else {
// send pitch linear frame // send pitch linear frame
gpu.MemoryManager().WriteBlock(output_surface_luma_address, converted_frame_buf_addr, gpu.MemoryManager().WriteBlock(output_surface_luma_address, converted_frame_buf_addr,
linear_size); linear_size);
gpu.Maxwell3D().OnMemoryWrite();
} }
break; break;
} }
@ -163,7 +161,6 @@ void Vic::Execute() {
} }
gpu.MemoryManager().WriteBlock(output_surface_chroma_u_address, chroma_buffer.data(), gpu.MemoryManager().WriteBlock(output_surface_chroma_u_address, chroma_buffer.data(),
chroma_buffer.size()); chroma_buffer.size());
gpu.Maxwell3D().OnMemoryWrite();
break; break;
} }
default: default:

View file

@ -12,13 +12,30 @@
#define NUM(field_name) (sizeof(::Tegra::Engines::Maxwell3D::Regs::field_name) / (sizeof(u32))) #define NUM(field_name) (sizeof(::Tegra::Engines::Maxwell3D::Regs::field_name) / (sizeof(u32)))
namespace VideoCommon::Dirty { namespace VideoCommon::Dirty {
namespace {
using Tegra::Engines::Maxwell3D; using Tegra::Engines::Maxwell3D;
void SetupDirtyRenderTargets(Tegra::Engines::Maxwell3D::DirtyState::Tables& tables) { void SetupDirtyVertexBuffers(Maxwell3D::DirtyState::Tables& tables) {
static constexpr std::size_t num_array = 3;
for (std::size_t i = 0; i < Maxwell3D::Regs::NumVertexArrays; ++i) {
const std::size_t array_offset = OFF(vertex_array) + i * NUM(vertex_array[0]);
const std::size_t limit_offset = OFF(vertex_array_limit) + i * NUM(vertex_array_limit[0]);
FillBlock(tables, array_offset, num_array, VertexBuffer0 + i, VertexBuffers);
FillBlock(tables, limit_offset, NUM(vertex_array_limit), VertexBuffer0 + i, VertexBuffers);
}
}
void SetupIndexBuffer(Maxwell3D::DirtyState::Tables& tables) {
FillBlock(tables[0], OFF(index_array), NUM(index_array), IndexBuffer);
}
void SetupDirtyDescriptors(Maxwell3D::DirtyState::Tables& tables) {
FillBlock(tables[0], OFF(tic), NUM(tic), Descriptors); FillBlock(tables[0], OFF(tic), NUM(tic), Descriptors);
FillBlock(tables[0], OFF(tsc), NUM(tsc), Descriptors); FillBlock(tables[0], OFF(tsc), NUM(tsc), Descriptors);
}
void SetupDirtyRenderTargets(Maxwell3D::DirtyState::Tables& tables) {
static constexpr std::size_t num_per_rt = NUM(rt[0]); static constexpr std::size_t num_per_rt = NUM(rt[0]);
static constexpr std::size_t begin = OFF(rt); static constexpr std::size_t begin = OFF(rt);
static constexpr std::size_t num = num_per_rt * Maxwell3D::Regs::NumRenderTargets; static constexpr std::size_t num = num_per_rt * Maxwell3D::Regs::NumRenderTargets;
@ -41,5 +58,13 @@ void SetupDirtyRenderTargets(Tegra::Engines::Maxwell3D::DirtyState::Tables& tabl
FillBlock(table, OFF(zeta), NUM(zeta), flag); FillBlock(table, OFF(zeta), NUM(zeta), flag);
} }
} }
} // Anonymous namespace
void SetupDirtyFlags(Maxwell3D::DirtyState::Tables& tables) {
SetupDirtyVertexBuffers(tables);
SetupIndexBuffer(tables);
SetupDirtyDescriptors(tables);
SetupDirtyRenderTargets(tables);
}
} // namespace VideoCommon::Dirty } // namespace VideoCommon::Dirty

View file

@ -30,6 +30,12 @@ enum : u8 {
ColorBuffer7, ColorBuffer7,
ZetaBuffer, ZetaBuffer,
VertexBuffers,
VertexBuffer0,
VertexBuffer31 = VertexBuffer0 + 31,
IndexBuffer,
LastCommonEntry, LastCommonEntry,
}; };
@ -47,6 +53,6 @@ void FillBlock(Tegra::Engines::Maxwell3D::DirtyState::Tables& tables, std::size_
FillBlock(tables[1], begin, num, index_b); FillBlock(tables[1], begin, num, index_b);
} }
void SetupDirtyRenderTargets(Tegra::Engines::Maxwell3D::DirtyState::Tables& tables); void SetupDirtyFlags(Tegra::Engines::Maxwell3D::DirtyState::Tables& tables);
} // namespace VideoCommon::Dirty } // namespace VideoCommon::Dirty

View file

@ -23,8 +23,6 @@ void DmaPusher::DispatchCalls() {
MICROPROFILE_SCOPE(DispatchCalls); MICROPROFILE_SCOPE(DispatchCalls);
gpu.SyncGuestHost(); gpu.SyncGuestHost();
// On entering GPU code, assume all memory may be touched by the ARM core.
gpu.Maxwell3D().OnMemoryWrite();
dma_pushbuffer_subindex = 0; dma_pushbuffer_subindex = 0;

View file

@ -39,7 +39,6 @@ void KeplerCompute::CallMethod(u32 method, u32 method_argument, bool is_last_cal
case KEPLER_COMPUTE_REG_INDEX(data_upload): { case KEPLER_COMPUTE_REG_INDEX(data_upload): {
upload_state.ProcessData(method_argument, is_last_call); upload_state.ProcessData(method_argument, is_last_call);
if (is_last_call) { if (is_last_call) {
system.GPU().Maxwell3D().OnMemoryWrite();
} }
break; break;
} }

View file

@ -33,7 +33,6 @@ void KeplerMemory::CallMethod(u32 method, u32 method_argument, bool is_last_call
case KEPLERMEMORY_REG_INDEX(data): { case KEPLERMEMORY_REG_INDEX(data): {
upload_state.ProcessData(method_argument, is_last_call); upload_state.ProcessData(method_argument, is_last_call);
if (is_last_call) { if (is_last_call) {
system.GPU().Maxwell3D().OnMemoryWrite();
} }
break; break;
} }

View file

@ -223,7 +223,6 @@ void Maxwell3D::ProcessMethodCall(u32 method, u32 argument, u32 nonshadow_argume
case MAXWELL3D_REG_INDEX(data_upload): case MAXWELL3D_REG_INDEX(data_upload):
upload_state.ProcessData(argument, is_last_call); upload_state.ProcessData(argument, is_last_call);
if (is_last_call) { if (is_last_call) {
OnMemoryWrite();
} }
return; return;
case MAXWELL3D_REG_INDEX(fragment_barrier): case MAXWELL3D_REG_INDEX(fragment_barrier):
@ -570,17 +569,18 @@ std::optional<u64> Maxwell3D::GetQueryResult() {
} }
} }
void Maxwell3D::ProcessCBBind(std::size_t stage_index) { void Maxwell3D::ProcessCBBind(size_t stage_index) {
// Bind the buffer currently in CB_ADDRESS to the specified index in the desired shader stage. // Bind the buffer currently in CB_ADDRESS to the specified index in the desired shader stage.
auto& shader = state.shader_stages[stage_index]; const auto& bind_data = regs.cb_bind[stage_index];
auto& bind_data = regs.cb_bind[stage_index]; auto& buffer = state.shader_stages[stage_index].const_buffers[bind_data.index];
ASSERT(bind_data.index < Regs::MaxConstBuffers);
auto& buffer = shader.const_buffers[bind_data.index];
buffer.enabled = bind_data.valid.Value() != 0; buffer.enabled = bind_data.valid.Value() != 0;
buffer.address = regs.const_buffer.BufferAddress(); buffer.address = regs.const_buffer.BufferAddress();
buffer.size = regs.const_buffer.cb_size; buffer.size = regs.const_buffer.cb_size;
const bool is_enabled = bind_data.valid.Value() != 0;
const GPUVAddr gpu_addr = is_enabled ? regs.const_buffer.BufferAddress() : 0;
const u32 size = is_enabled ? regs.const_buffer.cb_size : 0;
rasterizer->BindGraphicsUniformBuffer(stage_index, bind_data.index, gpu_addr, size);
} }
void Maxwell3D::ProcessCBData(u32 value) { void Maxwell3D::ProcessCBData(u32 value) {
@ -635,7 +635,6 @@ void Maxwell3D::FinishCBData() {
const u32 id = cb_data_state.id; const u32 id = cb_data_state.id;
memory_manager.WriteBlock(address, cb_data_state.buffer[id].data(), size); memory_manager.WriteBlock(address, cb_data_state.buffer[id].data(), size);
OnMemoryWrite();
cb_data_state.id = null_cb_data; cb_data_state.id = null_cb_data;
cb_data_state.current = null_cb_data; cb_data_state.current = null_cb_data;

View file

@ -1314,8 +1314,7 @@ public:
GPUVAddr LimitAddress() const { GPUVAddr LimitAddress() const {
return static_cast<GPUVAddr>((static_cast<GPUVAddr>(limit_high) << 32) | return static_cast<GPUVAddr>((static_cast<GPUVAddr>(limit_high) << 32) |
limit_low) + limit_low);
1;
} }
} vertex_array_limit[NumVertexArrays]; } vertex_array_limit[NumVertexArrays];
@ -1403,6 +1402,7 @@ public:
}; };
std::array<ShaderStageInfo, Regs::MaxShaderStage> shader_stages; std::array<ShaderStageInfo, Regs::MaxShaderStage> shader_stages;
u32 current_instance = 0; ///< Current instance to be used to simulate instanced rendering. u32 current_instance = 0; ///< Current instance to be used to simulate instanced rendering.
}; };
@ -1452,11 +1452,6 @@ public:
return *rasterizer; return *rasterizer;
} }
/// Notify a memory write has happened.
void OnMemoryWrite() {
dirty.flags |= dirty.on_write_stores;
}
enum class MMEDrawMode : u32 { enum class MMEDrawMode : u32 {
Undefined, Undefined,
Array, Array,
@ -1478,7 +1473,6 @@ public:
using Tables = std::array<Table, 2>; using Tables = std::array<Table, 2>;
Flags flags; Flags flags;
Flags on_write_stores;
Tables tables{}; Tables tables{};
} dirty; } dirty;
@ -1541,7 +1535,7 @@ private:
void FinishCBData(); void FinishCBData();
/// Handles a write to the CB_BIND register. /// Handles a write to the CB_BIND register.
void ProcessCBBind(std::size_t stage_index); void ProcessCBBind(size_t stage_index);
/// Handles a write to the VERTEX_END_GL register, triggering a draw. /// Handles a write to the VERTEX_END_GL register, triggering a draw.
void DrawArrays(); void DrawArrays();

View file

@ -60,9 +60,6 @@ void MaxwellDMA::Launch() {
return; return;
} }
// All copies here update the main memory, so mark all rasterizer states as invalid.
system.GPU().Maxwell3D().OnMemoryWrite();
if (is_src_pitch && is_dst_pitch) { if (is_src_pitch && is_dst_pitch) {
CopyPitchToPitch(); CopyPitchToPitch();
} else { } else {

View file

@ -143,22 +143,26 @@ private:
} }
bool ShouldWait() const { bool ShouldWait() const {
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
return texture_cache.ShouldWaitAsyncFlushes() || buffer_cache.ShouldWaitAsyncFlushes() || return texture_cache.ShouldWaitAsyncFlushes() || buffer_cache.ShouldWaitAsyncFlushes() ||
query_cache.ShouldWaitAsyncFlushes(); query_cache.ShouldWaitAsyncFlushes();
} }
bool ShouldFlush() const { bool ShouldFlush() const {
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
return texture_cache.HasUncommittedFlushes() || buffer_cache.HasUncommittedFlushes() || return texture_cache.HasUncommittedFlushes() || buffer_cache.HasUncommittedFlushes() ||
query_cache.HasUncommittedFlushes(); query_cache.HasUncommittedFlushes();
} }
void PopAsyncFlushes() { void PopAsyncFlushes() {
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
texture_cache.PopAsyncFlushes(); texture_cache.PopAsyncFlushes();
buffer_cache.PopAsyncFlushes(); buffer_cache.PopAsyncFlushes();
query_cache.PopAsyncFlushes(); query_cache.PopAsyncFlushes();
} }
void CommitAsyncFlushes() { void CommitAsyncFlushes() {
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
texture_cache.CommitAsyncFlushes(); texture_cache.CommitAsyncFlushes();
buffer_cache.CommitAsyncFlushes(); buffer_cache.CommitAsyncFlushes();
query_cache.CommitAsyncFlushes(); query_cache.CommitAsyncFlushes();

View file

@ -12,7 +12,6 @@ set(SHADER_FILES
vulkan_blit_depth_stencil.frag vulkan_blit_depth_stencil.frag
vulkan_present.frag vulkan_present.frag
vulkan_present.vert vulkan_present.vert
vulkan_quad_array.comp
vulkan_quad_indexed.comp vulkan_quad_indexed.comp
vulkan_uint8.comp vulkan_uint8.comp
) )

View file

@ -1,28 +0,0 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#version 460 core
layout (local_size_x = 1024) in;
layout (std430, set = 0, binding = 0) buffer OutputBuffer {
uint output_indexes[];
};
layout (push_constant) uniform PushConstants {
uint first;
};
void main() {
uint primitive = gl_GlobalInvocationID.x;
if (primitive * 6 >= output_indexes.length()) {
return;
}
const uint quad_map[6] = uint[](0, 1, 2, 0, 2, 3);
for (uint vertex = 0; vertex < 6; ++vertex) {
uint index = first + primitive * 4 + quad_map[vertex];
output_indexes[primitive * 6 + vertex] = index;
}
}

View file

@ -16,9 +16,16 @@ layout (std430, set = 0, binding = 1) writeonly buffer OutputBuffer {
uint16_t output_indexes[]; uint16_t output_indexes[];
}; };
uint AssembleIndex(uint id) {
// Most primitive restart indices are 0xFF
// Hardcode this to 0xFF for now
uint index = uint(input_indexes[id]);
return index == 0xFF ? 0xFFFF : index;
}
void main() { void main() {
uint id = gl_GlobalInvocationID.x; uint id = gl_GlobalInvocationID.x;
if (id < input_indexes.length()) { if (id < input_indexes.length()) {
output_indexes[id] = uint16_t(input_indexes[id]); output_indexes[id] = uint16_t(AssembleIndex(id));
} }
} }

View file

@ -7,6 +7,7 @@
#include <atomic> #include <atomic>
#include <functional> #include <functional>
#include <optional> #include <optional>
#include <span>
#include "common/common_types.h" #include "common/common_types.h"
#include "video_core/engines/fermi_2d.h" #include "video_core/engines/fermi_2d.h"
#include "video_core/gpu.h" #include "video_core/gpu.h"
@ -49,6 +50,10 @@ public:
/// Records a GPU query and caches it /// Records a GPU query and caches it
virtual void Query(GPUVAddr gpu_addr, QueryType type, std::optional<u64> timestamp) = 0; virtual void Query(GPUVAddr gpu_addr, QueryType type, std::optional<u64> timestamp) = 0;
/// Signal an uniform buffer binding
virtual void BindGraphicsUniformBuffer(size_t stage, u32 index, GPUVAddr gpu_addr,
u32 size) = 0;
/// Signal a GPU based semaphore as a fence /// Signal a GPU based semaphore as a fence
virtual void SignalSemaphore(GPUVAddr addr, u32 value) = 0; virtual void SignalSemaphore(GPUVAddr addr, u32 value) = 0;

View file

@ -2,98 +2,235 @@
// Licensed under GPLv2 or any later version // Licensed under GPLv2 or any later version
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include <memory> #include <span>
#include <glad/glad.h>
#include "common/assert.h"
#include "common/microprofile.h"
#include "video_core/buffer_cache/buffer_cache.h" #include "video_core/buffer_cache/buffer_cache.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/renderer_opengl/gl_buffer_cache.h" #include "video_core/renderer_opengl/gl_buffer_cache.h"
#include "video_core/renderer_opengl/gl_device.h" #include "video_core/renderer_opengl/gl_device.h"
#include "video_core/renderer_opengl/gl_rasterizer.h" #include "video_core/vulkan_common/vulkan_device.h"
#include "video_core/renderer_opengl/gl_resource_manager.h" #include "video_core/vulkan_common/vulkan_instance.h"
#include "video_core/vulkan_common/vulkan_library.h"
#include "video_core/vulkan_common/vulkan_memory_allocator.h"
namespace OpenGL { namespace OpenGL {
namespace {
struct BindlessSSBO {
GLuint64EXT address;
GLsizei length;
GLsizei padding;
};
static_assert(sizeof(BindlessSSBO) == sizeof(GLuint) * 4);
using Maxwell = Tegra::Engines::Maxwell3D::Regs; constexpr std::array PROGRAM_LUT{
GL_VERTEX_PROGRAM_NV, GL_TESS_CONTROL_PROGRAM_NV, GL_TESS_EVALUATION_PROGRAM_NV,
GL_GEOMETRY_PROGRAM_NV, GL_FRAGMENT_PROGRAM_NV,
};
} // Anonymous namespace
MICROPROFILE_DEFINE(OpenGL_Buffer_Download, "OpenGL", "Buffer Download", MP_RGB(192, 192, 128)); Buffer::Buffer(BufferCacheRuntime&, VideoCommon::NullBufferParams null_params)
: VideoCommon::BufferBase<VideoCore::RasterizerInterface>(null_params) {}
Buffer::Buffer(const Device& device_, VAddr cpu_addr_, std::size_t size_) Buffer::Buffer(BufferCacheRuntime& runtime, VideoCore::RasterizerInterface& rasterizer_,
: BufferBlock{cpu_addr_, size_} { VAddr cpu_addr_, u64 size_bytes_)
gl_buffer.Create(); : VideoCommon::BufferBase<VideoCore::RasterizerInterface>(rasterizer_, cpu_addr_, size_bytes_) {
glNamedBufferData(gl_buffer.handle, static_cast<GLsizeiptr>(size_), nullptr, GL_DYNAMIC_DRAW); buffer.Create();
if (device_.UseAssemblyShaders() || device_.HasVertexBufferUnifiedMemory()) { const std::string name = fmt::format("Buffer 0x{:x}", CpuAddr());
glMakeNamedBufferResidentNV(gl_buffer.handle, GL_READ_WRITE); glObjectLabel(GL_BUFFER, buffer.handle, static_cast<GLsizei>(name.size()), name.data());
glGetNamedBufferParameterui64vNV(gl_buffer.handle, GL_BUFFER_GPU_ADDRESS_NV, &gpu_address); if (runtime.device.UseAssemblyShaders()) {
CreateMemoryObjects(runtime);
glNamedBufferStorageMemEXT(buffer.handle, SizeBytes(), memory_commit.ExportOpenGLHandle(),
memory_commit.Offset());
} else {
glNamedBufferData(buffer.handle, SizeBytes(), nullptr, GL_DYNAMIC_DRAW);
}
if (runtime.has_unified_vertex_buffers) {
glGetNamedBufferParameterui64vNV(buffer.handle, GL_BUFFER_GPU_ADDRESS_NV, &address);
} }
} }
Buffer::~Buffer() = default; void Buffer::ImmediateUpload(size_t offset, std::span<const u8> data) noexcept {
glNamedBufferSubData(buffer.handle, static_cast<GLintptr>(offset),
void Buffer::Upload(std::size_t offset, std::size_t data_size, const u8* data) { static_cast<GLsizeiptr>(data.size_bytes()), data.data());
glNamedBufferSubData(Handle(), static_cast<GLintptr>(offset),
static_cast<GLsizeiptr>(data_size), data);
} }
void Buffer::Download(std::size_t offset, std::size_t data_size, u8* data) { void Buffer::ImmediateDownload(size_t offset, std::span<u8> data) noexcept {
MICROPROFILE_SCOPE(OpenGL_Buffer_Download); glGetNamedBufferSubData(buffer.handle, static_cast<GLintptr>(offset),
const GLsizeiptr gl_size = static_cast<GLsizeiptr>(data_size); static_cast<GLsizeiptr>(data.size_bytes()), data.data());
const GLintptr gl_offset = static_cast<GLintptr>(offset);
if (read_buffer.handle == 0) {
read_buffer.Create();
glNamedBufferData(read_buffer.handle, static_cast<GLsizeiptr>(Size()), nullptr,
GL_STREAM_READ);
}
glMemoryBarrier(GL_BUFFER_UPDATE_BARRIER_BIT);
glCopyNamedBufferSubData(gl_buffer.handle, read_buffer.handle, gl_offset, gl_offset, gl_size);
glGetNamedBufferSubData(read_buffer.handle, gl_offset, gl_size, data);
} }
void Buffer::CopyFrom(const Buffer& src, std::size_t src_offset, std::size_t dst_offset, void Buffer::MakeResident(GLenum access) noexcept {
std::size_t copy_size) { // Abuse GLenum's order to exit early
glCopyNamedBufferSubData(src.Handle(), Handle(), static_cast<GLintptr>(src_offset), // GL_NONE (default) < GL_READ_ONLY < GL_READ_WRITE
static_cast<GLintptr>(dst_offset), static_cast<GLsizeiptr>(copy_size)); if (access <= current_residency_access || buffer.handle == 0) {
}
OGLBufferCache::OGLBufferCache(VideoCore::RasterizerInterface& rasterizer_,
Tegra::MemoryManager& gpu_memory_, Core::Memory::Memory& cpu_memory_,
const Device& device_, OGLStreamBuffer& stream_buffer_,
StateTracker& state_tracker)
: GenericBufferCache{rasterizer_, gpu_memory_, cpu_memory_, stream_buffer_}, device{device_} {
if (!device.HasFastBufferSubData()) {
return; return;
} }
if (std::exchange(current_residency_access, access) != GL_NONE) {
// If the buffer is already resident, remove its residency before promoting it
glMakeNamedBufferNonResidentNV(buffer.handle);
}
glMakeNamedBufferResidentNV(buffer.handle, access);
}
static constexpr GLsizeiptr size = static_cast<GLsizeiptr>(Maxwell::MaxConstBufferSize); GLuint Buffer::SubBuffer(u32 offset) {
glCreateBuffers(static_cast<GLsizei>(std::size(cbufs)), std::data(cbufs)); if (offset == 0) {
for (const GLuint cbuf : cbufs) { return buffer.handle;
glNamedBufferData(cbuf, size, nullptr, GL_STREAM_DRAW); }
for (const auto& [sub_buffer, sub_offset] : subs) {
if (sub_offset == offset) {
return sub_buffer.handle;
}
}
OGLBuffer sub_buffer;
sub_buffer.Create();
glNamedBufferStorageMemEXT(sub_buffer.handle, SizeBytes() - offset,
memory_commit.ExportOpenGLHandle(), memory_commit.Offset() + offset);
return subs.emplace_back(std::move(sub_buffer), offset).first.handle;
}
void Buffer::CreateMemoryObjects(BufferCacheRuntime& runtime) {
auto& allocator = runtime.vulkan_memory_allocator;
auto& device = runtime.vulkan_device->GetLogical();
auto vulkan_buffer = device.CreateBuffer(VkBufferCreateInfo{
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.size = SizeBytes(),
.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT |
VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT |
VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT |
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr,
});
const VkMemoryRequirements requirements = device.GetBufferMemoryRequirements(*vulkan_buffer);
memory_commit = allocator->Commit(requirements, Vulkan::MemoryUsage::DeviceLocal);
}
BufferCacheRuntime::BufferCacheRuntime(const Device& device_, const Vulkan::Device* vulkan_device_,
Vulkan::MemoryAllocator* vulkan_memory_allocator_)
: device{device_}, vulkan_device{vulkan_device_},
vulkan_memory_allocator{vulkan_memory_allocator_},
stream_buffer{device.HasFastBufferSubData() ? std::nullopt
: std::make_optional<StreamBuffer>()} {
GLint gl_max_attributes;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &gl_max_attributes);
max_attributes = static_cast<u32>(gl_max_attributes);
use_assembly_shaders = device.UseAssemblyShaders();
has_unified_vertex_buffers = device.HasVertexBufferUnifiedMemory();
for (auto& stage_uniforms : fast_uniforms) {
for (OGLBuffer& buffer : stage_uniforms) {
buffer.Create();
glNamedBufferData(buffer.handle, BufferCache::SKIP_CACHE_SIZE, nullptr, GL_STREAM_DRAW);
}
} }
} }
OGLBufferCache::~OGLBufferCache() { void BufferCacheRuntime::CopyBuffer(Buffer& dst_buffer, Buffer& src_buffer,
glDeleteBuffers(static_cast<GLsizei>(std::size(cbufs)), std::data(cbufs)); std::span<const VideoCommon::BufferCopy> copies) {
for (const VideoCommon::BufferCopy& copy : copies) {
glCopyNamedBufferSubData(
src_buffer.Handle(), dst_buffer.Handle(), static_cast<GLintptr>(copy.src_offset),
static_cast<GLintptr>(copy.dst_offset), static_cast<GLsizeiptr>(copy.size));
}
} }
std::shared_ptr<Buffer> OGLBufferCache::CreateBlock(VAddr cpu_addr, std::size_t size) { void BufferCacheRuntime::BindIndexBuffer(Buffer& buffer, u32 offset, u32 size) {
return std::make_shared<Buffer>(device, cpu_addr, size); if (has_unified_vertex_buffers) {
buffer.MakeResident(GL_READ_ONLY);
glBufferAddressRangeNV(GL_ELEMENT_ARRAY_ADDRESS_NV, 0, buffer.HostGpuAddr() + offset,
static_cast<GLsizeiptr>(size));
} else {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer.Handle());
index_buffer_offset = offset;
}
} }
OGLBufferCache::BufferInfo OGLBufferCache::GetEmptyBuffer(std::size_t) { void BufferCacheRuntime::BindVertexBuffer(u32 index, Buffer& buffer, u32 offset, u32 size,
return {0, 0, 0}; u32 stride) {
if (index >= max_attributes) {
return;
}
if (has_unified_vertex_buffers) {
buffer.MakeResident(GL_READ_ONLY);
glBindVertexBuffer(index, 0, 0, static_cast<GLsizei>(stride));
glBufferAddressRangeNV(GL_VERTEX_ATTRIB_ARRAY_ADDRESS_NV, index,
buffer.HostGpuAddr() + offset, static_cast<GLsizeiptr>(size));
} else {
glBindVertexBuffer(index, buffer.Handle(), static_cast<GLintptr>(offset),
static_cast<GLsizei>(stride));
}
} }
OGLBufferCache::BufferInfo OGLBufferCache::ConstBufferUpload(const void* raw_pointer, void BufferCacheRuntime::BindUniformBuffer(size_t stage, u32 binding_index, Buffer& buffer,
std::size_t size) { u32 offset, u32 size) {
DEBUG_ASSERT(cbuf_cursor < std::size(cbufs)); if (use_assembly_shaders) {
const GLuint cbuf = cbufs[cbuf_cursor++]; const GLuint sub_buffer = buffer.SubBuffer(offset);
glBindBufferRangeNV(PABO_LUT[stage], binding_index, sub_buffer, 0,
static_cast<GLsizeiptr>(size));
} else {
const GLuint base_binding = device.GetBaseBindings(stage).uniform_buffer;
const GLuint binding = base_binding + binding_index;
glBindBufferRange(GL_UNIFORM_BUFFER, binding, buffer.Handle(),
static_cast<GLintptr>(offset), static_cast<GLsizeiptr>(size));
}
}
glNamedBufferSubData(cbuf, 0, static_cast<GLsizeiptr>(size), raw_pointer); void BufferCacheRuntime::BindComputeUniformBuffer(u32 binding_index, Buffer& buffer, u32 offset,
return {cbuf, 0, 0}; u32 size) {
if (use_assembly_shaders) {
glBindBufferRangeNV(GL_COMPUTE_PROGRAM_PARAMETER_BUFFER_NV, binding_index,
buffer.SubBuffer(offset), 0, static_cast<GLsizeiptr>(size));
} else {
glBindBufferRange(GL_UNIFORM_BUFFER, binding_index, buffer.Handle(),
static_cast<GLintptr>(offset), static_cast<GLsizeiptr>(size));
}
}
void BufferCacheRuntime::BindStorageBuffer(size_t stage, u32 binding_index, Buffer& buffer,
u32 offset, u32 size, bool is_written) {
if (use_assembly_shaders) {
const BindlessSSBO ssbo{
.address = buffer.HostGpuAddr() + offset,
.length = static_cast<GLsizei>(size),
.padding = 0,
};
buffer.MakeResident(is_written ? GL_READ_WRITE : GL_READ_ONLY);
glProgramLocalParametersI4uivNV(PROGRAM_LUT[stage], binding_index, 1,
reinterpret_cast<const GLuint*>(&ssbo));
} else {
const GLuint base_binding = device.GetBaseBindings(stage).shader_storage_buffer;
const GLuint binding = base_binding + binding_index;
glBindBufferRange(GL_SHADER_STORAGE_BUFFER, binding, buffer.Handle(),
static_cast<GLintptr>(offset), static_cast<GLsizeiptr>(size));
}
}
void BufferCacheRuntime::BindComputeStorageBuffer(u32 binding_index, Buffer& buffer, u32 offset,
u32 size, bool is_written) {
if (use_assembly_shaders) {
const BindlessSSBO ssbo{
.address = buffer.HostGpuAddr() + offset,
.length = static_cast<GLsizei>(size),
.padding = 0,
};
buffer.MakeResident(is_written ? GL_READ_WRITE : GL_READ_ONLY);
glProgramLocalParametersI4uivNV(GL_COMPUTE_PROGRAM_NV, binding_index, 1,
reinterpret_cast<const GLuint*>(&ssbo));
} else if (size == 0) {
glBindBufferRange(GL_SHADER_STORAGE_BUFFER, binding_index, 0, 0, 0);
} else {
glBindBufferRange(GL_SHADER_STORAGE_BUFFER, binding_index, buffer.Handle(),
static_cast<GLintptr>(offset), static_cast<GLsizeiptr>(size));
}
}
void BufferCacheRuntime::BindTransformFeedbackBuffer(u32 index, Buffer& buffer, u32 offset,
u32 size) {
glBindBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, index, buffer.Handle(),
static_cast<GLintptr>(offset), static_cast<GLsizeiptr>(size));
} }
} // namespace OpenGL } // namespace OpenGL

View file

@ -5,79 +5,167 @@
#pragma once #pragma once
#include <array> #include <array>
#include <memory> #include <span>
#include "common/alignment.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "common/dynamic_library.h"
#include "video_core/buffer_cache/buffer_cache.h" #include "video_core/buffer_cache/buffer_cache.h"
#include "video_core/engines/maxwell_3d.h" #include "video_core/rasterizer_interface.h"
#include "video_core/renderer_opengl/gl_device.h"
#include "video_core/renderer_opengl/gl_resource_manager.h" #include "video_core/renderer_opengl/gl_resource_manager.h"
#include "video_core/renderer_opengl/gl_stream_buffer.h" #include "video_core/renderer_opengl/gl_stream_buffer.h"
#include "video_core/vulkan_common/vulkan_device.h"
#include "video_core/vulkan_common/vulkan_memory_allocator.h"
namespace Core { namespace Vulkan {
class System; class Device;
} class MemoryAllocator;
} // namespace Vulkan
namespace OpenGL { namespace OpenGL {
class Device; class BufferCacheRuntime;
class OGLStreamBuffer;
class RasterizerOpenGL;
class StateTracker;
class Buffer : public VideoCommon::BufferBlock { class Buffer : public VideoCommon::BufferBase<VideoCore::RasterizerInterface> {
public: public:
explicit Buffer(const Device& device_, VAddr cpu_addr_, std::size_t size_); explicit Buffer(BufferCacheRuntime&, VideoCore::RasterizerInterface& rasterizer, VAddr cpu_addr,
~Buffer(); u64 size_bytes);
explicit Buffer(BufferCacheRuntime&, VideoCommon::NullBufferParams);
void Upload(std::size_t offset, std::size_t data_size, const u8* data); void ImmediateUpload(size_t offset, std::span<const u8> data) noexcept;
void Download(std::size_t offset, std::size_t data_size, u8* data); void ImmediateDownload(size_t offset, std::span<u8> data) noexcept;
void CopyFrom(const Buffer& src, std::size_t src_offset, std::size_t dst_offset, void MakeResident(GLenum access) noexcept;
std::size_t copy_size);
GLuint Handle() const noexcept { [[nodiscard]] GLuint SubBuffer(u32 offset);
return gl_buffer.handle;
[[nodiscard]] GLuint64EXT HostGpuAddr() const noexcept {
return address;
} }
u64 Address() const noexcept { [[nodiscard]] GLuint Handle() const noexcept {
return gpu_address; return buffer.handle;
} }
private: private:
OGLBuffer gl_buffer; void CreateMemoryObjects(BufferCacheRuntime& runtime);
OGLBuffer read_buffer;
u64 gpu_address = 0; GLuint64EXT address = 0;
Vulkan::MemoryCommit memory_commit;
OGLBuffer buffer;
GLenum current_residency_access = GL_NONE;
std::vector<std::pair<OGLBuffer, u32>> subs;
}; };
using GenericBufferCache = VideoCommon::BufferCache<Buffer, GLuint, OGLStreamBuffer>; class BufferCacheRuntime {
class OGLBufferCache final : public GenericBufferCache { friend Buffer;
public: public:
explicit OGLBufferCache(VideoCore::RasterizerInterface& rasterizer, static constexpr u8 INVALID_BINDING = std::numeric_limits<u8>::max();
Tegra::MemoryManager& gpu_memory, Core::Memory::Memory& cpu_memory,
const Device& device, OGLStreamBuffer& stream_buffer,
StateTracker& state_tracker);
~OGLBufferCache();
BufferInfo GetEmptyBuffer(std::size_t) override; explicit BufferCacheRuntime(const Device& device_, const Vulkan::Device* vulkan_device_,
Vulkan::MemoryAllocator* vulkan_memory_allocator_);
void Acquire() noexcept { void CopyBuffer(Buffer& dst_buffer, Buffer& src_buffer,
cbuf_cursor = 0; std::span<const VideoCommon::BufferCopy> copies);
void BindIndexBuffer(Buffer& buffer, u32 offset, u32 size);
void BindVertexBuffer(u32 index, Buffer& buffer, u32 offset, u32 size, u32 stride);
void BindUniformBuffer(size_t stage, u32 binding_index, Buffer& buffer, u32 offset, u32 size);
void BindComputeUniformBuffer(u32 binding_index, Buffer& buffer, u32 offset, u32 size);
void BindStorageBuffer(size_t stage, u32 binding_index, Buffer& buffer, u32 offset, u32 size,
bool is_written);
void BindComputeStorageBuffer(u32 binding_index, Buffer& buffer, u32 offset, u32 size,
bool is_written);
void BindTransformFeedbackBuffer(u32 index, Buffer& buffer, u32 offset, u32 size);
void BindFastUniformBuffer(size_t stage, u32 binding_index, u32 size) {
if (use_assembly_shaders) {
const GLuint handle = fast_uniforms[stage][binding_index].handle;
const GLsizeiptr gl_size = static_cast<GLsizeiptr>(size);
glBindBufferRangeNV(PABO_LUT[stage], binding_index, handle, 0, gl_size);
} else {
const GLuint base_binding = device.GetBaseBindings(stage).uniform_buffer;
const GLuint binding = base_binding + binding_index;
glBindBufferRange(GL_UNIFORM_BUFFER, binding,
fast_uniforms[stage][binding_index].handle, 0,
static_cast<GLsizeiptr>(size));
}
} }
protected: void PushFastUniformBuffer(size_t stage, u32 binding_index, std::span<const u8> data) {
std::shared_ptr<Buffer> CreateBlock(VAddr cpu_addr, std::size_t size) override; if (use_assembly_shaders) {
glProgramBufferParametersIuivNV(
PABO_LUT[stage], binding_index, 0,
static_cast<GLsizei>(data.size_bytes() / sizeof(GLuint)),
reinterpret_cast<const GLuint*>(data.data()));
} else {
glNamedBufferSubData(fast_uniforms[stage][binding_index].handle, 0,
static_cast<GLsizeiptr>(data.size_bytes()), data.data());
}
}
BufferInfo ConstBufferUpload(const void* raw_pointer, std::size_t size) override; std::span<u8> BindMappedUniformBuffer(size_t stage, u32 binding_index, u32 size) noexcept {
const auto [mapped_span, offset] = stream_buffer->Request(static_cast<size_t>(size));
const GLuint base_binding = device.GetBaseBindings(stage).uniform_buffer;
const GLuint binding = base_binding + binding_index;
glBindBufferRange(GL_UNIFORM_BUFFER, binding, stream_buffer->Handle(),
static_cast<GLintptr>(offset), static_cast<GLsizeiptr>(size));
return mapped_span;
}
[[nodiscard]] const GLvoid* IndexOffset() const noexcept {
return reinterpret_cast<const GLvoid*>(static_cast<uintptr_t>(index_buffer_offset));
}
[[nodiscard]] bool HasFastBufferSubData() const noexcept {
return device.HasFastBufferSubData();
}
private: private:
static constexpr std::size_t NUM_CBUFS = Tegra::Engines::Maxwell3D::Regs::MaxConstBuffers * static constexpr std::array PABO_LUT{
Tegra::Engines::Maxwell3D::Regs::MaxShaderProgram; GL_VERTEX_PROGRAM_PARAMETER_BUFFER_NV, GL_TESS_CONTROL_PROGRAM_PARAMETER_BUFFER_NV,
GL_TESS_EVALUATION_PROGRAM_PARAMETER_BUFFER_NV, GL_GEOMETRY_PROGRAM_PARAMETER_BUFFER_NV,
GL_FRAGMENT_PROGRAM_PARAMETER_BUFFER_NV,
};
const Device& device; const Device& device;
const Vulkan::Device* vulkan_device;
Vulkan::MemoryAllocator* vulkan_memory_allocator;
std::optional<StreamBuffer> stream_buffer;
std::size_t cbuf_cursor = 0; u32 max_attributes = 0;
std::array<GLuint, NUM_CBUFS> cbufs{};
bool use_assembly_shaders = false;
bool has_unified_vertex_buffers = false;
std::array<std::array<OGLBuffer, VideoCommon::NUM_GRAPHICS_UNIFORM_BUFFERS>,
VideoCommon::NUM_STAGES>
fast_uniforms;
u32 index_buffer_offset = 0;
}; };
struct BufferCacheParams {
using Runtime = OpenGL::BufferCacheRuntime;
using Buffer = OpenGL::Buffer;
static constexpr bool IS_OPENGL = true;
static constexpr bool HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS = true;
static constexpr bool HAS_FULL_INDEX_AND_PRIMITIVE_SUPPORT = true;
static constexpr bool NEEDS_BIND_UNIFORM_INDEX = true;
static constexpr bool NEEDS_BIND_STORAGE_INDEX = true;
static constexpr bool USE_MEMORY_MAPS = false;
};
using BufferCache = VideoCommon::BufferCache<BufferCacheParams>;
} // namespace OpenGL } // namespace OpenGL

View file

@ -21,9 +21,7 @@
#include "video_core/renderer_opengl/gl_resource_manager.h" #include "video_core/renderer_opengl/gl_resource_manager.h"
namespace OpenGL { namespace OpenGL {
namespace { namespace {
// One uniform block is reserved for emulation purposes // One uniform block is reserved for emulation purposes
constexpr u32 ReservedUniformBlocks = 1; constexpr u32 ReservedUniformBlocks = 1;
@ -197,11 +195,13 @@ bool IsASTCSupported() {
const bool nsight = std::getenv("NVTX_INJECTION64_PATH") || std::getenv("NSIGHT_LAUNCHED"); const bool nsight = std::getenv("NVTX_INJECTION64_PATH") || std::getenv("NSIGHT_LAUNCHED");
return nsight || HasExtension(extensions, "GL_EXT_debug_tool"); return nsight || HasExtension(extensions, "GL_EXT_debug_tool");
} }
} // Anonymous namespace } // Anonymous namespace
Device::Device() Device::Device(bool has_vulkan_instance) {
: max_uniform_buffers{BuildMaxUniformBuffers()}, base_bindings{BuildBaseBindings()} { if (!GLAD_GL_VERSION_4_6) {
LOG_ERROR(Render_OpenGL, "OpenGL 4.6 is not available");
throw std::runtime_error{"Insufficient version"};
}
const std::string_view vendor = reinterpret_cast<const char*>(glGetString(GL_VENDOR)); const std::string_view vendor = reinterpret_cast<const char*>(glGetString(GL_VENDOR));
const std::string_view version = reinterpret_cast<const char*>(glGetString(GL_VERSION)); const std::string_view version = reinterpret_cast<const char*>(glGetString(GL_VERSION));
const std::vector extensions = GetExtensions(); const std::vector extensions = GetExtensions();
@ -217,6 +217,9 @@ Device::Device()
"Beta driver 443.24 is known to have issues. There might be performance issues."); "Beta driver 443.24 is known to have issues. There might be performance issues.");
disable_fast_buffer_sub_data = true; disable_fast_buffer_sub_data = true;
} }
max_uniform_buffers = BuildMaxUniformBuffers();
base_bindings = BuildBaseBindings();
uniform_buffer_alignment = GetInteger<size_t>(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT); uniform_buffer_alignment = GetInteger<size_t>(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT);
shader_storage_alignment = GetInteger<size_t>(GL_SHADER_STORAGE_BUFFER_OFFSET_ALIGNMENT); shader_storage_alignment = GetInteger<size_t>(GL_SHADER_STORAGE_BUFFER_OFFSET_ALIGNMENT);
max_vertex_attributes = GetInteger<u32>(GL_MAX_VERTEX_ATTRIBS); max_vertex_attributes = GetInteger<u32>(GL_MAX_VERTEX_ATTRIBS);
@ -243,7 +246,8 @@ Device::Device()
use_assembly_shaders = Settings::values.use_assembly_shaders.GetValue() && use_assembly_shaders = Settings::values.use_assembly_shaders.GetValue() &&
GLAD_GL_NV_gpu_program5 && GLAD_GL_NV_compute_program5 && GLAD_GL_NV_gpu_program5 && GLAD_GL_NV_compute_program5 &&
GLAD_GL_NV_transform_feedback && GLAD_GL_NV_transform_feedback2; GLAD_GL_NV_transform_feedback && GLAD_GL_NV_transform_feedback2 &&
has_vulkan_instance;
use_asynchronous_shaders = Settings::values.use_asynchronous_shaders.GetValue(); use_asynchronous_shaders = Settings::values.use_asynchronous_shaders.GetValue();
use_driver_cache = is_nvidia; use_driver_cache = is_nvidia;

View file

@ -10,18 +10,16 @@
namespace OpenGL { namespace OpenGL {
static constexpr u32 EmulationUniformBlockBinding = 0; class Device {
class Device final {
public: public:
struct BaseBindings final { struct BaseBindings {
u32 uniform_buffer{}; u32 uniform_buffer{};
u32 shader_storage_buffer{}; u32 shader_storage_buffer{};
u32 sampler{}; u32 sampler{};
u32 image{}; u32 image{};
}; };
explicit Device(); explicit Device(bool has_vulkan_instance);
explicit Device(std::nullptr_t); explicit Device(std::nullptr_t);
u32 GetMaxUniformBuffers(Tegra::Engines::ShaderType shader_type) const noexcept { u32 GetMaxUniformBuffers(Tegra::Engines::ShaderType shader_type) const noexcept {

View file

@ -47,7 +47,7 @@ void GLInnerFence::Wait() {
FenceManagerOpenGL::FenceManagerOpenGL(VideoCore::RasterizerInterface& rasterizer_, FenceManagerOpenGL::FenceManagerOpenGL(VideoCore::RasterizerInterface& rasterizer_,
Tegra::GPU& gpu_, TextureCache& texture_cache_, Tegra::GPU& gpu_, TextureCache& texture_cache_,
OGLBufferCache& buffer_cache_, QueryCache& query_cache_) BufferCache& buffer_cache_, QueryCache& query_cache_)
: GenericFenceManager{rasterizer_, gpu_, texture_cache_, buffer_cache_, query_cache_} {} : GenericFenceManager{rasterizer_, gpu_, texture_cache_, buffer_cache_, query_cache_} {}
Fence FenceManagerOpenGL::CreateFence(u32 value, bool is_stubbed) { Fence FenceManagerOpenGL::CreateFence(u32 value, bool is_stubbed) {

View file

@ -32,14 +32,13 @@ private:
}; };
using Fence = std::shared_ptr<GLInnerFence>; using Fence = std::shared_ptr<GLInnerFence>;
using GenericFenceManager = using GenericFenceManager = VideoCommon::FenceManager<Fence, TextureCache, BufferCache, QueryCache>;
VideoCommon::FenceManager<Fence, TextureCache, OGLBufferCache, QueryCache>;
class FenceManagerOpenGL final : public GenericFenceManager { class FenceManagerOpenGL final : public GenericFenceManager {
public: public:
explicit FenceManagerOpenGL(VideoCore::RasterizerInterface& rasterizer_, Tegra::GPU& gpu_, explicit FenceManagerOpenGL(VideoCore::RasterizerInterface& rasterizer, Tegra::GPU& gpu,
TextureCache& texture_cache_, OGLBufferCache& buffer_cache_, TextureCache& texture_cache, BufferCache& buffer_cache,
QueryCache& query_cache_); QueryCache& query_cache);
protected: protected:
Fence CreateFence(u32 value, bool is_stubbed) override; Fence CreateFence(u32 value, bool is_stubbed) override;

View file

@ -44,17 +44,10 @@ using VideoCore::Surface::PixelFormat;
using VideoCore::Surface::SurfaceTarget; using VideoCore::Surface::SurfaceTarget;
using VideoCore::Surface::SurfaceType; using VideoCore::Surface::SurfaceType;
MICROPROFILE_DEFINE(OpenGL_VAO, "OpenGL", "Vertex Format Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_VB, "OpenGL", "Vertex Buffer Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Shader, "OpenGL", "Shader Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_UBO, "OpenGL", "Const Buffer Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Index, "OpenGL", "Index Buffer Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Texture, "OpenGL", "Texture Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Framebuffer, "OpenGL", "Framebuffer Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Drawing, "OpenGL", "Drawing", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_Drawing, "OpenGL", "Drawing", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Clears, "OpenGL", "Clears", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Blits, "OpenGL", "Blits", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_Blits, "OpenGL", "Blits", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_CacheManagement, "OpenGL", "Cache Mgmt", MP_RGB(100, 255, 100)); MICROPROFILE_DEFINE(OpenGL_CacheManagement, "OpenGL", "Cache Management", MP_RGB(100, 255, 100));
MICROPROFILE_DEFINE(OpenGL_PrimitiveAssembly, "OpenGL", "Prim Asmbl", MP_RGB(255, 100, 100));
namespace { namespace {
@ -101,20 +94,6 @@ TextureHandle GetTextureInfo(const Engine& engine, bool via_header_index, const
return TextureHandle(engine.AccessConstBuffer32(shader_type, buffer, offset), via_header_index); return TextureHandle(engine.AccessConstBuffer32(shader_type, buffer, offset), via_header_index);
} }
std::size_t GetConstBufferSize(const Tegra::Engines::ConstBufferInfo& buffer,
const ConstBufferEntry& entry) {
if (!entry.IsIndirect()) {
return entry.GetSize();
}
if (buffer.size > Maxwell::MaxConstBufferSize) {
LOG_WARNING(Render_OpenGL, "Indirect constbuffer size {} exceeds maximum {}", buffer.size,
Maxwell::MaxConstBufferSize);
return Maxwell::MaxConstBufferSize;
}
return buffer.size;
}
/// Translates hardware transform feedback indices /// Translates hardware transform feedback indices
/// @param location Hardware location /// @param location Hardware location
/// @return Pair of ARB_transform_feedback3 token stream first and third arguments /// @return Pair of ARB_transform_feedback3 token stream first and third arguments
@ -147,14 +126,6 @@ void oglEnable(GLenum cap, bool state) {
(state ? glEnable : glDisable)(cap); (state ? glEnable : glDisable)(cap);
} }
void UpdateBindlessSSBOs(GLenum target, const BindlessSSBO* ssbos, size_t num_ssbos) {
if (num_ssbos == 0) {
return;
}
glProgramLocalParametersI4uivNV(target, 0, static_cast<GLsizei>(num_ssbos),
reinterpret_cast<const GLuint*>(ssbos));
}
ImageViewType ImageViewTypeFromEntry(const SamplerEntry& entry) { ImageViewType ImageViewTypeFromEntry(const SamplerEntry& entry) {
if (entry.is_buffer) { if (entry.is_buffer) {
return ImageViewType::Buffer; return ImageViewType::Buffer;
@ -196,49 +167,35 @@ ImageViewType ImageViewTypeFromEntry(const ImageEntry& entry) {
RasterizerOpenGL::RasterizerOpenGL(Core::Frontend::EmuWindow& emu_window_, Tegra::GPU& gpu_, RasterizerOpenGL::RasterizerOpenGL(Core::Frontend::EmuWindow& emu_window_, Tegra::GPU& gpu_,
Core::Memory::Memory& cpu_memory_, const Device& device_, Core::Memory::Memory& cpu_memory_, const Device& device_,
const Vulkan::Device* vulkan_device,
Vulkan::MemoryAllocator* vulkan_memory_allocator,
ScreenInfo& screen_info_, ProgramManager& program_manager_, ScreenInfo& screen_info_, ProgramManager& program_manager_,
StateTracker& state_tracker_) StateTracker& state_tracker_)
: RasterizerAccelerated(cpu_memory_), gpu(gpu_), maxwell3d(gpu.Maxwell3D()), : RasterizerAccelerated(cpu_memory_), gpu(gpu_), maxwell3d(gpu.Maxwell3D()),
kepler_compute(gpu.KeplerCompute()), gpu_memory(gpu.MemoryManager()), device(device_), kepler_compute(gpu.KeplerCompute()), gpu_memory(gpu.MemoryManager()), device(device_),
screen_info(screen_info_), program_manager(program_manager_), state_tracker(state_tracker_), screen_info(screen_info_), program_manager(program_manager_), state_tracker(state_tracker_),
stream_buffer(device, state_tracker),
texture_cache_runtime(device, program_manager, state_tracker), texture_cache_runtime(device, program_manager, state_tracker),
texture_cache(texture_cache_runtime, *this, maxwell3d, kepler_compute, gpu_memory), texture_cache(texture_cache_runtime, *this, maxwell3d, kepler_compute, gpu_memory),
buffer_cache_runtime(device, vulkan_device, vulkan_memory_allocator),
buffer_cache(*this, maxwell3d, kepler_compute, gpu_memory, cpu_memory_, buffer_cache_runtime),
shader_cache(*this, emu_window_, gpu, maxwell3d, kepler_compute, gpu_memory, device), shader_cache(*this, emu_window_, gpu, maxwell3d, kepler_compute, gpu_memory, device),
query_cache(*this, maxwell3d, gpu_memory), query_cache(*this, maxwell3d, gpu_memory),
buffer_cache(*this, gpu_memory, cpu_memory_, device, stream_buffer, state_tracker),
fence_manager(*this, gpu, texture_cache, buffer_cache, query_cache), fence_manager(*this, gpu, texture_cache, buffer_cache, query_cache),
async_shaders(emu_window_) { async_shaders(emu_window_) {
unified_uniform_buffer.Create();
glNamedBufferStorage(unified_uniform_buffer.handle, TOTAL_CONST_BUFFER_BYTES, nullptr, 0);
if (device.UseAssemblyShaders()) {
glCreateBuffers(static_cast<GLsizei>(staging_cbufs.size()), staging_cbufs.data());
for (const GLuint cbuf : staging_cbufs) {
glNamedBufferStorage(cbuf, static_cast<GLsizeiptr>(Maxwell::MaxConstBufferSize),
nullptr, 0);
}
}
if (device.UseAsynchronousShaders()) { if (device.UseAsynchronousShaders()) {
async_shaders.AllocateWorkers(); async_shaders.AllocateWorkers();
} }
} }
RasterizerOpenGL::~RasterizerOpenGL() { RasterizerOpenGL::~RasterizerOpenGL() = default;
if (device.UseAssemblyShaders()) {
glDeleteBuffers(static_cast<GLsizei>(staging_cbufs.size()), staging_cbufs.data());
}
}
void RasterizerOpenGL::SetupVertexFormat() { void RasterizerOpenGL::SyncVertexFormats() {
auto& flags = maxwell3d.dirty.flags; auto& flags = maxwell3d.dirty.flags;
if (!flags[Dirty::VertexFormats]) { if (!flags[Dirty::VertexFormats]) {
return; return;
} }
flags[Dirty::VertexFormats] = false; flags[Dirty::VertexFormats] = false;
MICROPROFILE_SCOPE(OpenGL_VAO);
// Use the vertex array as-is, assumes that the data is formatted correctly for OpenGL. Enables // Use the vertex array as-is, assumes that the data is formatted correctly for OpenGL. Enables
// the first 16 vertex attributes always, as we don't know which ones are actually used until // the first 16 vertex attributes always, as we don't know which ones are actually used until
// shader time. Note, Tegra technically supports 32, but we're capping this to 16 for now to // shader time. Note, Tegra technically supports 32, but we're capping this to 16 for now to
@ -274,55 +231,7 @@ void RasterizerOpenGL::SetupVertexFormat() {
} }
} }
void RasterizerOpenGL::SetupVertexBuffer() { void RasterizerOpenGL::SyncVertexInstances() {
auto& flags = maxwell3d.dirty.flags;
if (!flags[Dirty::VertexBuffers]) {
return;
}
flags[Dirty::VertexBuffers] = false;
MICROPROFILE_SCOPE(OpenGL_VB);
const bool use_unified_memory = device.HasVertexBufferUnifiedMemory();
// Upload all guest vertex arrays sequentially to our buffer
const auto& regs = maxwell3d.regs;
for (std::size_t index = 0; index < NUM_SUPPORTED_VERTEX_BINDINGS; ++index) {
if (!flags[Dirty::VertexBuffer0 + index]) {
continue;
}
flags[Dirty::VertexBuffer0 + index] = false;
const auto& vertex_array = regs.vertex_array[index];
if (!vertex_array.IsEnabled()) {
continue;
}
const GPUVAddr start = vertex_array.StartAddress();
const GPUVAddr end = regs.vertex_array_limit[index].LimitAddress();
ASSERT(end >= start);
const GLuint gl_index = static_cast<GLuint>(index);
const u64 size = end - start;
if (size == 0) {
glBindVertexBuffer(gl_index, 0, 0, vertex_array.stride);
if (use_unified_memory) {
glBufferAddressRangeNV(GL_VERTEX_ATTRIB_ARRAY_ADDRESS_NV, gl_index, 0, 0);
}
continue;
}
const auto info = buffer_cache.UploadMemory(start, size);
if (use_unified_memory) {
glBindVertexBuffer(gl_index, 0, 0, vertex_array.stride);
glBufferAddressRangeNV(GL_VERTEX_ATTRIB_ARRAY_ADDRESS_NV, gl_index,
info.address + info.offset, size);
} else {
glBindVertexBuffer(gl_index, info.handle, info.offset, vertex_array.stride);
}
}
}
void RasterizerOpenGL::SetupVertexInstances() {
auto& flags = maxwell3d.dirty.flags; auto& flags = maxwell3d.dirty.flags;
if (!flags[Dirty::VertexInstances]) { if (!flags[Dirty::VertexInstances]) {
return; return;
@ -343,17 +252,7 @@ void RasterizerOpenGL::SetupVertexInstances() {
} }
} }
GLintptr RasterizerOpenGL::SetupIndexBuffer() { void RasterizerOpenGL::SetupShaders(bool is_indexed) {
MICROPROFILE_SCOPE(OpenGL_Index);
const auto& regs = maxwell3d.regs;
const std::size_t size = CalculateIndexBufferSize();
const auto info = buffer_cache.UploadMemory(regs.index_array.IndexStart(), size);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, info.handle);
return info.offset;
}
void RasterizerOpenGL::SetupShaders() {
MICROPROFILE_SCOPE(OpenGL_Shader);
u32 clip_distances = 0; u32 clip_distances = 0;
std::array<Shader*, Maxwell::MaxShaderStage> shaders{}; std::array<Shader*, Maxwell::MaxShaderStage> shaders{};
@ -410,11 +309,19 @@ void RasterizerOpenGL::SetupShaders() {
const size_t stage = index == 0 ? 0 : index - 1; const size_t stage = index == 0 ? 0 : index - 1;
shaders[stage] = shader; shaders[stage] = shader;
SetupDrawConstBuffers(stage, shader);
SetupDrawGlobalMemory(stage, shader);
SetupDrawTextures(shader, stage); SetupDrawTextures(shader, stage);
SetupDrawImages(shader, stage); SetupDrawImages(shader, stage);
buffer_cache.SetEnabledUniformBuffers(stage, shader->GetEntries().enabled_uniform_buffers);
buffer_cache.UnbindGraphicsStorageBuffers(stage);
u32 ssbo_index = 0;
for (const auto& buffer : shader->GetEntries().global_memory_entries) {
buffer_cache.BindGraphicsStorageBuffer(stage, ssbo_index, buffer.cbuf_index,
buffer.cbuf_offset, buffer.is_written);
++ssbo_index;
}
// Workaround for Intel drivers. // Workaround for Intel drivers.
// When a clip distance is enabled but not set in the shader it crops parts of the screen // When a clip distance is enabled but not set in the shader it crops parts of the screen
// (sometimes it's half the screen, sometimes three quarters). To avoid this, enable the // (sometimes it's half the screen, sometimes three quarters). To avoid this, enable the
@ -430,43 +337,26 @@ void RasterizerOpenGL::SetupShaders() {
SyncClipEnabled(clip_distances); SyncClipEnabled(clip_distances);
maxwell3d.dirty.flags[Dirty::Shaders] = false; maxwell3d.dirty.flags[Dirty::Shaders] = false;
buffer_cache.UpdateGraphicsBuffers(is_indexed);
const std::span indices_span(image_view_indices.data(), image_view_indices.size()); const std::span indices_span(image_view_indices.data(), image_view_indices.size());
texture_cache.FillGraphicsImageViews(indices_span, image_view_ids); texture_cache.FillGraphicsImageViews(indices_span, image_view_ids);
buffer_cache.BindHostGeometryBuffers(is_indexed);
size_t image_view_index = 0; size_t image_view_index = 0;
size_t texture_index = 0; size_t texture_index = 0;
size_t image_index = 0; size_t image_index = 0;
for (size_t stage = 0; stage < Maxwell::MaxShaderStage; ++stage) { for (size_t stage = 0; stage < Maxwell::MaxShaderStage; ++stage) {
const Shader* const shader = shaders[stage]; const Shader* const shader = shaders[stage];
if (shader) { if (!shader) {
const auto base = device.GetBaseBindings(stage);
BindTextures(shader->GetEntries(), base.sampler, base.image, image_view_index,
texture_index, image_index);
}
}
}
std::size_t RasterizerOpenGL::CalculateVertexArraysSize() const {
const auto& regs = maxwell3d.regs;
std::size_t size = 0;
for (u32 index = 0; index < Maxwell::NumVertexArrays; ++index) {
if (!regs.vertex_array[index].IsEnabled())
continue; continue;
}
const GPUVAddr start = regs.vertex_array[index].StartAddress(); buffer_cache.BindHostStageBuffers(stage);
const GPUVAddr end = regs.vertex_array_limit[index].LimitAddress(); const auto& base = device.GetBaseBindings(stage);
BindTextures(shader->GetEntries(), base.sampler, base.image, image_view_index,
size += end - start; texture_index, image_index);
ASSERT(end >= start);
} }
return size;
}
std::size_t RasterizerOpenGL::CalculateIndexBufferSize() const {
return static_cast<std::size_t>(maxwell3d.regs.index_array.count) *
static_cast<std::size_t>(maxwell3d.regs.index_array.FormatSizeInBytes());
} }
void RasterizerOpenGL::LoadDiskResources(u64 title_id, const std::atomic_bool& stop_loading, void RasterizerOpenGL::LoadDiskResources(u64 title_id, const std::atomic_bool& stop_loading,
@ -475,6 +365,7 @@ void RasterizerOpenGL::LoadDiskResources(u64 title_id, const std::atomic_bool& s
} }
void RasterizerOpenGL::Clear() { void RasterizerOpenGL::Clear() {
MICROPROFILE_SCOPE(OpenGL_Clears);
if (!maxwell3d.ShouldExecute()) { if (!maxwell3d.ShouldExecute()) {
return; return;
} }
@ -525,11 +416,9 @@ void RasterizerOpenGL::Clear() {
} }
UNIMPLEMENTED_IF(regs.clear_flags.viewport); UNIMPLEMENTED_IF(regs.clear_flags.viewport);
{ std::scoped_lock lock{texture_cache.mutex};
auto lock = texture_cache.AcquireLock(); texture_cache.UpdateRenderTargets(true);
texture_cache.UpdateRenderTargets(true); state_tracker.BindFramebuffer(texture_cache.GetFramebuffer()->Handle());
state_tracker.BindFramebuffer(texture_cache.GetFramebuffer()->Handle());
}
if (use_color) { if (use_color) {
glClearBufferfv(GL_COLOR, regs.clear_buffers.RT, regs.clear_color); glClearBufferfv(GL_COLOR, regs.clear_buffers.RT, regs.clear_color);
@ -541,7 +430,6 @@ void RasterizerOpenGL::Clear() {
} else if (use_stencil) { } else if (use_stencil) {
glClearBufferiv(GL_STENCIL, 0, &regs.clear_stencil); glClearBufferiv(GL_STENCIL, 0, &regs.clear_stencil);
} }
++num_queued_commands; ++num_queued_commands;
} }
@ -550,75 +438,12 @@ void RasterizerOpenGL::Draw(bool is_indexed, bool is_instanced) {
query_cache.UpdateCounters(); query_cache.UpdateCounters();
SyncViewport(); SyncState();
SyncRasterizeEnable();
SyncPolygonModes();
SyncColorMask();
SyncFragmentColorClampState();
SyncMultiSampleState();
SyncDepthTestState();
SyncDepthClamp();
SyncStencilTestState();
SyncBlendState();
SyncLogicOpState();
SyncCullMode();
SyncPrimitiveRestart();
SyncScissorTest();
SyncPointState();
SyncLineState();
SyncPolygonOffset();
SyncAlphaTest();
SyncFramebufferSRGB();
buffer_cache.Acquire();
current_cbuf = 0;
std::size_t buffer_size = CalculateVertexArraysSize();
// Add space for index buffer
if (is_indexed) {
buffer_size = Common::AlignUp(buffer_size, 4) + CalculateIndexBufferSize();
}
// Uniform space for the 5 shader stages
buffer_size =
Common::AlignUp<std::size_t>(buffer_size, 4) +
(sizeof(MaxwellUniformData) + device.GetUniformBufferAlignment()) * Maxwell::MaxShaderStage;
// Add space for at least 18 constant buffers
buffer_size += Maxwell::MaxConstBuffers *
(Maxwell::MaxConstBufferSize + device.GetUniformBufferAlignment());
// Prepare the vertex array.
buffer_cache.Map(buffer_size);
// Prepare vertex array format.
SetupVertexFormat();
// Upload vertex and index data.
SetupVertexBuffer();
SetupVertexInstances();
GLintptr index_buffer_offset = 0;
if (is_indexed) {
index_buffer_offset = SetupIndexBuffer();
}
// Setup emulation uniform buffer.
if (!device.UseAssemblyShaders()) {
MaxwellUniformData ubo;
ubo.SetFromRegs(maxwell3d);
const auto info =
buffer_cache.UploadHostMemory(&ubo, sizeof(ubo), device.GetUniformBufferAlignment());
glBindBufferRange(GL_UNIFORM_BUFFER, EmulationUniformBlockBinding, info.handle, info.offset,
static_cast<GLsizeiptr>(sizeof(ubo)));
}
// Setup shaders and their used resources. // Setup shaders and their used resources.
auto lock = texture_cache.AcquireLock(); std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
SetupShaders(); SetupShaders(is_indexed);
// Signal the buffer cache that we are not going to upload more things.
buffer_cache.Unmap();
texture_cache.UpdateRenderTargets(false); texture_cache.UpdateRenderTargets(false);
state_tracker.BindFramebuffer(texture_cache.GetFramebuffer()->Handle()); state_tracker.BindFramebuffer(texture_cache.GetFramebuffer()->Handle());
program_manager.BindGraphicsPipeline(); program_manager.BindGraphicsPipeline();
@ -632,7 +457,7 @@ void RasterizerOpenGL::Draw(bool is_indexed, bool is_instanced) {
if (is_indexed) { if (is_indexed) {
const GLint base_vertex = static_cast<GLint>(maxwell3d.regs.vb_element_base); const GLint base_vertex = static_cast<GLint>(maxwell3d.regs.vb_element_base);
const GLsizei num_vertices = static_cast<GLsizei>(maxwell3d.regs.index_array.count); const GLsizei num_vertices = static_cast<GLsizei>(maxwell3d.regs.index_array.count);
const GLvoid* offset = reinterpret_cast<const GLvoid*>(index_buffer_offset); const GLvoid* const offset = buffer_cache_runtime.IndexOffset();
const GLenum format = MaxwellToGL::IndexFormat(maxwell3d.regs.index_array.format); const GLenum format = MaxwellToGL::IndexFormat(maxwell3d.regs.index_array.format);
if (num_instances == 1 && base_instance == 0 && base_vertex == 0) { if (num_instances == 1 && base_instance == 0 && base_vertex == 0) {
glDrawElements(primitive_mode, num_vertices, format, offset); glDrawElements(primitive_mode, num_vertices, format, offset);
@ -672,22 +497,22 @@ void RasterizerOpenGL::Draw(bool is_indexed, bool is_instanced) {
} }
void RasterizerOpenGL::DispatchCompute(GPUVAddr code_addr) { void RasterizerOpenGL::DispatchCompute(GPUVAddr code_addr) {
buffer_cache.Acquire();
current_cbuf = 0;
Shader* const kernel = shader_cache.GetComputeKernel(code_addr); Shader* const kernel = shader_cache.GetComputeKernel(code_addr);
auto lock = texture_cache.AcquireLock(); std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
BindComputeTextures(kernel); BindComputeTextures(kernel);
const size_t buffer_size = Tegra::Engines::KeplerCompute::NumConstBuffers * const auto& entries = kernel->GetEntries();
(Maxwell::MaxConstBufferSize + device.GetUniformBufferAlignment()); buffer_cache.SetEnabledComputeUniformBuffers(entries.enabled_uniform_buffers);
buffer_cache.Map(buffer_size); buffer_cache.UnbindComputeStorageBuffers();
u32 ssbo_index = 0;
SetupComputeConstBuffers(kernel); for (const auto& buffer : entries.global_memory_entries) {
SetupComputeGlobalMemory(kernel); buffer_cache.BindComputeStorageBuffer(ssbo_index, buffer.cbuf_index, buffer.cbuf_offset,
buffer.is_written);
buffer_cache.Unmap(); ++ssbo_index;
}
buffer_cache.UpdateComputeBuffers();
buffer_cache.BindHostComputeBuffers();
const auto& launch_desc = kepler_compute.launch_description; const auto& launch_desc = kepler_compute.launch_description;
glDispatchCompute(launch_desc.grid_dim_x, launch_desc.grid_dim_y, launch_desc.grid_dim_z); glDispatchCompute(launch_desc.grid_dim_x, launch_desc.grid_dim_y, launch_desc.grid_dim_z);
@ -703,6 +528,12 @@ void RasterizerOpenGL::Query(GPUVAddr gpu_addr, VideoCore::QueryType type,
query_cache.Query(gpu_addr, type, timestamp); query_cache.Query(gpu_addr, type, timestamp);
} }
void RasterizerOpenGL::BindGraphicsUniformBuffer(size_t stage, u32 index, GPUVAddr gpu_addr,
u32 size) {
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.BindGraphicsUniformBuffer(stage, index, gpu_addr, size);
}
void RasterizerOpenGL::FlushAll() {} void RasterizerOpenGL::FlushAll() {}
void RasterizerOpenGL::FlushRegion(VAddr addr, u64 size) { void RasterizerOpenGL::FlushRegion(VAddr addr, u64 size) {
@ -711,19 +542,23 @@ void RasterizerOpenGL::FlushRegion(VAddr addr, u64 size) {
return; return;
} }
{ {
auto lock = texture_cache.AcquireLock(); std::scoped_lock lock{texture_cache.mutex};
texture_cache.DownloadMemory(addr, size); texture_cache.DownloadMemory(addr, size);
} }
buffer_cache.FlushRegion(addr, size); {
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.DownloadMemory(addr, size);
}
query_cache.FlushRegion(addr, size); query_cache.FlushRegion(addr, size);
} }
bool RasterizerOpenGL::MustFlushRegion(VAddr addr, u64 size) { bool RasterizerOpenGL::MustFlushRegion(VAddr addr, u64 size) {
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
if (!Settings::IsGPULevelHigh()) { if (!Settings::IsGPULevelHigh()) {
return buffer_cache.MustFlushRegion(addr, size); return buffer_cache.IsRegionGpuModified(addr, size);
} }
return texture_cache.IsRegionGpuModified(addr, size) || return texture_cache.IsRegionGpuModified(addr, size) ||
buffer_cache.MustFlushRegion(addr, size); buffer_cache.IsRegionGpuModified(addr, size);
} }
void RasterizerOpenGL::InvalidateRegion(VAddr addr, u64 size) { void RasterizerOpenGL::InvalidateRegion(VAddr addr, u64 size) {
@ -732,11 +567,14 @@ void RasterizerOpenGL::InvalidateRegion(VAddr addr, u64 size) {
return; return;
} }
{ {
auto lock = texture_cache.AcquireLock(); std::scoped_lock lock{texture_cache.mutex};
texture_cache.WriteMemory(addr, size); texture_cache.WriteMemory(addr, size);
} }
{
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.WriteMemory(addr, size);
}
shader_cache.InvalidateRegion(addr, size); shader_cache.InvalidateRegion(addr, size);
buffer_cache.InvalidateRegion(addr, size);
query_cache.InvalidateRegion(addr, size); query_cache.InvalidateRegion(addr, size);
} }
@ -745,26 +583,35 @@ void RasterizerOpenGL::OnCPUWrite(VAddr addr, u64 size) {
if (addr == 0 || size == 0) { if (addr == 0 || size == 0) {
return; return;
} }
shader_cache.OnCPUWrite(addr, size);
{ {
auto lock = texture_cache.AcquireLock(); std::scoped_lock lock{texture_cache.mutex};
texture_cache.WriteMemory(addr, size); texture_cache.WriteMemory(addr, size);
} }
shader_cache.OnCPUWrite(addr, size); {
buffer_cache.OnCPUWrite(addr, size); std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.CachedWriteMemory(addr, size);
}
} }
void RasterizerOpenGL::SyncGuestHost() { void RasterizerOpenGL::SyncGuestHost() {
MICROPROFILE_SCOPE(OpenGL_CacheManagement); MICROPROFILE_SCOPE(OpenGL_CacheManagement);
buffer_cache.SyncGuestHost();
shader_cache.SyncGuestHost(); shader_cache.SyncGuestHost();
{
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.FlushCachedWrites();
}
} }
void RasterizerOpenGL::UnmapMemory(VAddr addr, u64 size) { void RasterizerOpenGL::UnmapMemory(VAddr addr, u64 size) {
{ {
auto lock = texture_cache.AcquireLock(); std::scoped_lock lock{texture_cache.mutex};
texture_cache.UnmapMemory(addr, size); texture_cache.UnmapMemory(addr, size);
} }
buffer_cache.OnCPUWrite(addr, size); {
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.WriteMemory(addr, size);
}
shader_cache.OnCPUWrite(addr, size); shader_cache.OnCPUWrite(addr, size);
} }
@ -799,14 +646,7 @@ void RasterizerOpenGL::FlushAndInvalidateRegion(VAddr addr, u64 size) {
} }
void RasterizerOpenGL::WaitForIdle() { void RasterizerOpenGL::WaitForIdle() {
// Place a barrier on everything that is not framebuffer related. glMemoryBarrier(GL_ALL_BARRIER_BITS);
// This is related to another flag that is not currently implemented.
glMemoryBarrier(GL_VERTEX_ATTRIB_ARRAY_BARRIER_BIT | GL_ELEMENT_ARRAY_BARRIER_BIT |
GL_UNIFORM_BARRIER_BIT | GL_TEXTURE_FETCH_BARRIER_BIT |
GL_SHADER_IMAGE_ACCESS_BARRIER_BIT | GL_COMMAND_BARRIER_BIT |
GL_PIXEL_BUFFER_BARRIER_BIT | GL_TEXTURE_UPDATE_BARRIER_BIT |
GL_BUFFER_UPDATE_BARRIER_BIT | GL_TRANSFORM_FEEDBACK_BARRIER_BIT |
GL_SHADER_STORAGE_BARRIER_BIT | GL_QUERY_BUFFER_BARRIER_BIT);
} }
void RasterizerOpenGL::FragmentBarrier() { void RasterizerOpenGL::FragmentBarrier() {
@ -831,18 +671,21 @@ void RasterizerOpenGL::TickFrame() {
num_queued_commands = 0; num_queued_commands = 0;
fence_manager.TickFrame(); fence_manager.TickFrame();
buffer_cache.TickFrame();
{ {
auto lock = texture_cache.AcquireLock(); std::scoped_lock lock{texture_cache.mutex};
texture_cache.TickFrame(); texture_cache.TickFrame();
} }
{
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.TickFrame();
}
} }
bool RasterizerOpenGL::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Surface& src, bool RasterizerOpenGL::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Surface& src,
const Tegra::Engines::Fermi2D::Surface& dst, const Tegra::Engines::Fermi2D::Surface& dst,
const Tegra::Engines::Fermi2D::Config& copy_config) { const Tegra::Engines::Fermi2D::Config& copy_config) {
MICROPROFILE_SCOPE(OpenGL_Blits); MICROPROFILE_SCOPE(OpenGL_Blits);
auto lock = texture_cache.AcquireLock(); std::scoped_lock lock{texture_cache.mutex};
texture_cache.BlitImage(dst, src, copy_config); texture_cache.BlitImage(dst, src, copy_config);
return true; return true;
} }
@ -854,7 +697,7 @@ bool RasterizerOpenGL::AccelerateDisplay(const Tegra::FramebufferConfig& config,
} }
MICROPROFILE_SCOPE(OpenGL_CacheManagement); MICROPROFILE_SCOPE(OpenGL_CacheManagement);
auto lock = texture_cache.AcquireLock(); std::scoped_lock lock{texture_cache.mutex};
ImageView* const image_view{texture_cache.TryFindFramebufferImageView(framebuffer_addr)}; ImageView* const image_view{texture_cache.TryFindFramebufferImageView(framebuffer_addr)};
if (!image_view) { if (!image_view) {
return false; return false;
@ -921,166 +764,6 @@ void RasterizerOpenGL::BindTextures(const ShaderEntries& entries, GLuint base_te
} }
} }
void RasterizerOpenGL::SetupDrawConstBuffers(std::size_t stage_index, Shader* shader) {
static constexpr std::array PARAMETER_LUT{
GL_VERTEX_PROGRAM_PARAMETER_BUFFER_NV, GL_TESS_CONTROL_PROGRAM_PARAMETER_BUFFER_NV,
GL_TESS_EVALUATION_PROGRAM_PARAMETER_BUFFER_NV, GL_GEOMETRY_PROGRAM_PARAMETER_BUFFER_NV,
GL_FRAGMENT_PROGRAM_PARAMETER_BUFFER_NV,
};
MICROPROFILE_SCOPE(OpenGL_UBO);
const auto& stages = maxwell3d.state.shader_stages;
const auto& shader_stage = stages[stage_index];
const auto& entries = shader->GetEntries();
const bool use_unified = entries.use_unified_uniforms;
const std::size_t base_unified_offset = stage_index * NUM_CONST_BUFFERS_BYTES_PER_STAGE;
const auto base_bindings = device.GetBaseBindings(stage_index);
u32 binding = device.UseAssemblyShaders() ? 0 : base_bindings.uniform_buffer;
for (const auto& entry : entries.const_buffers) {
const u32 index = entry.GetIndex();
const auto& buffer = shader_stage.const_buffers[index];
SetupConstBuffer(PARAMETER_LUT[stage_index], binding, buffer, entry, use_unified,
base_unified_offset + index * Maxwell::MaxConstBufferSize);
++binding;
}
if (use_unified) {
const u32 index = static_cast<u32>(base_bindings.shader_storage_buffer +
entries.global_memory_entries.size());
glBindBufferRange(GL_SHADER_STORAGE_BUFFER, index, unified_uniform_buffer.handle,
base_unified_offset, NUM_CONST_BUFFERS_BYTES_PER_STAGE);
}
}
void RasterizerOpenGL::SetupComputeConstBuffers(Shader* kernel) {
MICROPROFILE_SCOPE(OpenGL_UBO);
const auto& launch_desc = kepler_compute.launch_description;
const auto& entries = kernel->GetEntries();
const bool use_unified = entries.use_unified_uniforms;
u32 binding = 0;
for (const auto& entry : entries.const_buffers) {
const auto& config = launch_desc.const_buffer_config[entry.GetIndex()];
const std::bitset<8> mask = launch_desc.const_buffer_enable_mask.Value();
Tegra::Engines::ConstBufferInfo buffer;
buffer.address = config.Address();
buffer.size = config.size;
buffer.enabled = mask[entry.GetIndex()];
SetupConstBuffer(GL_COMPUTE_PROGRAM_PARAMETER_BUFFER_NV, binding, buffer, entry,
use_unified, entry.GetIndex() * Maxwell::MaxConstBufferSize);
++binding;
}
if (use_unified) {
const GLuint index = static_cast<GLuint>(entries.global_memory_entries.size());
glBindBufferRange(GL_SHADER_STORAGE_BUFFER, index, unified_uniform_buffer.handle, 0,
NUM_CONST_BUFFERS_BYTES_PER_STAGE);
}
}
void RasterizerOpenGL::SetupConstBuffer(GLenum stage, u32 binding,
const Tegra::Engines::ConstBufferInfo& buffer,
const ConstBufferEntry& entry, bool use_unified,
std::size_t unified_offset) {
if (!buffer.enabled) {
// Set values to zero to unbind buffers
if (device.UseAssemblyShaders()) {
glBindBufferRangeNV(stage, entry.GetIndex(), 0, 0, 0);
} else {
glBindBufferRange(GL_UNIFORM_BUFFER, binding, 0, 0, sizeof(float));
}
return;
}
// Align the actual size so it ends up being a multiple of vec4 to meet the OpenGL std140
// UBO alignment requirements.
const std::size_t size = Common::AlignUp(GetConstBufferSize(buffer, entry), sizeof(GLvec4));
const bool fast_upload = !use_unified && device.HasFastBufferSubData();
const std::size_t alignment = use_unified ? 4 : device.GetUniformBufferAlignment();
const GPUVAddr gpu_addr = buffer.address;
auto info = buffer_cache.UploadMemory(gpu_addr, size, alignment, false, fast_upload);
if (device.UseAssemblyShaders()) {
UNIMPLEMENTED_IF(use_unified);
if (info.offset != 0) {
const GLuint staging_cbuf = staging_cbufs[current_cbuf++];
glCopyNamedBufferSubData(info.handle, staging_cbuf, info.offset, 0, size);
info.handle = staging_cbuf;
info.offset = 0;
}
glBindBufferRangeNV(stage, binding, info.handle, info.offset, size);
return;
}
if (use_unified) {
glCopyNamedBufferSubData(info.handle, unified_uniform_buffer.handle, info.offset,
unified_offset, size);
} else {
glBindBufferRange(GL_UNIFORM_BUFFER, binding, info.handle, info.offset, size);
}
}
void RasterizerOpenGL::SetupDrawGlobalMemory(std::size_t stage_index, Shader* shader) {
static constexpr std::array TARGET_LUT = {
GL_VERTEX_PROGRAM_NV, GL_TESS_CONTROL_PROGRAM_NV, GL_TESS_EVALUATION_PROGRAM_NV,
GL_GEOMETRY_PROGRAM_NV, GL_FRAGMENT_PROGRAM_NV,
};
const auto& cbufs{maxwell3d.state.shader_stages[stage_index]};
const auto& entries{shader->GetEntries().global_memory_entries};
std::array<BindlessSSBO, 32> ssbos;
ASSERT(entries.size() < ssbos.size());
const bool assembly_shaders = device.UseAssemblyShaders();
u32 binding = assembly_shaders ? 0 : device.GetBaseBindings(stage_index).shader_storage_buffer;
for (const auto& entry : entries) {
const GPUVAddr addr{cbufs.const_buffers[entry.cbuf_index].address + entry.cbuf_offset};
const GPUVAddr gpu_addr{gpu_memory.Read<u64>(addr)};
const u32 size{gpu_memory.Read<u32>(addr + 8)};
SetupGlobalMemory(binding, entry, gpu_addr, size, &ssbos[binding]);
++binding;
}
if (assembly_shaders) {
UpdateBindlessSSBOs(TARGET_LUT[stage_index], ssbos.data(), entries.size());
}
}
void RasterizerOpenGL::SetupComputeGlobalMemory(Shader* kernel) {
const auto& cbufs{kepler_compute.launch_description.const_buffer_config};
const auto& entries{kernel->GetEntries().global_memory_entries};
std::array<BindlessSSBO, 32> ssbos;
ASSERT(entries.size() < ssbos.size());
u32 binding = 0;
for (const auto& entry : entries) {
const GPUVAddr addr{cbufs[entry.cbuf_index].Address() + entry.cbuf_offset};
const GPUVAddr gpu_addr{gpu_memory.Read<u64>(addr)};
const u32 size{gpu_memory.Read<u32>(addr + 8)};
SetupGlobalMemory(binding, entry, gpu_addr, size, &ssbos[binding]);
++binding;
}
if (device.UseAssemblyShaders()) {
UpdateBindlessSSBOs(GL_COMPUTE_PROGRAM_NV, ssbos.data(), ssbos.size());
}
}
void RasterizerOpenGL::SetupGlobalMemory(u32 binding, const GlobalMemoryEntry& entry,
GPUVAddr gpu_addr, size_t size, BindlessSSBO* ssbo) {
const size_t alignment{device.GetShaderStorageBufferAlignment()};
const auto info = buffer_cache.UploadMemory(gpu_addr, size, alignment, entry.is_written);
if (device.UseAssemblyShaders()) {
*ssbo = BindlessSSBO{
.address = static_cast<GLuint64EXT>(info.address + info.offset),
.length = static_cast<GLsizei>(size),
.padding = 0,
};
} else {
glBindBufferRange(GL_SHADER_STORAGE_BUFFER, binding, info.handle, info.offset,
static_cast<GLsizeiptr>(size));
}
}
void RasterizerOpenGL::SetupDrawTextures(const Shader* shader, size_t stage_index) { void RasterizerOpenGL::SetupDrawTextures(const Shader* shader, size_t stage_index) {
const bool via_header_index = const bool via_header_index =
maxwell3d.regs.sampler_index == Maxwell::SamplerIndex::ViaHeaderIndex; maxwell3d.regs.sampler_index == Maxwell::SamplerIndex::ViaHeaderIndex;
@ -1128,6 +811,30 @@ void RasterizerOpenGL::SetupComputeImages(const Shader* shader) {
} }
} }
void RasterizerOpenGL::SyncState() {
SyncViewport();
SyncRasterizeEnable();
SyncPolygonModes();
SyncColorMask();
SyncFragmentColorClampState();
SyncMultiSampleState();
SyncDepthTestState();
SyncDepthClamp();
SyncStencilTestState();
SyncBlendState();
SyncLogicOpState();
SyncCullMode();
SyncPrimitiveRestart();
SyncScissorTest();
SyncPointState();
SyncLineState();
SyncPolygonOffset();
SyncAlphaTest();
SyncFramebufferSRGB();
SyncVertexFormats();
SyncVertexInstances();
}
void RasterizerOpenGL::SyncViewport() { void RasterizerOpenGL::SyncViewport() {
auto& flags = maxwell3d.dirty.flags; auto& flags = maxwell3d.dirty.flags;
const auto& regs = maxwell3d.regs; const auto& regs = maxwell3d.regs;
@ -1163,9 +870,11 @@ void RasterizerOpenGL::SyncViewport() {
if (regs.screen_y_control.y_negate != 0) { if (regs.screen_y_control.y_negate != 0) {
flip_y = !flip_y; flip_y = !flip_y;
} }
glClipControl(flip_y ? GL_UPPER_LEFT : GL_LOWER_LEFT, const bool is_zero_to_one = regs.depth_mode == Maxwell::DepthMode::ZeroToOne;
regs.depth_mode == Maxwell::DepthMode::ZeroToOne ? GL_ZERO_TO_ONE const GLenum origin = flip_y ? GL_UPPER_LEFT : GL_LOWER_LEFT;
: GL_NEGATIVE_ONE_TO_ONE); const GLenum depth = is_zero_to_one ? GL_ZERO_TO_ONE : GL_NEGATIVE_ONE_TO_ONE;
state_tracker.ClipControl(origin, depth);
state_tracker.SetYNegate(regs.screen_y_control.y_negate != 0);
} }
if (dirty_viewport) { if (dirty_viewport) {
@ -1649,36 +1358,13 @@ void RasterizerOpenGL::BeginTransformFeedback(GLenum primitive_mode) {
if (regs.tfb_enabled == 0) { if (regs.tfb_enabled == 0) {
return; return;
} }
if (device.UseAssemblyShaders()) { if (device.UseAssemblyShaders()) {
SyncTransformFeedback(); SyncTransformFeedback();
} }
UNIMPLEMENTED_IF(regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationControl) || UNIMPLEMENTED_IF(regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationControl) ||
regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationEval) || regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationEval) ||
regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::Geometry)); regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::Geometry));
UNIMPLEMENTED_IF(primitive_mode != GL_POINTS);
for (std::size_t index = 0; index < Maxwell::NumTransformFeedbackBuffers; ++index) {
const auto& binding = regs.tfb_bindings[index];
if (!binding.buffer_enable) {
if (enabled_transform_feedback_buffers[index]) {
glBindBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, static_cast<GLuint>(index), 0, 0,
0);
}
enabled_transform_feedback_buffers[index] = false;
continue;
}
enabled_transform_feedback_buffers[index] = true;
auto& tfb_buffer = transform_feedback_buffers[index];
tfb_buffer.Create();
const GLuint handle = tfb_buffer.handle;
const std::size_t size = binding.buffer_size;
glNamedBufferData(handle, static_cast<GLsizeiptr>(size), nullptr, GL_STREAM_COPY);
glBindBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, static_cast<GLuint>(index), handle, 0,
static_cast<GLsizeiptr>(size));
}
// We may have to call BeginTransformFeedbackNV here since they seem to call different // We may have to call BeginTransformFeedbackNV here since they seem to call different
// implementations on Nvidia's driver (the pointer is different) but we are using // implementations on Nvidia's driver (the pointer is different) but we are using
@ -1692,23 +1378,7 @@ void RasterizerOpenGL::EndTransformFeedback() {
if (regs.tfb_enabled == 0) { if (regs.tfb_enabled == 0) {
return; return;
} }
glEndTransformFeedback(); glEndTransformFeedback();
for (std::size_t index = 0; index < Maxwell::NumTransformFeedbackBuffers; ++index) {
const auto& binding = regs.tfb_bindings[index];
if (!binding.buffer_enable) {
continue;
}
UNIMPLEMENTED_IF(binding.buffer_offset != 0);
const GLuint handle = transform_feedback_buffers[index].handle;
const GPUVAddr gpu_addr = binding.Address();
const std::size_t size = binding.buffer_size;
const auto info = buffer_cache.UploadMemory(gpu_addr, size, 4, true);
glCopyNamedBufferSubData(handle, info.handle, 0, info.offset,
static_cast<GLsizeiptr>(size));
}
} }
} // namespace OpenGL } // namespace OpenGL

View file

@ -30,7 +30,6 @@
#include "video_core/renderer_opengl/gl_shader_decompiler.h" #include "video_core/renderer_opengl/gl_shader_decompiler.h"
#include "video_core/renderer_opengl/gl_shader_manager.h" #include "video_core/renderer_opengl/gl_shader_manager.h"
#include "video_core/renderer_opengl/gl_state_tracker.h" #include "video_core/renderer_opengl/gl_state_tracker.h"
#include "video_core/renderer_opengl/gl_stream_buffer.h"
#include "video_core/renderer_opengl/gl_texture_cache.h" #include "video_core/renderer_opengl/gl_texture_cache.h"
#include "video_core/shader/async_shaders.h" #include "video_core/shader/async_shaders.h"
#include "video_core/textures/texture.h" #include "video_core/textures/texture.h"
@ -47,6 +46,11 @@ namespace Tegra {
class MemoryManager; class MemoryManager;
} }
namespace Vulkan {
class Device;
class MemoryAllocator;
} // namespace Vulkan
namespace OpenGL { namespace OpenGL {
struct ScreenInfo; struct ScreenInfo;
@ -63,6 +67,8 @@ class RasterizerOpenGL : public VideoCore::RasterizerAccelerated {
public: public:
explicit RasterizerOpenGL(Core::Frontend::EmuWindow& emu_window_, Tegra::GPU& gpu_, explicit RasterizerOpenGL(Core::Frontend::EmuWindow& emu_window_, Tegra::GPU& gpu_,
Core::Memory::Memory& cpu_memory_, const Device& device_, Core::Memory::Memory& cpu_memory_, const Device& device_,
const Vulkan::Device* vulkan_device,
Vulkan::MemoryAllocator* vulkan_memory_allocator,
ScreenInfo& screen_info_, ProgramManager& program_manager_, ScreenInfo& screen_info_, ProgramManager& program_manager_,
StateTracker& state_tracker_); StateTracker& state_tracker_);
~RasterizerOpenGL() override; ~RasterizerOpenGL() override;
@ -72,6 +78,7 @@ public:
void DispatchCompute(GPUVAddr code_addr) override; void DispatchCompute(GPUVAddr code_addr) override;
void ResetCounter(VideoCore::QueryType type) override; void ResetCounter(VideoCore::QueryType type) override;
void Query(GPUVAddr gpu_addr, VideoCore::QueryType type, std::optional<u64> timestamp) override; void Query(GPUVAddr gpu_addr, VideoCore::QueryType type, std::optional<u64> timestamp) override;
void BindGraphicsUniformBuffer(size_t stage, u32 index, GPUVAddr gpu_addr, u32 size) override;
void FlushAll() override; void FlushAll() override;
void FlushRegion(VAddr addr, u64 size) override; void FlushRegion(VAddr addr, u64 size) override;
bool MustFlushRegion(VAddr addr, u64 size) override; bool MustFlushRegion(VAddr addr, u64 size) override;
@ -119,27 +126,6 @@ private:
void BindTextures(const ShaderEntries& entries, GLuint base_texture, GLuint base_image, void BindTextures(const ShaderEntries& entries, GLuint base_texture, GLuint base_image,
size_t& image_view_index, size_t& texture_index, size_t& image_index); size_t& image_view_index, size_t& texture_index, size_t& image_index);
/// Configures the current constbuffers to use for the draw command.
void SetupDrawConstBuffers(std::size_t stage_index, Shader* shader);
/// Configures the current constbuffers to use for the kernel invocation.
void SetupComputeConstBuffers(Shader* kernel);
/// Configures a constant buffer.
void SetupConstBuffer(GLenum stage, u32 binding, const Tegra::Engines::ConstBufferInfo& buffer,
const ConstBufferEntry& entry, bool use_unified,
std::size_t unified_offset);
/// Configures the current global memory entries to use for the draw command.
void SetupDrawGlobalMemory(std::size_t stage_index, Shader* shader);
/// Configures the current global memory entries to use for the kernel invocation.
void SetupComputeGlobalMemory(Shader* kernel);
/// Configures a global memory buffer.
void SetupGlobalMemory(u32 binding, const GlobalMemoryEntry& entry, GPUVAddr gpu_addr,
size_t size, BindlessSSBO* ssbo);
/// Configures the current textures to use for the draw command. /// Configures the current textures to use for the draw command.
void SetupDrawTextures(const Shader* shader, size_t stage_index); void SetupDrawTextures(const Shader* shader, size_t stage_index);
@ -152,6 +138,9 @@ private:
/// Configures images in a compute shader. /// Configures images in a compute shader.
void SetupComputeImages(const Shader* shader); void SetupComputeImages(const Shader* shader);
/// Syncs state to match guest's
void SyncState();
/// Syncs the viewport and depth range to match the guest state /// Syncs the viewport and depth range to match the guest state
void SyncViewport(); void SyncViewport();
@ -215,6 +204,12 @@ private:
/// Syncs the framebuffer sRGB state to match the guest state /// Syncs the framebuffer sRGB state to match the guest state
void SyncFramebufferSRGB(); void SyncFramebufferSRGB();
/// Syncs vertex formats to match the guest state
void SyncVertexFormats();
/// Syncs vertex instances to match the guest state
void SyncVertexInstances();
/// Syncs transform feedback state to match guest state /// Syncs transform feedback state to match guest state
/// @note Only valid on assembly shaders /// @note Only valid on assembly shaders
void SyncTransformFeedback(); void SyncTransformFeedback();
@ -225,19 +220,7 @@ private:
/// End a transform feedback /// End a transform feedback
void EndTransformFeedback(); void EndTransformFeedback();
std::size_t CalculateVertexArraysSize() const; void SetupShaders(bool is_indexed);
std::size_t CalculateIndexBufferSize() const;
/// Updates the current vertex format
void SetupVertexFormat();
void SetupVertexBuffer();
void SetupVertexInstances();
GLintptr SetupIndexBuffer();
void SetupShaders();
Tegra::GPU& gpu; Tegra::GPU& gpu;
Tegra::Engines::Maxwell3D& maxwell3d; Tegra::Engines::Maxwell3D& maxwell3d;
@ -249,12 +232,12 @@ private:
ProgramManager& program_manager; ProgramManager& program_manager;
StateTracker& state_tracker; StateTracker& state_tracker;
OGLStreamBuffer stream_buffer;
TextureCacheRuntime texture_cache_runtime; TextureCacheRuntime texture_cache_runtime;
TextureCache texture_cache; TextureCache texture_cache;
BufferCacheRuntime buffer_cache_runtime;
BufferCache buffer_cache;
ShaderCacheOpenGL shader_cache; ShaderCacheOpenGL shader_cache;
QueryCache query_cache; QueryCache query_cache;
OGLBufferCache buffer_cache;
FenceManagerOpenGL fence_manager; FenceManagerOpenGL fence_manager;
VideoCommon::Shader::AsyncShaders async_shaders; VideoCommon::Shader::AsyncShaders async_shaders;
@ -262,20 +245,8 @@ private:
boost::container::static_vector<u32, MAX_IMAGE_VIEWS> image_view_indices; boost::container::static_vector<u32, MAX_IMAGE_VIEWS> image_view_indices;
std::array<ImageViewId, MAX_IMAGE_VIEWS> image_view_ids; std::array<ImageViewId, MAX_IMAGE_VIEWS> image_view_ids;
boost::container::static_vector<GLuint, MAX_TEXTURES> sampler_handles; boost::container::static_vector<GLuint, MAX_TEXTURES> sampler_handles;
std::array<GLuint, MAX_TEXTURES> texture_handles; std::array<GLuint, MAX_TEXTURES> texture_handles{};
std::array<GLuint, MAX_IMAGES> image_handles; std::array<GLuint, MAX_IMAGES> image_handles{};
std::array<OGLBuffer, Tegra::Engines::Maxwell3D::Regs::NumTransformFeedbackBuffers>
transform_feedback_buffers;
std::bitset<Tegra::Engines::Maxwell3D::Regs::NumTransformFeedbackBuffers>
enabled_transform_feedback_buffers;
static constexpr std::size_t NUM_CONSTANT_BUFFERS =
Tegra::Engines::Maxwell3D::Regs::MaxConstBuffers *
Tegra::Engines::Maxwell3D::Regs::MaxShaderProgram;
std::array<GLuint, NUM_CONSTANT_BUFFERS> staging_cbufs{};
std::size_t current_cbuf = 0;
OGLBuffer unified_uniform_buffer;
/// Number of commands queued to the OpenGL driver. Resetted on flush. /// Number of commands queued to the OpenGL driver. Resetted on flush.
std::size_t num_queued_commands = 0; std::size_t num_queued_commands = 0;

View file

@ -171,12 +171,6 @@ void OGLBuffer::Release() {
handle = 0; handle = 0;
} }
void OGLBuffer::MakeStreamCopy(std::size_t buffer_size) {
ASSERT_OR_EXECUTE((handle != 0 && buffer_size != 0), { return; });
glNamedBufferData(handle, buffer_size, nullptr, GL_STREAM_COPY);
}
void OGLSync::Create() { void OGLSync::Create() {
if (handle != 0) if (handle != 0)
return; return;

View file

@ -234,9 +234,6 @@ public:
/// Deletes the internal OpenGL resource /// Deletes the internal OpenGL resource
void Release(); void Release();
// Converts the buffer into a stream copy buffer with a fixed size
void MakeStreamCopy(std::size_t buffer_size);
GLuint handle = 0; GLuint handle = 0;
}; };

View file

@ -64,7 +64,7 @@ using TextureIR = std::variant<TextureOffset, TextureDerivates, TextureArgument>
constexpr u32 MAX_CONSTBUFFER_SCALARS = static_cast<u32>(Maxwell::MaxConstBufferSize) / sizeof(u32); constexpr u32 MAX_CONSTBUFFER_SCALARS = static_cast<u32>(Maxwell::MaxConstBufferSize) / sizeof(u32);
constexpr u32 MAX_CONSTBUFFER_ELEMENTS = MAX_CONSTBUFFER_SCALARS / sizeof(u32); constexpr u32 MAX_CONSTBUFFER_ELEMENTS = MAX_CONSTBUFFER_SCALARS / sizeof(u32);
constexpr std::string_view CommonDeclarations = R"(#define ftoi floatBitsToInt constexpr std::string_view COMMON_DECLARATIONS = R"(#define ftoi floatBitsToInt
#define ftou floatBitsToUint #define ftou floatBitsToUint
#define itof intBitsToFloat #define itof intBitsToFloat
#define utof uintBitsToFloat #define utof uintBitsToFloat
@ -77,10 +77,6 @@ bvec2 HalfFloatNanComparison(bvec2 comparison, vec2 pair1, vec2 pair2) {{
const float fswzadd_modifiers_a[] = float[4](-1.0f, 1.0f, -1.0f, 0.0f ); const float fswzadd_modifiers_a[] = float[4](-1.0f, 1.0f, -1.0f, 0.0f );
const float fswzadd_modifiers_b[] = float[4](-1.0f, -1.0f, 1.0f, -1.0f ); const float fswzadd_modifiers_b[] = float[4](-1.0f, -1.0f, 1.0f, -1.0f );
layout (std140, binding = {}) uniform vs_config {{
float y_direction;
}};
)"; )";
class ShaderWriter final { class ShaderWriter final {
@ -402,13 +398,6 @@ std::string FlowStackTopName(MetaStackClass stack) {
return fmt::format("{}_flow_stack_top", GetFlowStackPrefix(stack)); return fmt::format("{}_flow_stack_top", GetFlowStackPrefix(stack));
} }
bool UseUnifiedUniforms(const Device& device, const ShaderIR& ir, ShaderType stage) {
const u32 num_ubos = static_cast<u32>(ir.GetConstantBuffers().size());
// We waste one UBO for emulation
const u32 num_available_ubos = device.GetMaxUniformBuffers(stage) - 1;
return num_ubos > num_available_ubos;
}
struct GenericVaryingDescription { struct GenericVaryingDescription {
std::string name; std::string name;
u8 first_element = 0; u8 first_element = 0;
@ -420,9 +409,8 @@ public:
explicit GLSLDecompiler(const Device& device_, const ShaderIR& ir_, const Registry& registry_, explicit GLSLDecompiler(const Device& device_, const ShaderIR& ir_, const Registry& registry_,
ShaderType stage_, std::string_view identifier_, ShaderType stage_, std::string_view identifier_,
std::string_view suffix_) std::string_view suffix_)
: device{device_}, ir{ir_}, registry{registry_}, stage{stage_}, identifier{identifier_}, : device{device_}, ir{ir_}, registry{registry_}, stage{stage_},
suffix{suffix_}, header{ir.GetHeader()}, use_unified_uniforms{ identifier{identifier_}, suffix{suffix_}, header{ir.GetHeader()} {
UseUnifiedUniforms(device_, ir_, stage_)} {
if (stage != ShaderType::Compute) { if (stage != ShaderType::Compute) {
transform_feedback = BuildTransformFeedback(registry.GetGraphicsInfo()); transform_feedback = BuildTransformFeedback(registry.GetGraphicsInfo());
} }
@ -516,7 +504,8 @@ private:
if (!identifier.empty()) { if (!identifier.empty()) {
code.AddLine("// {}", identifier); code.AddLine("// {}", identifier);
} }
code.AddLine("#version 440 {}", ir.UsesLegacyVaryings() ? "compatibility" : "core"); const bool use_compatibility = ir.UsesLegacyVaryings() || ir.UsesYNegate();
code.AddLine("#version 440 {}", use_compatibility ? "compatibility" : "core");
code.AddLine("#extension GL_ARB_separate_shader_objects : enable"); code.AddLine("#extension GL_ARB_separate_shader_objects : enable");
if (device.HasShaderBallot()) { if (device.HasShaderBallot()) {
code.AddLine("#extension GL_ARB_shader_ballot : require"); code.AddLine("#extension GL_ARB_shader_ballot : require");
@ -542,7 +531,7 @@ private:
code.AddNewLine(); code.AddNewLine();
code.AddLine(CommonDeclarations, EmulationUniformBlockBinding); code.AddLine(COMMON_DECLARATIONS);
} }
void DeclareVertex() { void DeclareVertex() {
@ -865,17 +854,6 @@ private:
} }
void DeclareConstantBuffers() { void DeclareConstantBuffers() {
if (use_unified_uniforms) {
const u32 binding = device.GetBaseBindings(stage).shader_storage_buffer +
static_cast<u32>(ir.GetGlobalMemory().size());
code.AddLine("layout (std430, binding = {}) readonly buffer UnifiedUniforms {{",
binding);
code.AddLine(" uint cbufs[];");
code.AddLine("}};");
code.AddNewLine();
return;
}
u32 binding = device.GetBaseBindings(stage).uniform_buffer; u32 binding = device.GetBaseBindings(stage).uniform_buffer;
for (const auto& [index, info] : ir.GetConstantBuffers()) { for (const auto& [index, info] : ir.GetConstantBuffers()) {
const u32 num_elements = Common::DivCeil(info.GetSize(), 4 * sizeof(u32)); const u32 num_elements = Common::DivCeil(info.GetSize(), 4 * sizeof(u32));
@ -1081,29 +1059,17 @@ private:
if (const auto cbuf = std::get_if<CbufNode>(&*node)) { if (const auto cbuf = std::get_if<CbufNode>(&*node)) {
const Node offset = cbuf->GetOffset(); const Node offset = cbuf->GetOffset();
const u32 base_unified_offset = cbuf->GetIndex() * MAX_CONSTBUFFER_SCALARS;
if (const auto immediate = std::get_if<ImmediateNode>(&*offset)) { if (const auto immediate = std::get_if<ImmediateNode>(&*offset)) {
// Direct access // Direct access
const u32 offset_imm = immediate->GetValue(); const u32 offset_imm = immediate->GetValue();
ASSERT_MSG(offset_imm % 4 == 0, "Unaligned cbuf direct access"); ASSERT_MSG(offset_imm % 4 == 0, "Unaligned cbuf direct access");
if (use_unified_uniforms) { return {fmt::format("{}[{}][{}]", GetConstBuffer(cbuf->GetIndex()),
return {fmt::format("cbufs[{}]", base_unified_offset + offset_imm / 4), offset_imm / (4 * 4), (offset_imm / 4) % 4),
Type::Uint};
} else {
return {fmt::format("{}[{}][{}]", GetConstBuffer(cbuf->GetIndex()),
offset_imm / (4 * 4), (offset_imm / 4) % 4),
Type::Uint};
}
}
// Indirect access
if (use_unified_uniforms) {
return {fmt::format("cbufs[{} + ({} >> 2)]", base_unified_offset,
Visit(offset).AsUint()),
Type::Uint}; Type::Uint};
} }
// Indirect access
const std::string final_offset = code.GenerateTemporary(); const std::string final_offset = code.GenerateTemporary();
code.AddLine("uint {} = {} >> 2;", final_offset, Visit(offset).AsUint()); code.AddLine("uint {} = {} >> 2;", final_offset, Visit(offset).AsUint());
@ -2293,7 +2259,6 @@ private:
} }
} }
} }
if (header.ps.omap.depth) { if (header.ps.omap.depth) {
// The depth output is always 2 registers after the last color output, and current_reg // The depth output is always 2 registers after the last color output, and current_reg
// already contains one past the last color register. // already contains one past the last color register.
@ -2337,7 +2302,8 @@ private:
} }
Expression YNegate(Operation operation) { Expression YNegate(Operation operation) {
return {"y_direction", Type::Float}; // Y_NEGATE is mapped to this uniform value
return {"gl_FrontMaterial.ambient.a", Type::Float};
} }
template <u32 element> template <u32 element>
@ -2787,7 +2753,6 @@ private:
const std::string_view identifier; const std::string_view identifier;
const std::string_view suffix; const std::string_view suffix;
const Header header; const Header header;
const bool use_unified_uniforms;
std::unordered_map<u8, VaryingTFB> transform_feedback; std::unordered_map<u8, VaryingTFB> transform_feedback;
ShaderWriter code; ShaderWriter code;
@ -3003,8 +2968,10 @@ ShaderEntries MakeEntries(const Device& device, const ShaderIR& ir, ShaderType s
for (std::size_t i = 0; i < std::size(clip_distances); ++i) { for (std::size_t i = 0; i < std::size(clip_distances); ++i) {
entries.clip_distances = (clip_distances[i] ? 1U : 0U) << i; entries.clip_distances = (clip_distances[i] ? 1U : 0U) << i;
} }
for (const auto& buffer : entries.const_buffers) {
entries.enabled_uniform_buffers |= 1U << buffer.GetIndex();
}
entries.shader_length = ir.GetLength(); entries.shader_length = ir.GetLength();
entries.use_unified_uniforms = UseUnifiedUniforms(device, ir, stage);
return entries; return entries;
} }

View file

@ -55,7 +55,7 @@ struct ShaderEntries {
std::vector<ImageEntry> images; std::vector<ImageEntry> images;
std::size_t shader_length{}; std::size_t shader_length{};
u32 clip_distances{}; u32 clip_distances{};
bool use_unified_uniforms{}; u32 enabled_uniform_buffers{};
}; };
ShaderEntries MakeEntries(const Device& device, const VideoCommon::Shader::ShaderIR& ir, ShaderEntries MakeEntries(const Device& device, const VideoCommon::Shader::ShaderIR& ir,

View file

@ -36,16 +36,10 @@ void SetupDirtyColorMasks(Tables& tables) {
FillBlock(tables[1], OFF(color_mask), NUM(color_mask), ColorMasks); FillBlock(tables[1], OFF(color_mask), NUM(color_mask), ColorMasks);
} }
void SetupDirtyVertexArrays(Tables& tables) { void SetupDirtyVertexInstances(Tables& tables) {
static constexpr std::size_t num_array = 3;
static constexpr std::size_t instance_base_offset = 3; static constexpr std::size_t instance_base_offset = 3;
for (std::size_t i = 0; i < Regs::NumVertexArrays; ++i) { for (std::size_t i = 0; i < Regs::NumVertexArrays; ++i) {
const std::size_t array_offset = OFF(vertex_array) + i * NUM(vertex_array[0]); const std::size_t array_offset = OFF(vertex_array) + i * NUM(vertex_array[0]);
const std::size_t limit_offset = OFF(vertex_array_limit) + i * NUM(vertex_array_limit[0]);
FillBlock(tables, array_offset, num_array, VertexBuffer0 + i, VertexBuffers);
FillBlock(tables, limit_offset, NUM(vertex_array_limit), VertexBuffer0 + i, VertexBuffers);
const std::size_t instance_array_offset = array_offset + instance_base_offset; const std::size_t instance_array_offset = array_offset + instance_base_offset;
tables[0][instance_array_offset] = static_cast<u8>(VertexInstance0 + i); tables[0][instance_array_offset] = static_cast<u8>(VertexInstance0 + i);
tables[1][instance_array_offset] = VertexInstances; tables[1][instance_array_offset] = VertexInstances;
@ -217,11 +211,11 @@ void SetupDirtyMisc(Tables& tables) {
StateTracker::StateTracker(Tegra::GPU& gpu) : flags{gpu.Maxwell3D().dirty.flags} { StateTracker::StateTracker(Tegra::GPU& gpu) : flags{gpu.Maxwell3D().dirty.flags} {
auto& dirty = gpu.Maxwell3D().dirty; auto& dirty = gpu.Maxwell3D().dirty;
auto& tables = dirty.tables; auto& tables = dirty.tables;
SetupDirtyRenderTargets(tables); SetupDirtyFlags(tables);
SetupDirtyColorMasks(tables); SetupDirtyColorMasks(tables);
SetupDirtyViewports(tables); SetupDirtyViewports(tables);
SetupDirtyScissors(tables); SetupDirtyScissors(tables);
SetupDirtyVertexArrays(tables); SetupDirtyVertexInstances(tables);
SetupDirtyVertexFormat(tables); SetupDirtyVertexFormat(tables);
SetupDirtyShaders(tables); SetupDirtyShaders(tables);
SetupDirtyPolygonModes(tables); SetupDirtyPolygonModes(tables);
@ -241,19 +235,6 @@ StateTracker::StateTracker(Tegra::GPU& gpu) : flags{gpu.Maxwell3D().dirty.flags}
SetupDirtyClipControl(tables); SetupDirtyClipControl(tables);
SetupDirtyDepthClampEnabled(tables); SetupDirtyDepthClampEnabled(tables);
SetupDirtyMisc(tables); SetupDirtyMisc(tables);
auto& store = dirty.on_write_stores;
store[VertexBuffers] = true;
for (std::size_t i = 0; i < Regs::NumVertexArrays; ++i) {
store[VertexBuffer0 + i] = true;
}
}
void StateTracker::InvalidateStreamBuffer() {
flags[Dirty::VertexBuffers] = true;
for (int index = Dirty::VertexBuffer0; index <= Dirty::VertexBuffer31; ++index) {
flags[index] = true;
}
} }
} // namespace OpenGL } // namespace OpenGL

View file

@ -28,10 +28,6 @@ enum : u8 {
VertexFormat0, VertexFormat0,
VertexFormat31 = VertexFormat0 + 31, VertexFormat31 = VertexFormat0 + 31,
VertexBuffers,
VertexBuffer0,
VertexBuffer31 = VertexBuffer0 + 31,
VertexInstances, VertexInstances,
VertexInstance0, VertexInstance0,
VertexInstance31 = VertexInstance0 + 31, VertexInstance31 = VertexInstance0 + 31,
@ -92,8 +88,6 @@ class StateTracker {
public: public:
explicit StateTracker(Tegra::GPU& gpu); explicit StateTracker(Tegra::GPU& gpu);
void InvalidateStreamBuffer();
void BindIndexBuffer(GLuint new_index_buffer) { void BindIndexBuffer(GLuint new_index_buffer) {
if (index_buffer == new_index_buffer) { if (index_buffer == new_index_buffer) {
return; return;
@ -110,13 +104,32 @@ public:
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, framebuffer); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, framebuffer);
} }
void ClipControl(GLenum new_origin, GLenum new_depth) {
if (new_origin == origin && new_depth == depth) {
return;
}
origin = new_origin;
depth = new_depth;
glClipControl(origin, depth);
}
void SetYNegate(bool new_y_negate) {
if (new_y_negate == y_negate) {
return;
}
// Y_NEGATE is mapped to gl_FrontMaterial.ambient.a
y_negate = new_y_negate;
const std::array ambient{0.0f, 0.0f, 0.0f, y_negate ? -1.0f : 1.0f};
glMaterialfv(GL_FRONT, GL_AMBIENT, ambient.data());
}
void NotifyScreenDrawVertexArray() { void NotifyScreenDrawVertexArray() {
flags[OpenGL::Dirty::VertexFormats] = true; flags[OpenGL::Dirty::VertexFormats] = true;
flags[OpenGL::Dirty::VertexFormat0 + 0] = true; flags[OpenGL::Dirty::VertexFormat0 + 0] = true;
flags[OpenGL::Dirty::VertexFormat0 + 1] = true; flags[OpenGL::Dirty::VertexFormat0 + 1] = true;
flags[OpenGL::Dirty::VertexBuffers] = true; flags[VideoCommon::Dirty::VertexBuffers] = true;
flags[OpenGL::Dirty::VertexBuffer0] = true; flags[VideoCommon::Dirty::VertexBuffer0] = true;
flags[OpenGL::Dirty::VertexInstances] = true; flags[OpenGL::Dirty::VertexInstances] = true;
flags[OpenGL::Dirty::VertexInstance0 + 0] = true; flags[OpenGL::Dirty::VertexInstance0 + 0] = true;
@ -202,6 +215,9 @@ private:
GLuint framebuffer = 0; GLuint framebuffer = 0;
GLuint index_buffer = 0; GLuint index_buffer = 0;
GLenum origin = GL_LOWER_LEFT;
GLenum depth = GL_NEGATIVE_ONE_TO_ONE;
bool y_negate = false;
}; };
} // namespace OpenGL } // namespace OpenGL

View file

@ -1,70 +1,64 @@
// Copyright 2018 Citra Emulator Project // Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version // Licensed under GPLv2 or any later version
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include <tuple> #include <array>
#include <vector> #include <memory>
#include <span>
#include <glad/glad.h>
#include "common/alignment.h" #include "common/alignment.h"
#include "common/assert.h" #include "common/assert.h"
#include "common/microprofile.h"
#include "video_core/renderer_opengl/gl_device.h"
#include "video_core/renderer_opengl/gl_state_tracker.h"
#include "video_core/renderer_opengl/gl_stream_buffer.h" #include "video_core/renderer_opengl/gl_stream_buffer.h"
MICROPROFILE_DEFINE(OpenGL_StreamBuffer, "OpenGL", "Stream Buffer Orphaning",
MP_RGB(128, 128, 192));
namespace OpenGL { namespace OpenGL {
OGLStreamBuffer::OGLStreamBuffer(const Device& device, StateTracker& state_tracker_) StreamBuffer::StreamBuffer() {
: state_tracker{state_tracker_} { static constexpr GLenum flags = GL_MAP_WRITE_BIT | GL_MAP_PERSISTENT_BIT | GL_MAP_COHERENT_BIT;
gl_buffer.Create(); buffer.Create();
glObjectLabel(GL_BUFFER, buffer.handle, -1, "Stream Buffer");
static constexpr GLbitfield flags = GL_MAP_WRITE_BIT | GL_MAP_PERSISTENT_BIT; glNamedBufferStorage(buffer.handle, STREAM_BUFFER_SIZE, nullptr, flags);
glNamedBufferStorage(gl_buffer.handle, BUFFER_SIZE, nullptr, flags); mapped_pointer =
mapped_ptr = static_cast<u8*>( static_cast<u8*>(glMapNamedBufferRange(buffer.handle, 0, STREAM_BUFFER_SIZE, flags));
glMapNamedBufferRange(gl_buffer.handle, 0, BUFFER_SIZE, flags | GL_MAP_FLUSH_EXPLICIT_BIT)); for (OGLSync& sync : fences) {
sync.Create();
if (device.UseAssemblyShaders() || device.HasVertexBufferUnifiedMemory()) {
glMakeNamedBufferResidentNV(gl_buffer.handle, GL_READ_ONLY);
glGetNamedBufferParameterui64vNV(gl_buffer.handle, GL_BUFFER_GPU_ADDRESS_NV, &gpu_address);
} }
} }
OGLStreamBuffer::~OGLStreamBuffer() { std::pair<std::span<u8>, size_t> StreamBuffer::Request(size_t size) noexcept {
glUnmapNamedBuffer(gl_buffer.handle); ASSERT(size < REGION_SIZE);
gl_buffer.Release(); for (size_t region = Region(used_iterator), region_end = Region(iterator); region < region_end;
} ++region) {
fences[region].Create();
std::pair<u8*, GLintptr> OGLStreamBuffer::Map(GLsizeiptr size, GLintptr alignment) {
ASSERT(size <= BUFFER_SIZE);
ASSERT(alignment <= BUFFER_SIZE);
mapped_size = size;
if (alignment > 0) {
buffer_pos = Common::AlignUp<std::size_t>(buffer_pos, alignment);
} }
used_iterator = iterator;
if (buffer_pos + size > BUFFER_SIZE) { for (size_t region = Region(free_iterator) + 1,
MICROPROFILE_SCOPE(OpenGL_StreamBuffer); region_end = std::min(Region(iterator + size) + 1, NUM_SYNCS);
glInvalidateBufferData(gl_buffer.handle); region < region_end; ++region) {
state_tracker.InvalidateStreamBuffer(); glClientWaitSync(fences[region].handle, 0, GL_TIMEOUT_IGNORED);
fences[region].Release();
buffer_pos = 0;
} }
if (iterator + size > free_iterator) {
return std::make_pair(mapped_ptr + buffer_pos, buffer_pos); free_iterator = iterator + size;
}
void OGLStreamBuffer::Unmap(GLsizeiptr size) {
ASSERT(size <= mapped_size);
if (size > 0) {
glFlushMappedNamedBufferRange(gl_buffer.handle, buffer_pos, size);
} }
if (iterator + size > STREAM_BUFFER_SIZE) {
for (size_t region = Region(used_iterator); region < NUM_SYNCS; ++region) {
fences[region].Create();
}
used_iterator = 0;
iterator = 0;
free_iterator = size;
buffer_pos += size; for (size_t region = 0, region_end = Region(size); region <= region_end; ++region) {
glClientWaitSync(fences[region].handle, 0, GL_TIMEOUT_IGNORED);
fences[region].Release();
}
}
const size_t offset = iterator;
iterator = Common::AlignUp(iterator + size, MAX_ALIGNMENT);
return {std::span(mapped_pointer + offset, size), offset};
} }
} // namespace OpenGL } // namespace OpenGL

View file

@ -1,9 +1,12 @@
// Copyright 2018 Citra Emulator Project // Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version // Licensed under GPLv2 or any later version
// Refer to the license.txt file included. // Refer to the license.txt file included.
#pragma once #pragma once
#include <array>
#include <memory>
#include <span>
#include <utility> #include <utility>
#include <glad/glad.h> #include <glad/glad.h>
@ -13,48 +16,35 @@
namespace OpenGL { namespace OpenGL {
class Device; class StreamBuffer {
class StateTracker; static constexpr size_t STREAM_BUFFER_SIZE = 64 * 1024 * 1024;
static constexpr size_t NUM_SYNCS = 16;
static constexpr size_t REGION_SIZE = STREAM_BUFFER_SIZE / NUM_SYNCS;
static constexpr size_t MAX_ALIGNMENT = 256;
static_assert(STREAM_BUFFER_SIZE % MAX_ALIGNMENT == 0);
static_assert(STREAM_BUFFER_SIZE % NUM_SYNCS == 0);
static_assert(REGION_SIZE % MAX_ALIGNMENT == 0);
class OGLStreamBuffer : private NonCopyable {
public: public:
explicit OGLStreamBuffer(const Device& device, StateTracker& state_tracker_); explicit StreamBuffer();
~OGLStreamBuffer();
/* [[nodiscard]] std::pair<std::span<u8>, size_t> Request(size_t size) noexcept;
* Allocates a linear chunk of memory in the GPU buffer with at least "size" bytes
* and the optional alignment requirement.
* If the buffer is full, the whole buffer is reallocated which invalidates old chunks.
* The return values are the pointer to the new chunk, and the offset within the buffer.
* The actual used size must be specified on unmapping the chunk.
*/
std::pair<u8*, GLintptr> Map(GLsizeiptr size, GLintptr alignment = 0);
void Unmap(GLsizeiptr size); [[nodiscard]] GLuint Handle() const noexcept {
return buffer.handle;
GLuint Handle() const {
return gl_buffer.handle;
}
u64 Address() const {
return gpu_address;
}
GLsizeiptr Size() const noexcept {
return BUFFER_SIZE;
} }
private: private:
static constexpr GLsizeiptr BUFFER_SIZE = 256 * 1024 * 1024; [[nodiscard]] static size_t Region(size_t offset) noexcept {
return offset / REGION_SIZE;
}
StateTracker& state_tracker; size_t iterator = 0;
size_t used_iterator = 0;
OGLBuffer gl_buffer; size_t free_iterator = 0;
u8* mapped_pointer = nullptr;
GLuint64EXT gpu_address = 0; OGLBuffer buffer;
GLintptr buffer_pos = 0; std::array<OGLSync, NUM_SYNCS> fences;
GLsizeiptr mapped_size = 0;
u8* mapped_ptr = nullptr;
}; };
} // namespace OpenGL } // namespace OpenGL

View file

@ -398,9 +398,6 @@ void AttachTexture(GLuint fbo, GLenum attachment, const ImageView* image_view) {
} // Anonymous namespace } // Anonymous namespace
ImageBufferMap::ImageBufferMap(GLuint handle_, u8* map, size_t size, OGLSync* sync_)
: span(map, size), sync{sync_}, handle{handle_} {}
ImageBufferMap::~ImageBufferMap() { ImageBufferMap::~ImageBufferMap() {
if (sync) { if (sync) {
sync->Create(); sync->Create();
@ -487,11 +484,11 @@ void TextureCacheRuntime::Finish() {
glFinish(); glFinish();
} }
ImageBufferMap TextureCacheRuntime::MapUploadBuffer(size_t size) { ImageBufferMap TextureCacheRuntime::UploadStagingBuffer(size_t size) {
return upload_buffers.RequestMap(size, true); return upload_buffers.RequestMap(size, true);
} }
ImageBufferMap TextureCacheRuntime::MapDownloadBuffer(size_t size) { ImageBufferMap TextureCacheRuntime::DownloadStagingBuffer(size_t size) {
return download_buffers.RequestMap(size, false); return download_buffers.RequestMap(size, false);
} }
@ -596,7 +593,11 @@ ImageBufferMap TextureCacheRuntime::StagingBuffers::RequestMap(size_t requested_
bool insert_fence) { bool insert_fence) {
const size_t index = RequestBuffer(requested_size); const size_t index = RequestBuffer(requested_size);
OGLSync* const sync = insert_fence ? &syncs[index] : nullptr; OGLSync* const sync = insert_fence ? &syncs[index] : nullptr;
return ImageBufferMap(buffers[index].handle, maps[index], requested_size, sync); return ImageBufferMap{
.mapped_span = std::span(maps[index], requested_size),
.sync = sync,
.buffer = buffers[index].handle,
};
} }
size_t TextureCacheRuntime::StagingBuffers::RequestBuffer(size_t requested_size) { size_t TextureCacheRuntime::StagingBuffers::RequestBuffer(size_t requested_size) {
@ -711,7 +712,7 @@ Image::Image(TextureCacheRuntime& runtime, const VideoCommon::ImageInfo& info_,
void Image::UploadMemory(const ImageBufferMap& map, size_t buffer_offset, void Image::UploadMemory(const ImageBufferMap& map, size_t buffer_offset,
std::span<const VideoCommon::BufferImageCopy> copies) { std::span<const VideoCommon::BufferImageCopy> copies) {
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, map.Handle()); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, map.buffer);
glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, buffer_offset, unswizzled_size_bytes); glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, buffer_offset, unswizzled_size_bytes);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
@ -735,7 +736,7 @@ void Image::UploadMemory(const ImageBufferMap& map, size_t buffer_offset,
void Image::UploadMemory(const ImageBufferMap& map, size_t buffer_offset, void Image::UploadMemory(const ImageBufferMap& map, size_t buffer_offset,
std::span<const VideoCommon::BufferCopy> copies) { std::span<const VideoCommon::BufferCopy> copies) {
for (const VideoCommon::BufferCopy& copy : copies) { for (const VideoCommon::BufferCopy& copy : copies) {
glCopyNamedBufferSubData(map.Handle(), buffer.handle, copy.src_offset + buffer_offset, glCopyNamedBufferSubData(map.buffer, buffer.handle, copy.src_offset + buffer_offset,
copy.dst_offset, copy.size); copy.dst_offset, copy.size);
} }
} }
@ -744,7 +745,7 @@ void Image::DownloadMemory(ImageBufferMap& map, size_t buffer_offset,
std::span<const VideoCommon::BufferImageCopy> copies) { std::span<const VideoCommon::BufferImageCopy> copies) {
glMemoryBarrier(GL_PIXEL_BUFFER_BARRIER_BIT); // TODO: Move this to its own API glMemoryBarrier(GL_PIXEL_BUFFER_BARRIER_BIT); // TODO: Move this to its own API
glBindBuffer(GL_PIXEL_PACK_BUFFER, map.Handle()); glBindBuffer(GL_PIXEL_PACK_BUFFER, map.buffer);
glPixelStorei(GL_PACK_ALIGNMENT, 1); glPixelStorei(GL_PACK_ALIGNMENT, 1);
u32 current_row_length = std::numeric_limits<u32>::max(); u32 current_row_length = std::numeric_limits<u32>::max();

View file

@ -31,23 +31,12 @@ using VideoCommon::NUM_RT;
using VideoCommon::Offset2D; using VideoCommon::Offset2D;
using VideoCommon::RenderTargets; using VideoCommon::RenderTargets;
class ImageBufferMap { struct ImageBufferMap {
public:
explicit ImageBufferMap(GLuint handle, u8* map, size_t size, OGLSync* sync);
~ImageBufferMap(); ~ImageBufferMap();
GLuint Handle() const noexcept { std::span<u8> mapped_span;
return handle;
}
std::span<u8> Span() const noexcept {
return span;
}
private:
std::span<u8> span;
OGLSync* sync; OGLSync* sync;
GLuint handle; GLuint buffer;
}; };
struct FormatProperties { struct FormatProperties {
@ -69,9 +58,9 @@ public:
void Finish(); void Finish();
ImageBufferMap MapUploadBuffer(size_t size); ImageBufferMap UploadStagingBuffer(size_t size);
ImageBufferMap MapDownloadBuffer(size_t size); ImageBufferMap DownloadStagingBuffer(size_t size);
void CopyImage(Image& dst, Image& src, std::span<const VideoCommon::ImageCopy> copies); void CopyImage(Image& dst, Image& src, std::span<const VideoCommon::ImageCopy> copies);

View file

@ -27,11 +27,14 @@
#include "video_core/renderer_opengl/gl_shader_manager.h" #include "video_core/renderer_opengl/gl_shader_manager.h"
#include "video_core/renderer_opengl/renderer_opengl.h" #include "video_core/renderer_opengl/renderer_opengl.h"
#include "video_core/textures/decoders.h" #include "video_core/textures/decoders.h"
#include "video_core/vulkan_common/vulkan_debug_callback.h"
#include "video_core/vulkan_common/vulkan_device.h"
#include "video_core/vulkan_common/vulkan_instance.h"
#include "video_core/vulkan_common/vulkan_library.h"
#include "video_core/vulkan_common/vulkan_memory_allocator.h"
namespace OpenGL { namespace OpenGL {
namespace { namespace {
constexpr GLint PositionLocation = 0; constexpr GLint PositionLocation = 0;
constexpr GLint TexCoordLocation = 1; constexpr GLint TexCoordLocation = 1;
constexpr GLint ModelViewMatrixLocation = 0; constexpr GLint ModelViewMatrixLocation = 0;
@ -125,25 +128,98 @@ void APIENTRY DebugHandler(GLenum source, GLenum type, GLuint id, GLenum severit
} }
} }
Vulkan::vk::PhysicalDevice FindPhysicalDevice(Vulkan::vk::Instance& instance) {
using namespace Vulkan;
using UUID = std::array<GLubyte, GL_UUID_SIZE_EXT>;
GLint num_device_uuids;
glGetIntegerv(GL_NUM_DEVICE_UUIDS_EXT, &num_device_uuids);
std::vector<UUID> device_uuids(num_device_uuids);
for (GLint index = 0; index < num_device_uuids; ++index) {
glGetUnsignedBytei_vEXT(GL_DEVICE_UUID_EXT, 0, device_uuids[index].data());
}
UUID driver_uuid;
glGetUnsignedBytevEXT(GL_DRIVER_UUID_EXT, driver_uuid.data());
for (const VkPhysicalDevice raw_physical_device : instance.EnumeratePhysicalDevices()) {
VkPhysicalDeviceIDProperties device_id_properties{};
device_id_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES;
VkPhysicalDeviceProperties2KHR properties{
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2_KHR,
.pNext = &device_id_properties,
.properties{},
};
vk::PhysicalDevice physical_device(raw_physical_device, instance.Dispatch());
physical_device.GetProperties2KHR(properties);
if (!std::ranges::equal(device_id_properties.driverUUID, driver_uuid)) {
continue;
}
const auto it =
std::ranges::find_if(device_uuids, [&device_id_properties, driver_uuid](UUID uuid) {
return std::ranges::equal(device_id_properties.deviceUUID, uuid);
});
if (it != device_uuids.end()) {
return physical_device;
}
}
throw vk::Exception(VK_ERROR_INCOMPATIBLE_DRIVER);
}
} // Anonymous namespace } // Anonymous namespace
struct VulkanObjects {
static std::unique_ptr<VulkanObjects> TryCreate() {
if (!GLAD_GL_EXT_memory_object) {
// Interop is not present
return nullptr;
}
const std::string_view vendor{reinterpret_cast<const char*>(glGetString(GL_VENDOR))};
if (vendor == "ATI Technologies Inc.") {
// Avoid using GL_EXT_memory_object on AMD, as it makes the GL driver crash
return nullptr;
}
if (!Settings::values.use_assembly_shaders.GetValue()) {
// We only need interop when assembly shaders are enabled
return nullptr;
}
#ifdef __linux__
LOG_WARNING(Render_OpenGL, "Interop doesn't work on Linux at the moment");
return nullptr;
#endif
try {
return std::make_unique<VulkanObjects>();
} catch (const Vulkan::vk::Exception& exception) {
LOG_ERROR(Render_OpenGL, "Failed to initialize Vulkan objects with error: {}",
exception.what());
return nullptr;
}
}
Common::DynamicLibrary library{Vulkan::OpenLibrary()};
Vulkan::vk::InstanceDispatch dld;
Vulkan::vk::Instance instance{Vulkan::CreateInstance(library, dld, VK_API_VERSION_1_1)};
Vulkan::Device device{*instance, FindPhysicalDevice(instance), nullptr, dld};
Vulkan::MemoryAllocator memory_allocator{device, true};
};
RendererOpenGL::RendererOpenGL(Core::TelemetrySession& telemetry_session_, RendererOpenGL::RendererOpenGL(Core::TelemetrySession& telemetry_session_,
Core::Frontend::EmuWindow& emu_window_, Core::Frontend::EmuWindow& emu_window_,
Core::Memory::Memory& cpu_memory_, Tegra::GPU& gpu_, Core::Memory::Memory& cpu_memory_, Tegra::GPU& gpu_,
std::unique_ptr<Core::Frontend::GraphicsContext> context_) std::unique_ptr<Core::Frontend::GraphicsContext> context_)
: RendererBase{emu_window_, std::move(context_)}, telemetry_session{telemetry_session_}, : RendererBase{emu_window_, std::move(context_)}, telemetry_session{telemetry_session_},
emu_window{emu_window_}, cpu_memory{cpu_memory_}, gpu{gpu_}, program_manager{device}, emu_window{emu_window_}, cpu_memory{cpu_memory_}, gpu{gpu_},
rasterizer{emu_window, gpu, cpu_memory, device, screen_info, program_manager, state_tracker} { vulkan_objects{VulkanObjects::TryCreate()}, device{vulkan_objects != nullptr},
state_tracker{gpu}, program_manager{device},
rasterizer(emu_window, gpu, cpu_memory, device,
vulkan_objects ? &vulkan_objects->device : nullptr,
vulkan_objects ? &vulkan_objects->memory_allocator : nullptr, screen_info,
program_manager, state_tracker) {
if (Settings::values.renderer_debug && GLAD_GL_KHR_debug) { if (Settings::values.renderer_debug && GLAD_GL_KHR_debug) {
glEnable(GL_DEBUG_OUTPUT); glEnable(GL_DEBUG_OUTPUT);
glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS); glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS);
glDebugMessageCallback(DebugHandler, nullptr); glDebugMessageCallback(DebugHandler, nullptr);
} }
AddTelemetryFields(); AddTelemetryFields();
if (!GLAD_GL_VERSION_4_6) {
throw std::runtime_error{"OpenGL 4.3 is not available"};
}
InitOpenGLObjects(); InitOpenGLObjects();
} }
@ -280,6 +356,7 @@ void RendererOpenGL::InitOpenGLObjects() {
// Enable unified vertex attributes and query vertex buffer address when the driver supports it // Enable unified vertex attributes and query vertex buffer address when the driver supports it
if (device.HasVertexBufferUnifiedMemory()) { if (device.HasVertexBufferUnifiedMemory()) {
glEnableClientState(GL_VERTEX_ATTRIB_ARRAY_UNIFIED_NV); glEnableClientState(GL_VERTEX_ATTRIB_ARRAY_UNIFIED_NV);
glEnableClientState(GL_ELEMENT_ARRAY_UNIFIED_NV);
glMakeNamedBufferResidentNV(vertex_buffer.handle, GL_READ_ONLY); glMakeNamedBufferResidentNV(vertex_buffer.handle, GL_READ_ONLY);
glGetNamedBufferParameterui64vNV(vertex_buffer.handle, GL_BUFFER_GPU_ADDRESS_NV, glGetNamedBufferParameterui64vNV(vertex_buffer.handle, GL_BUFFER_GPU_ADDRESS_NV,
@ -412,6 +489,7 @@ void RendererOpenGL::DrawScreen(const Layout::FramebufferLayout& layout) {
program_manager.BindHostPipeline(pipeline.handle); program_manager.BindHostPipeline(pipeline.handle);
state_tracker.ClipControl(GL_LOWER_LEFT, GL_ZERO_TO_ONE);
glEnable(GL_CULL_FACE); glEnable(GL_CULL_FACE);
if (screen_info.display_srgb) { if (screen_info.display_srgb) {
glEnable(GL_FRAMEBUFFER_SRGB); glEnable(GL_FRAMEBUFFER_SRGB);
@ -430,7 +508,6 @@ void RendererOpenGL::DrawScreen(const Layout::FramebufferLayout& layout) {
glCullFace(GL_BACK); glCullFace(GL_BACK);
glFrontFace(GL_CW); glFrontFace(GL_CW);
glColorMaski(0, GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glColorMaski(0, GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glClipControl(GL_LOWER_LEFT, GL_ZERO_TO_ONE);
glViewportIndexedf(0, 0.0f, 0.0f, static_cast<GLfloat>(layout.width), glViewportIndexedf(0, 0.0f, 0.0f, static_cast<GLfloat>(layout.width),
static_cast<GLfloat>(layout.height)); static_cast<GLfloat>(layout.height));
glDepthRangeIndexed(0, 0.0, 0.0); glDepthRangeIndexed(0, 0.0, 0.0);

View file

@ -38,6 +38,8 @@ class GPU;
namespace OpenGL { namespace OpenGL {
struct VulkanObjects;
/// Structure used for storing information about the textures for the Switch screen /// Structure used for storing information about the textures for the Switch screen
struct TextureInfo { struct TextureInfo {
OGLTexture resource; OGLTexture resource;
@ -99,8 +101,11 @@ private:
Core::Memory::Memory& cpu_memory; Core::Memory::Memory& cpu_memory;
Tegra::GPU& gpu; Tegra::GPU& gpu;
const Device device; std::unique_ptr<VulkanObjects> vulkan_objects;
StateTracker state_tracker{gpu}; Device device;
StateTracker state_tracker;
ProgramManager program_manager;
RasterizerOpenGL rasterizer;
// OpenGL object IDs // OpenGL object IDs
OGLSampler present_sampler; OGLSampler present_sampler;
@ -116,11 +121,6 @@ private:
/// Display information for Switch screen /// Display information for Switch screen
ScreenInfo screen_info; ScreenInfo screen_info;
/// Global dummy shader pipeline
ProgramManager program_manager;
RasterizerOpenGL rasterizer;
/// OpenGL framebuffer data /// OpenGL framebuffer data
std::vector<u8> gl_framebuffer_data; std::vector<u8> gl_framebuffer_data;

View file

@ -71,7 +71,7 @@ void UtilShaders::BlockLinearUpload2D(Image& image, const ImageBufferMap& map, s
static constexpr GLuint BINDING_OUTPUT_IMAGE = 0; static constexpr GLuint BINDING_OUTPUT_IMAGE = 0;
program_manager.BindHostCompute(block_linear_unswizzle_2d_program.handle); program_manager.BindHostCompute(block_linear_unswizzle_2d_program.handle);
glFlushMappedNamedBufferRange(map.Handle(), buffer_offset, image.guest_size_bytes); glFlushMappedNamedBufferRange(map.buffer, buffer_offset, image.guest_size_bytes);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, BINDING_SWIZZLE_BUFFER, swizzle_table_buffer.handle); glBindBufferBase(GL_SHADER_STORAGE_BUFFER, BINDING_SWIZZLE_BUFFER, swizzle_table_buffer.handle);
const GLenum store_format = StoreFormat(BytesPerBlock(image.info.format)); const GLenum store_format = StoreFormat(BytesPerBlock(image.info.format));
@ -91,8 +91,8 @@ void UtilShaders::BlockLinearUpload2D(Image& image, const ImageBufferMap& map, s
glUniform1ui(5, params.x_shift); glUniform1ui(5, params.x_shift);
glUniform1ui(6, params.block_height); glUniform1ui(6, params.block_height);
glUniform1ui(7, params.block_height_mask); glUniform1ui(7, params.block_height_mask);
glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_INPUT_BUFFER, map.Handle(), glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_INPUT_BUFFER, map.buffer, input_offset,
input_offset, image.guest_size_bytes - swizzle.buffer_offset); image.guest_size_bytes - swizzle.buffer_offset);
glBindImageTexture(BINDING_OUTPUT_IMAGE, image.Handle(), swizzle.level, GL_TRUE, 0, glBindImageTexture(BINDING_OUTPUT_IMAGE, image.Handle(), swizzle.level, GL_TRUE, 0,
GL_WRITE_ONLY, store_format); GL_WRITE_ONLY, store_format);
glDispatchCompute(num_dispatches_x, num_dispatches_y, image.info.resources.layers); glDispatchCompute(num_dispatches_x, num_dispatches_y, image.info.resources.layers);
@ -108,7 +108,7 @@ void UtilShaders::BlockLinearUpload3D(Image& image, const ImageBufferMap& map, s
static constexpr GLuint BINDING_INPUT_BUFFER = 1; static constexpr GLuint BINDING_INPUT_BUFFER = 1;
static constexpr GLuint BINDING_OUTPUT_IMAGE = 0; static constexpr GLuint BINDING_OUTPUT_IMAGE = 0;
glFlushMappedNamedBufferRange(map.Handle(), buffer_offset, image.guest_size_bytes); glFlushMappedNamedBufferRange(map.buffer, buffer_offset, image.guest_size_bytes);
program_manager.BindHostCompute(block_linear_unswizzle_3d_program.handle); program_manager.BindHostCompute(block_linear_unswizzle_3d_program.handle);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, BINDING_SWIZZLE_BUFFER, swizzle_table_buffer.handle); glBindBufferBase(GL_SHADER_STORAGE_BUFFER, BINDING_SWIZZLE_BUFFER, swizzle_table_buffer.handle);
@ -132,8 +132,8 @@ void UtilShaders::BlockLinearUpload3D(Image& image, const ImageBufferMap& map, s
glUniform1ui(7, params.block_height_mask); glUniform1ui(7, params.block_height_mask);
glUniform1ui(8, params.block_depth); glUniform1ui(8, params.block_depth);
glUniform1ui(9, params.block_depth_mask); glUniform1ui(9, params.block_depth_mask);
glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_INPUT_BUFFER, map.Handle(), glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_INPUT_BUFFER, map.buffer, input_offset,
input_offset, image.guest_size_bytes - swizzle.buffer_offset); image.guest_size_bytes - swizzle.buffer_offset);
glBindImageTexture(BINDING_OUTPUT_IMAGE, image.Handle(), swizzle.level, GL_TRUE, 0, glBindImageTexture(BINDING_OUTPUT_IMAGE, image.Handle(), swizzle.level, GL_TRUE, 0,
GL_WRITE_ONLY, store_format); GL_WRITE_ONLY, store_format);
glDispatchCompute(num_dispatches_x, num_dispatches_y, num_dispatches_z); glDispatchCompute(num_dispatches_x, num_dispatches_y, num_dispatches_z);
@ -159,7 +159,7 @@ void UtilShaders::PitchUpload(Image& image, const ImageBufferMap& map, size_t bu
"Non-power of two images are not implemented"); "Non-power of two images are not implemented");
program_manager.BindHostCompute(pitch_unswizzle_program.handle); program_manager.BindHostCompute(pitch_unswizzle_program.handle);
glFlushMappedNamedBufferRange(map.Handle(), buffer_offset, image.guest_size_bytes); glFlushMappedNamedBufferRange(map.buffer, buffer_offset, image.guest_size_bytes);
glUniform2ui(LOC_ORIGIN, 0, 0); glUniform2ui(LOC_ORIGIN, 0, 0);
glUniform2i(LOC_DESTINATION, 0, 0); glUniform2i(LOC_DESTINATION, 0, 0);
glUniform1ui(LOC_BYTES_PER_BLOCK, bytes_per_block); glUniform1ui(LOC_BYTES_PER_BLOCK, bytes_per_block);
@ -172,8 +172,8 @@ void UtilShaders::PitchUpload(Image& image, const ImageBufferMap& map, size_t bu
const u32 num_dispatches_x = Common::DivCeil(num_tiles.width, WORKGROUP_SIZE.width); const u32 num_dispatches_x = Common::DivCeil(num_tiles.width, WORKGROUP_SIZE.width);
const u32 num_dispatches_y = Common::DivCeil(num_tiles.height, WORKGROUP_SIZE.height); const u32 num_dispatches_y = Common::DivCeil(num_tiles.height, WORKGROUP_SIZE.height);
glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_INPUT_BUFFER, map.Handle(), glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_INPUT_BUFFER, map.buffer, input_offset,
input_offset, image.guest_size_bytes - swizzle.buffer_offset); image.guest_size_bytes - swizzle.buffer_offset);
glDispatchCompute(num_dispatches_x, num_dispatches_y, 1); glDispatchCompute(num_dispatches_x, num_dispatches_y, 1);
} }
program_manager.RestoreGuestCompute(); program_manager.RestoreGuestCompute();

View file

@ -15,9 +15,10 @@
namespace OpenGL { namespace OpenGL {
class Image; class Image;
class ImageBufferMap;
class ProgramManager; class ProgramManager;
struct ImageBufferMap;
class UtilShaders { class UtilShaders {
public: public:
explicit UtilShaders(ProgramManager& program_manager); explicit UtilShaders(ProgramManager& program_manager);

View file

@ -531,13 +531,9 @@ VkCompareOp ComparisonOp(Maxwell::ComparisonOp comparison) {
return {}; return {};
} }
VkIndexType IndexFormat(const Device& device, Maxwell::IndexFormat index_format) { VkIndexType IndexFormat(Maxwell::IndexFormat index_format) {
switch (index_format) { switch (index_format) {
case Maxwell::IndexFormat::UnsignedByte: case Maxwell::IndexFormat::UnsignedByte:
if (!device.IsExtIndexTypeUint8Supported()) {
UNIMPLEMENTED_MSG("Native uint8 indices are not supported on this device");
return VK_INDEX_TYPE_UINT16;
}
return VK_INDEX_TYPE_UINT8_EXT; return VK_INDEX_TYPE_UINT8_EXT;
case Maxwell::IndexFormat::UnsignedShort: case Maxwell::IndexFormat::UnsignedShort:
return VK_INDEX_TYPE_UINT16; return VK_INDEX_TYPE_UINT16;

View file

@ -53,7 +53,7 @@ VkFormat VertexFormat(Maxwell::VertexAttribute::Type type, Maxwell::VertexAttrib
VkCompareOp ComparisonOp(Maxwell::ComparisonOp comparison); VkCompareOp ComparisonOp(Maxwell::ComparisonOp comparison);
VkIndexType IndexFormat(const Device& device, Maxwell::IndexFormat index_format); VkIndexType IndexFormat(Maxwell::IndexFormat index_format);
VkStencilOp StencilOp(Maxwell::StencilOp stencil_op); VkStencilOp StencilOp(Maxwell::StencilOp stencil_op);

View file

@ -107,7 +107,7 @@ RendererVulkan::RendererVulkan(Core::TelemetrySession& telemetry_session_,
debug_callback(Settings::values.renderer_debug ? CreateDebugCallback(instance) : nullptr), debug_callback(Settings::values.renderer_debug ? CreateDebugCallback(instance) : nullptr),
surface(CreateSurface(instance, render_window)), surface(CreateSurface(instance, render_window)),
device(CreateDevice(instance, dld, *surface)), device(CreateDevice(instance, dld, *surface)),
memory_allocator(device), memory_allocator(device, false),
state_tracker(gpu), state_tracker(gpu),
scheduler(device, state_tracker), scheduler(device, state_tracker),
swapchain(*surface, device, scheduler, render_window.GetFramebufferLayout().width, swapchain(*surface, device, scheduler, render_window.GetFramebufferLayout().width,

View file

@ -58,12 +58,11 @@ private:
vk::InstanceDispatch dld; vk::InstanceDispatch dld;
vk::Instance instance; vk::Instance instance;
vk::DebugUtilsMessenger debug_callback;
vk::SurfaceKHR surface; vk::SurfaceKHR surface;
VKScreenInfo screen_info; VKScreenInfo screen_info;
vk::DebugUtilsMessenger debug_callback;
Device device; Device device;
MemoryAllocator memory_allocator; MemoryAllocator memory_allocator;
StateTracker state_tracker; StateTracker state_tracker;

View file

@ -148,8 +148,8 @@ VkSemaphore VKBlitScreen::Draw(const Tegra::FramebufferConfig& framebuffer, bool
SetUniformData(data, framebuffer); SetUniformData(data, framebuffer);
SetVertexData(data, framebuffer); SetVertexData(data, framebuffer);
const std::span<u8> map = buffer_commit.Map(); const std::span<u8> mapped_span = buffer_commit.Map();
std::memcpy(map.data(), &data, sizeof(data)); std::memcpy(mapped_span.data(), &data, sizeof(data));
if (!use_accelerated) { if (!use_accelerated) {
const u64 image_offset = GetRawImageOffset(framebuffer, image_index); const u64 image_offset = GetRawImageOffset(framebuffer, image_index);
@ -162,8 +162,8 @@ VkSemaphore VKBlitScreen::Draw(const Tegra::FramebufferConfig& framebuffer, bool
constexpr u32 block_height_log2 = 4; constexpr u32 block_height_log2 = 4;
const u32 bytes_per_pixel = GetBytesPerPixel(framebuffer); const u32 bytes_per_pixel = GetBytesPerPixel(framebuffer);
Tegra::Texture::UnswizzleTexture( Tegra::Texture::UnswizzleTexture(
map.subspan(image_offset, size_bytes), std::span(host_ptr, size_bytes), bytes_per_pixel, mapped_span.subspan(image_offset, size_bytes), std::span(host_ptr, size_bytes),
framebuffer.width, framebuffer.height, 1, block_height_log2, 0); bytes_per_pixel, framebuffer.width, framebuffer.height, 1, block_height_log2, 0);
const VkBufferImageCopy copy{ const VkBufferImageCopy copy{
.bufferOffset = image_offset, .bufferOffset = image_offset,
@ -263,7 +263,6 @@ VkSemaphore VKBlitScreen::Draw(const Tegra::FramebufferConfig& framebuffer, bool
cmdbuf.Draw(4, 1, 0, 0); cmdbuf.Draw(4, 1, 0, 0);
cmdbuf.EndRenderPass(); cmdbuf.EndRenderPass();
}); });
return *semaphores[image_index]; return *semaphores[image_index];
} }

View file

@ -3,188 +3,276 @@
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include <algorithm> #include <algorithm>
#include <array>
#include <cstring> #include <cstring>
#include <memory> #include <span>
#include <vector>
#include "core/core.h"
#include "video_core/buffer_cache/buffer_cache.h" #include "video_core/buffer_cache/buffer_cache.h"
#include "video_core/renderer_vulkan/maxwell_to_vk.h"
#include "video_core/renderer_vulkan/vk_buffer_cache.h" #include "video_core/renderer_vulkan/vk_buffer_cache.h"
#include "video_core/renderer_vulkan/vk_scheduler.h" #include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_stream_buffer.h" #include "video_core/renderer_vulkan/vk_staging_buffer_pool.h"
#include "video_core/renderer_vulkan/vk_update_descriptor.h"
#include "video_core/vulkan_common/vulkan_device.h" #include "video_core/vulkan_common/vulkan_device.h"
#include "video_core/vulkan_common/vulkan_memory_allocator.h"
#include "video_core/vulkan_common/vulkan_wrapper.h" #include "video_core/vulkan_common/vulkan_wrapper.h"
namespace Vulkan { namespace Vulkan {
namespace { namespace {
VkBufferCopy MakeBufferCopy(const VideoCommon::BufferCopy& copy) {
return VkBufferCopy{
.srcOffset = copy.src_offset,
.dstOffset = copy.dst_offset,
.size = copy.size,
};
}
constexpr VkBufferUsageFlags BUFFER_USAGE = VkIndexType IndexTypeFromNumElements(const Device& device, u32 num_elements) {
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT | if (num_elements <= 0xff && device.IsExtIndexTypeUint8Supported()) {
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT; return VK_INDEX_TYPE_UINT8_EXT;
}
if (num_elements <= 0xffff) {
return VK_INDEX_TYPE_UINT16;
}
return VK_INDEX_TYPE_UINT32;
}
constexpr VkPipelineStageFlags UPLOAD_PIPELINE_STAGE = size_t BytesPerIndex(VkIndexType index_type) {
VK_PIPELINE_STAGE_TRANSFER_BIT | VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | switch (index_type) {
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | case VK_INDEX_TYPE_UINT8_EXT:
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT; return 1;
case VK_INDEX_TYPE_UINT16:
constexpr VkAccessFlags UPLOAD_ACCESS_BARRIERS = return 2;
VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_UNIFORM_READ_BIT | case VK_INDEX_TYPE_UINT32:
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | VK_ACCESS_INDEX_READ_BIT; return 4;
default:
constexpr VkAccessFlags TRANSFORM_FEEDBACK_WRITE_ACCESS = UNREACHABLE_MSG("Invalid index type={}", index_type);
VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT; return 1;
}
}
template <typename T>
std::array<T, 6> MakeQuadIndices(u32 quad, u32 first) {
std::array<T, 6> indices{0, 1, 2, 0, 2, 3};
std::ranges::transform(indices, indices.begin(),
[quad, first](u32 index) { return first + index + quad * 4; });
return indices;
}
} // Anonymous namespace } // Anonymous namespace
Buffer::Buffer(const Device& device_, MemoryAllocator& memory_allocator, VKScheduler& scheduler_, Buffer::Buffer(BufferCacheRuntime&, VideoCommon::NullBufferParams null_params)
StagingBufferPool& staging_pool_, VAddr cpu_addr_, std::size_t size_) : VideoCommon::BufferBase<VideoCore::RasterizerInterface>(null_params) {}
: BufferBlock{cpu_addr_, size_}, device{device_}, scheduler{scheduler_}, staging_pool{
staging_pool_} { Buffer::Buffer(BufferCacheRuntime& runtime, VideoCore::RasterizerInterface& rasterizer_,
buffer = device.GetLogical().CreateBuffer(VkBufferCreateInfo{ VAddr cpu_addr_, u64 size_bytes_)
: VideoCommon::BufferBase<VideoCore::RasterizerInterface>(rasterizer_, cpu_addr_, size_bytes_) {
buffer = runtime.device.GetLogical().CreateBuffer(VkBufferCreateInfo{
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = nullptr, .pNext = nullptr,
.flags = 0, .flags = 0,
.size = static_cast<VkDeviceSize>(size_), .size = SizeBytes(),
.usage = BUFFER_USAGE | VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, .usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT |
VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT |
VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT |
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE, .sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0, .queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr, .pQueueFamilyIndices = nullptr,
}); });
commit = memory_allocator.Commit(buffer, MemoryUsage::DeviceLocal); if (runtime.device.HasDebuggingToolAttached()) {
buffer.SetObjectNameEXT(fmt::format("Buffer 0x{:x}", CpuAddr()).c_str());
}
commit = runtime.memory_allocator.Commit(buffer, MemoryUsage::DeviceLocal);
} }
Buffer::~Buffer() = default; BufferCacheRuntime::BufferCacheRuntime(const Device& device_, MemoryAllocator& memory_allocator_,
VKScheduler& scheduler_, StagingBufferPool& staging_pool_,
VKUpdateDescriptorQueue& update_descriptor_queue_,
VKDescriptorPool& descriptor_pool)
: device{device_}, memory_allocator{memory_allocator_}, scheduler{scheduler_},
staging_pool{staging_pool_}, update_descriptor_queue{update_descriptor_queue_},
uint8_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue),
quad_index_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue) {}
void Buffer::Upload(std::size_t offset, std::size_t data_size, const u8* data) { StagingBufferRef BufferCacheRuntime::UploadStagingBuffer(size_t size) {
const auto& staging = staging_pool.Request(data_size, MemoryUsage::Upload); return staging_pool.Request(size, MemoryUsage::Upload);
std::memcpy(staging.mapped_span.data(), data, data_size); }
StagingBufferRef BufferCacheRuntime::DownloadStagingBuffer(size_t size) {
return staging_pool.Request(size, MemoryUsage::Download);
}
void BufferCacheRuntime::Finish() {
scheduler.Finish();
}
void BufferCacheRuntime::CopyBuffer(VkBuffer dst_buffer, VkBuffer src_buffer,
std::span<const VideoCommon::BufferCopy> copies) {
static constexpr VkMemoryBarrier READ_BARRIER{
.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT,
.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_TRANSFER_WRITE_BIT,
};
static constexpr VkMemoryBarrier WRITE_BARRIER{
.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT,
};
// Measuring a popular game, this number never exceeds the specified size once data is warmed up
boost::container::small_vector<VkBufferCopy, 3> vk_copies(copies.size());
std::ranges::transform(copies, vk_copies.begin(), MakeBufferCopy);
scheduler.RequestOutsideRenderPassOperationContext(); scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([src_buffer, dst_buffer, vk_copies](vk::CommandBuffer cmdbuf) {
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
0, READ_BARRIER);
cmdbuf.CopyBuffer(src_buffer, dst_buffer, vk_copies);
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
0, WRITE_BARRIER);
});
}
const VkBuffer handle = Handle(); void BufferCacheRuntime::BindIndexBuffer(PrimitiveTopology topology, IndexFormat index_format,
scheduler.Record([staging = staging.buffer, handle, offset, data_size, u32 base_vertex, u32 num_indices, VkBuffer buffer,
&device = device](vk::CommandBuffer cmdbuf) { u32 offset, [[maybe_unused]] u32 size) {
const VkBufferMemoryBarrier read_barrier{ VkIndexType index_type = MaxwellToVK::IndexFormat(index_format);
.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, if (topology == PrimitiveTopology::Quads) {
.pNext = nullptr, index_type = VK_INDEX_TYPE_UINT32;
.srcAccessMask = std::tie(buffer, offset) =
VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT | quad_index_pass.Assemble(index_format, num_indices, base_vertex, buffer, offset);
VK_ACCESS_HOST_WRITE_BIT | } else if (index_type == VK_INDEX_TYPE_UINT8_EXT && !device.IsExtIndexTypeUint8Supported()) {
(device.IsExtTransformFeedbackSupported() ? TRANSFORM_FEEDBACK_WRITE_ACCESS : 0), index_type = VK_INDEX_TYPE_UINT16;
.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT, std::tie(buffer, offset) = uint8_pass.Assemble(num_indices, buffer, offset);
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, }
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, scheduler.Record([buffer, offset, index_type](vk::CommandBuffer cmdbuf) {
.buffer = handle, cmdbuf.BindIndexBuffer(buffer, offset, index_type);
.offset = offset, });
.size = data_size, }
void BufferCacheRuntime::BindQuadArrayIndexBuffer(u32 first, u32 count) {
ReserveQuadArrayLUT(first + count, true);
// The LUT has the indices 0, 1, 2, and 3 copied as an array
// To apply these 'first' offsets we can apply an offset based on the modulus.
const VkIndexType index_type = quad_array_lut_index_type;
const size_t sub_first_offset = static_cast<size_t>(first % 4) * (current_num_indices / 4);
const size_t offset = (sub_first_offset + first / 4) * 6ULL * BytesPerIndex(index_type);
scheduler.Record([buffer = *quad_array_lut, index_type, offset](vk::CommandBuffer cmdbuf) {
cmdbuf.BindIndexBuffer(buffer, offset, index_type);
});
}
void BufferCacheRuntime::BindVertexBuffer(u32 index, VkBuffer buffer, u32 offset, u32 size,
u32 stride) {
if (device.IsExtExtendedDynamicStateSupported()) {
scheduler.Record([index, buffer, offset, size, stride](vk::CommandBuffer cmdbuf) {
const VkDeviceSize vk_offset = offset;
const VkDeviceSize vk_size = buffer != VK_NULL_HANDLE ? size : VK_WHOLE_SIZE;
const VkDeviceSize vk_stride = stride;
cmdbuf.BindVertexBuffers2EXT(index, 1, &buffer, &vk_offset, &vk_size, &vk_stride);
});
} else {
scheduler.Record([index, buffer, offset](vk::CommandBuffer cmdbuf) {
cmdbuf.BindVertexBuffer(index, buffer, offset);
});
}
}
void BufferCacheRuntime::BindTransformFeedbackBuffer(u32 index, VkBuffer buffer, u32 offset,
u32 size) {
if (!device.IsExtTransformFeedbackSupported()) {
// Already logged in the rasterizer
return;
}
scheduler.Record([index, buffer, offset, size](vk::CommandBuffer cmdbuf) {
const VkDeviceSize vk_offset = offset;
const VkDeviceSize vk_size = size;
cmdbuf.BindTransformFeedbackBuffersEXT(index, 1, &buffer, &vk_offset, &vk_size);
});
}
void BufferCacheRuntime::BindBuffer(VkBuffer buffer, u32 offset, u32 size) {
update_descriptor_queue.AddBuffer(buffer, offset, size);
}
void BufferCacheRuntime::ReserveQuadArrayLUT(u32 num_indices, bool wait_for_idle) {
if (num_indices <= current_num_indices) {
return;
}
if (wait_for_idle) {
scheduler.Finish();
}
current_num_indices = num_indices;
quad_array_lut_index_type = IndexTypeFromNumElements(device, num_indices);
const u32 num_quads = num_indices / 4;
const u32 num_triangle_indices = num_quads * 6;
const u32 num_first_offset_copies = 4;
const size_t bytes_per_index = BytesPerIndex(quad_array_lut_index_type);
const size_t size_bytes = num_triangle_indices * bytes_per_index * num_first_offset_copies;
quad_array_lut = device.GetLogical().CreateBuffer(VkBufferCreateInfo{
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.size = size_bytes,
.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr,
});
if (device.HasDebuggingToolAttached()) {
quad_array_lut.SetObjectNameEXT("Quad LUT");
}
quad_array_lut_commit = memory_allocator.Commit(quad_array_lut, MemoryUsage::DeviceLocal);
const StagingBufferRef staging = staging_pool.Request(size_bytes, MemoryUsage::Upload);
u8* staging_data = staging.mapped_span.data();
const size_t quad_size = bytes_per_index * 6;
for (u32 first = 0; first < num_first_offset_copies; ++first) {
for (u32 quad = 0; quad < num_quads; ++quad) {
switch (quad_array_lut_index_type) {
case VK_INDEX_TYPE_UINT8_EXT:
std::memcpy(staging_data, MakeQuadIndices<u8>(quad, first).data(), quad_size);
break;
case VK_INDEX_TYPE_UINT16:
std::memcpy(staging_data, MakeQuadIndices<u16>(quad, first).data(), quad_size);
break;
case VK_INDEX_TYPE_UINT32:
std::memcpy(staging_data, MakeQuadIndices<u32>(quad, first).data(), quad_size);
break;
default:
UNREACHABLE();
break;
}
staging_data += quad_size;
}
}
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([src_buffer = staging.buffer, dst_buffer = *quad_array_lut,
size_bytes](vk::CommandBuffer cmdbuf) {
const VkBufferCopy copy{
.srcOffset = 0,
.dstOffset = 0,
.size = size_bytes,
}; };
const VkBufferMemoryBarrier write_barrier{ const VkBufferMemoryBarrier write_barrier{
.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, .sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
.pNext = nullptr, .pNext = nullptr,
.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT, .srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = UPLOAD_ACCESS_BARRIERS, .dstAccessMask = VK_ACCESS_INDEX_READ_BIT,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.buffer = handle, .buffer = dst_buffer,
.offset = offset, .offset = 0,
.size = data_size, .size = size_bytes,
}; };
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, cmdbuf.CopyBuffer(src_buffer, dst_buffer, copy);
0, read_barrier); cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
cmdbuf.CopyBuffer(staging, handle, VkBufferCopy{0, offset, data_size}); 0, write_barrier);
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, UPLOAD_PIPELINE_STAGE, 0,
write_barrier);
}); });
} }
void Buffer::Download(std::size_t offset, std::size_t data_size, u8* data) {
auto staging = staging_pool.Request(data_size, MemoryUsage::Download);
scheduler.RequestOutsideRenderPassOperationContext();
const VkBuffer handle = Handle();
scheduler.Record(
[staging = staging.buffer, handle, offset, data_size](vk::CommandBuffer cmdbuf) {
const VkBufferMemoryBarrier barrier{
.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.buffer = handle,
.offset = offset,
.size = data_size,
};
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_VERTEX_SHADER_BIT |
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT, 0, {}, barrier, {});
cmdbuf.CopyBuffer(handle, staging, VkBufferCopy{offset, 0, data_size});
});
scheduler.Finish();
std::memcpy(data, staging.mapped_span.data(), data_size);
}
void Buffer::CopyFrom(const Buffer& src, std::size_t src_offset, std::size_t dst_offset,
std::size_t copy_size) {
scheduler.RequestOutsideRenderPassOperationContext();
const VkBuffer dst_buffer = Handle();
scheduler.Record([src_buffer = src.Handle(), dst_buffer, src_offset, dst_offset,
copy_size](vk::CommandBuffer cmdbuf) {
cmdbuf.CopyBuffer(src_buffer, dst_buffer, VkBufferCopy{src_offset, dst_offset, copy_size});
std::array<VkBufferMemoryBarrier, 2> barriers;
barriers[0].sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER;
barriers[0].pNext = nullptr;
barriers[0].srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
barriers[0].dstAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
barriers[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barriers[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barriers[0].buffer = src_buffer;
barriers[0].offset = src_offset;
barriers[0].size = copy_size;
barriers[1].sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER;
barriers[1].pNext = nullptr;
barriers[1].srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barriers[1].dstAccessMask = UPLOAD_ACCESS_BARRIERS;
barriers[1].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barriers[1].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barriers[1].buffer = dst_buffer;
barriers[1].offset = dst_offset;
barriers[1].size = copy_size;
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, UPLOAD_PIPELINE_STAGE, 0, {},
barriers, {});
});
}
VKBufferCache::VKBufferCache(VideoCore::RasterizerInterface& rasterizer_,
Tegra::MemoryManager& gpu_memory_, Core::Memory::Memory& cpu_memory_,
const Device& device_, MemoryAllocator& memory_allocator_,
VKScheduler& scheduler_, VKStreamBuffer& stream_buffer_,
StagingBufferPool& staging_pool_)
: VideoCommon::BufferCache<Buffer, VkBuffer, VKStreamBuffer>{rasterizer_, gpu_memory_,
cpu_memory_, stream_buffer_},
device{device_}, memory_allocator{memory_allocator_}, scheduler{scheduler_},
staging_pool{staging_pool_} {}
VKBufferCache::~VKBufferCache() = default;
std::shared_ptr<Buffer> VKBufferCache::CreateBlock(VAddr cpu_addr, std::size_t size) {
return std::make_shared<Buffer>(device, memory_allocator, scheduler, staging_pool, cpu_addr,
size);
}
VKBufferCache::BufferInfo VKBufferCache::GetEmptyBuffer(std::size_t size) {
size = std::max(size, std::size_t(4));
const auto& empty = staging_pool.Request(size, MemoryUsage::DeviceLocal);
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([size, buffer = empty.buffer](vk::CommandBuffer cmdbuf) {
cmdbuf.FillBuffer(buffer, 0, size, 0);
});
return {empty.buffer, 0, 0};
}
} // namespace Vulkan } // namespace Vulkan

View file

@ -4,69 +4,112 @@
#pragma once #pragma once
#include <memory>
#include "common/common_types.h"
#include "video_core/buffer_cache/buffer_cache.h" #include "video_core/buffer_cache/buffer_cache.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_vulkan/vk_compute_pass.h"
#include "video_core/renderer_vulkan/vk_staging_buffer_pool.h" #include "video_core/renderer_vulkan/vk_staging_buffer_pool.h"
#include "video_core/renderer_vulkan/vk_stream_buffer.h"
#include "video_core/vulkan_common/vulkan_memory_allocator.h" #include "video_core/vulkan_common/vulkan_memory_allocator.h"
#include "video_core/vulkan_common/vulkan_wrapper.h" #include "video_core/vulkan_common/vulkan_wrapper.h"
namespace Vulkan { namespace Vulkan {
class Device; class Device;
class VKDescriptorPool;
class VKScheduler; class VKScheduler;
class VKUpdateDescriptorQueue;
class Buffer final : public VideoCommon::BufferBlock { class BufferCacheRuntime;
class Buffer : public VideoCommon::BufferBase<VideoCore::RasterizerInterface> {
public: public:
explicit Buffer(const Device& device, MemoryAllocator& memory_allocator, VKScheduler& scheduler, explicit Buffer(BufferCacheRuntime&, VideoCommon::NullBufferParams null_params);
StagingBufferPool& staging_pool, VAddr cpu_addr_, std::size_t size_); explicit Buffer(BufferCacheRuntime& runtime, VideoCore::RasterizerInterface& rasterizer_,
~Buffer(); VAddr cpu_addr_, u64 size_bytes_);
void Upload(std::size_t offset, std::size_t data_size, const u8* data); [[nodiscard]] VkBuffer Handle() const noexcept {
void Download(std::size_t offset, std::size_t data_size, u8* data);
void CopyFrom(const Buffer& src, std::size_t src_offset, std::size_t dst_offset,
std::size_t copy_size);
VkBuffer Handle() const {
return *buffer; return *buffer;
} }
u64 Address() const { operator VkBuffer() const noexcept {
return 0; return *buffer;
} }
private: private:
const Device& device;
VKScheduler& scheduler;
StagingBufferPool& staging_pool;
vk::Buffer buffer; vk::Buffer buffer;
MemoryCommit commit; MemoryCommit commit;
}; };
class VKBufferCache final : public VideoCommon::BufferCache<Buffer, VkBuffer, VKStreamBuffer> { class BufferCacheRuntime {
friend Buffer;
using PrimitiveTopology = Tegra::Engines::Maxwell3D::Regs::PrimitiveTopology;
using IndexFormat = Tegra::Engines::Maxwell3D::Regs::IndexFormat;
public: public:
explicit VKBufferCache(VideoCore::RasterizerInterface& rasterizer, explicit BufferCacheRuntime(const Device& device_, MemoryAllocator& memory_manager_,
Tegra::MemoryManager& gpu_memory, Core::Memory::Memory& cpu_memory, VKScheduler& scheduler_, StagingBufferPool& staging_pool_,
const Device& device, MemoryAllocator& memory_allocator, VKUpdateDescriptorQueue& update_descriptor_queue_,
VKScheduler& scheduler, VKStreamBuffer& stream_buffer, VKDescriptorPool& descriptor_pool);
StagingBufferPool& staging_pool);
~VKBufferCache();
BufferInfo GetEmptyBuffer(std::size_t size) override; void Finish();
protected: [[nodiscard]] StagingBufferRef UploadStagingBuffer(size_t size);
std::shared_ptr<Buffer> CreateBlock(VAddr cpu_addr, std::size_t size) override;
[[nodiscard]] StagingBufferRef DownloadStagingBuffer(size_t size);
void CopyBuffer(VkBuffer src_buffer, VkBuffer dst_buffer,
std::span<const VideoCommon::BufferCopy> copies);
void BindIndexBuffer(PrimitiveTopology topology, IndexFormat index_format, u32 num_indices,
u32 base_vertex, VkBuffer buffer, u32 offset, u32 size);
void BindQuadArrayIndexBuffer(u32 first, u32 count);
void BindVertexBuffer(u32 index, VkBuffer buffer, u32 offset, u32 size, u32 stride);
void BindTransformFeedbackBuffer(u32 index, VkBuffer buffer, u32 offset, u32 size);
void BindUniformBuffer(VkBuffer buffer, u32 offset, u32 size) {
BindBuffer(buffer, offset, size);
}
void BindStorageBuffer(VkBuffer buffer, u32 offset, u32 size,
[[maybe_unused]] bool is_written) {
BindBuffer(buffer, offset, size);
}
private: private:
void BindBuffer(VkBuffer buffer, u32 offset, u32 size);
void ReserveQuadArrayLUT(u32 num_indices, bool wait_for_idle);
const Device& device; const Device& device;
MemoryAllocator& memory_allocator; MemoryAllocator& memory_allocator;
VKScheduler& scheduler; VKScheduler& scheduler;
StagingBufferPool& staging_pool; StagingBufferPool& staging_pool;
VKUpdateDescriptorQueue& update_descriptor_queue;
vk::Buffer quad_array_lut;
MemoryCommit quad_array_lut_commit;
VkIndexType quad_array_lut_index_type{};
u32 current_num_indices = 0;
Uint8Pass uint8_pass;
QuadIndexedPass quad_index_pass;
}; };
struct BufferCacheParams {
using Runtime = Vulkan::BufferCacheRuntime;
using Buffer = Vulkan::Buffer;
static constexpr bool IS_OPENGL = false;
static constexpr bool HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS = false;
static constexpr bool HAS_FULL_INDEX_AND_PRIMITIVE_SUPPORT = false;
static constexpr bool NEEDS_BIND_UNIFORM_INDEX = false;
static constexpr bool NEEDS_BIND_STORAGE_INDEX = false;
static constexpr bool USE_MEMORY_MAPS = true;
};
using BufferCache = VideoCommon::BufferCache<BufferCacheParams>;
} // namespace Vulkan } // namespace Vulkan

View file

@ -10,7 +10,6 @@
#include "common/alignment.h" #include "common/alignment.h"
#include "common/assert.h" #include "common/assert.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "video_core/host_shaders/vulkan_quad_array_comp_spv.h"
#include "video_core/host_shaders/vulkan_quad_indexed_comp_spv.h" #include "video_core/host_shaders/vulkan_quad_indexed_comp_spv.h"
#include "video_core/host_shaders/vulkan_uint8_comp_spv.h" #include "video_core/host_shaders/vulkan_uint8_comp_spv.h"
#include "video_core/renderer_vulkan/vk_compute_pass.h" #include "video_core/renderer_vulkan/vk_compute_pass.h"
@ -22,30 +21,7 @@
#include "video_core/vulkan_common/vulkan_wrapper.h" #include "video_core/vulkan_common/vulkan_wrapper.h"
namespace Vulkan { namespace Vulkan {
namespace { namespace {
VkDescriptorSetLayoutBinding BuildQuadArrayPassDescriptorSetLayoutBinding() {
return {
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = nullptr,
};
}
VkDescriptorUpdateTemplateEntryKHR BuildQuadArrayPassDescriptorUpdateTemplateEntry() {
return {
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.offset = 0,
.stride = sizeof(DescriptorUpdateEntry),
};
}
VkPushConstantRange BuildComputePushConstantRange(std::size_t size) { VkPushConstantRange BuildComputePushConstantRange(std::size_t size) {
return { return {
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
@ -162,55 +138,6 @@ VkDescriptorSet VKComputePass::CommitDescriptorSet(
return set; return set;
} }
QuadArrayPass::QuadArrayPass(const Device& device_, VKScheduler& scheduler_,
VKDescriptorPool& descriptor_pool_,
StagingBufferPool& staging_buffer_pool_,
VKUpdateDescriptorQueue& update_descriptor_queue_)
: VKComputePass(device_, descriptor_pool_, BuildQuadArrayPassDescriptorSetLayoutBinding(),
BuildQuadArrayPassDescriptorUpdateTemplateEntry(),
BuildComputePushConstantRange(sizeof(u32)), VULKAN_QUAD_ARRAY_COMP_SPV),
scheduler{scheduler_}, staging_buffer_pool{staging_buffer_pool_},
update_descriptor_queue{update_descriptor_queue_} {}
QuadArrayPass::~QuadArrayPass() = default;
std::pair<VkBuffer, VkDeviceSize> QuadArrayPass::Assemble(u32 num_vertices, u32 first) {
const u32 num_triangle_vertices = (num_vertices / 4) * 6;
const std::size_t staging_size = num_triangle_vertices * sizeof(u32);
const auto staging_ref = staging_buffer_pool.Request(staging_size, MemoryUsage::DeviceLocal);
update_descriptor_queue.Acquire();
update_descriptor_queue.AddBuffer(staging_ref.buffer, 0, staging_size);
const VkDescriptorSet set = CommitDescriptorSet(update_descriptor_queue);
scheduler.RequestOutsideRenderPassOperationContext();
ASSERT(num_vertices % 4 == 0);
const u32 num_quads = num_vertices / 4;
scheduler.Record([layout = *layout, pipeline = *pipeline, buffer = staging_ref.buffer,
num_quads, first, set](vk::CommandBuffer cmdbuf) {
constexpr u32 dispatch_size = 1024;
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_COMPUTE, pipeline);
cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_COMPUTE, layout, 0, set, {});
cmdbuf.PushConstants(layout, VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(first), &first);
cmdbuf.Dispatch(Common::AlignUp(num_quads, dispatch_size) / dispatch_size, 1, 1);
VkBufferMemoryBarrier barrier;
barrier.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER;
barrier.pNext = nullptr;
barrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
barrier.dstAccessMask = VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.buffer = buffer;
barrier.offset = 0;
barrier.size = static_cast<VkDeviceSize>(num_quads) * 6 * sizeof(u32);
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, 0, {}, {barrier}, {});
});
return {staging_ref.buffer, 0};
}
Uint8Pass::Uint8Pass(const Device& device, VKScheduler& scheduler_, Uint8Pass::Uint8Pass(const Device& device, VKScheduler& scheduler_,
VKDescriptorPool& descriptor_pool, StagingBufferPool& staging_buffer_pool_, VKDescriptorPool& descriptor_pool, StagingBufferPool& staging_buffer_pool_,
VKUpdateDescriptorQueue& update_descriptor_queue_) VKUpdateDescriptorQueue& update_descriptor_queue_)
@ -221,18 +148,18 @@ Uint8Pass::Uint8Pass(const Device& device, VKScheduler& scheduler_,
Uint8Pass::~Uint8Pass() = default; Uint8Pass::~Uint8Pass() = default;
std::pair<VkBuffer, u64> Uint8Pass::Assemble(u32 num_vertices, VkBuffer src_buffer, std::pair<VkBuffer, u32> Uint8Pass::Assemble(u32 num_vertices, VkBuffer src_buffer,
u64 src_offset) { u32 src_offset) {
const u32 staging_size = static_cast<u32>(num_vertices * sizeof(u16)); const u32 staging_size = static_cast<u32>(num_vertices * sizeof(u16));
const auto staging_ref = staging_buffer_pool.Request(staging_size, MemoryUsage::DeviceLocal); const auto staging = staging_buffer_pool.Request(staging_size, MemoryUsage::DeviceLocal);
update_descriptor_queue.Acquire(); update_descriptor_queue.Acquire();
update_descriptor_queue.AddBuffer(src_buffer, src_offset, num_vertices); update_descriptor_queue.AddBuffer(src_buffer, src_offset, num_vertices);
update_descriptor_queue.AddBuffer(staging_ref.buffer, 0, staging_size); update_descriptor_queue.AddBuffer(staging.buffer, 0, staging_size);
const VkDescriptorSet set = CommitDescriptorSet(update_descriptor_queue); const VkDescriptorSet set = CommitDescriptorSet(update_descriptor_queue);
scheduler.RequestOutsideRenderPassOperationContext(); scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([layout = *layout, pipeline = *pipeline, buffer = staging_ref.buffer, set, scheduler.Record([layout = *layout, pipeline = *pipeline, buffer = staging.buffer, set,
num_vertices](vk::CommandBuffer cmdbuf) { num_vertices](vk::CommandBuffer cmdbuf) {
constexpr u32 dispatch_size = 1024; constexpr u32 dispatch_size = 1024;
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_COMPUTE, pipeline); cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_COMPUTE, pipeline);
@ -252,7 +179,7 @@ std::pair<VkBuffer, u64> Uint8Pass::Assemble(u32 num_vertices, VkBuffer src_buff
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, 0, {}, barrier, {}); VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, 0, {}, barrier, {});
}); });
return {staging_ref.buffer, 0}; return {staging.buffer, 0};
} }
QuadIndexedPass::QuadIndexedPass(const Device& device_, VKScheduler& scheduler_, QuadIndexedPass::QuadIndexedPass(const Device& device_, VKScheduler& scheduler_,
@ -267,9 +194,9 @@ QuadIndexedPass::QuadIndexedPass(const Device& device_, VKScheduler& scheduler_,
QuadIndexedPass::~QuadIndexedPass() = default; QuadIndexedPass::~QuadIndexedPass() = default;
std::pair<VkBuffer, u64> QuadIndexedPass::Assemble( std::pair<VkBuffer, u32> QuadIndexedPass::Assemble(
Tegra::Engines::Maxwell3D::Regs::IndexFormat index_format, u32 num_vertices, u32 base_vertex, Tegra::Engines::Maxwell3D::Regs::IndexFormat index_format, u32 num_vertices, u32 base_vertex,
VkBuffer src_buffer, u64 src_offset) { VkBuffer src_buffer, u32 src_offset) {
const u32 index_shift = [index_format] { const u32 index_shift = [index_format] {
switch (index_format) { switch (index_format) {
case Tegra::Engines::Maxwell3D::Regs::IndexFormat::UnsignedByte: case Tegra::Engines::Maxwell3D::Regs::IndexFormat::UnsignedByte:
@ -286,15 +213,15 @@ std::pair<VkBuffer, u64> QuadIndexedPass::Assemble(
const u32 num_tri_vertices = (num_vertices / 4) * 6; const u32 num_tri_vertices = (num_vertices / 4) * 6;
const std::size_t staging_size = num_tri_vertices * sizeof(u32); const std::size_t staging_size = num_tri_vertices * sizeof(u32);
const auto staging_ref = staging_buffer_pool.Request(staging_size, MemoryUsage::DeviceLocal); const auto staging = staging_buffer_pool.Request(staging_size, MemoryUsage::DeviceLocal);
update_descriptor_queue.Acquire(); update_descriptor_queue.Acquire();
update_descriptor_queue.AddBuffer(src_buffer, src_offset, input_size); update_descriptor_queue.AddBuffer(src_buffer, src_offset, input_size);
update_descriptor_queue.AddBuffer(staging_ref.buffer, 0, staging_size); update_descriptor_queue.AddBuffer(staging.buffer, 0, staging_size);
const VkDescriptorSet set = CommitDescriptorSet(update_descriptor_queue); const VkDescriptorSet set = CommitDescriptorSet(update_descriptor_queue);
scheduler.RequestOutsideRenderPassOperationContext(); scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([layout = *layout, pipeline = *pipeline, buffer = staging_ref.buffer, set, scheduler.Record([layout = *layout, pipeline = *pipeline, buffer = staging.buffer, set,
num_tri_vertices, base_vertex, index_shift](vk::CommandBuffer cmdbuf) { num_tri_vertices, base_vertex, index_shift](vk::CommandBuffer cmdbuf) {
static constexpr u32 dispatch_size = 1024; static constexpr u32 dispatch_size = 1024;
const std::array push_constants = {base_vertex, index_shift}; const std::array push_constants = {base_vertex, index_shift};
@ -317,7 +244,7 @@ std::pair<VkBuffer, u64> QuadIndexedPass::Assemble(
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, 0, {}, barrier, {}); VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, 0, {}, barrier, {});
}); });
return {staging_ref.buffer, 0}; return {staging.buffer, 0};
} }
} // namespace Vulkan } // namespace Vulkan

View file

@ -41,22 +41,6 @@ private:
vk::ShaderModule module; vk::ShaderModule module;
}; };
class QuadArrayPass final : public VKComputePass {
public:
explicit QuadArrayPass(const Device& device_, VKScheduler& scheduler_,
VKDescriptorPool& descriptor_pool_,
StagingBufferPool& staging_buffer_pool_,
VKUpdateDescriptorQueue& update_descriptor_queue_);
~QuadArrayPass();
std::pair<VkBuffer, VkDeviceSize> Assemble(u32 num_vertices, u32 first);
private:
VKScheduler& scheduler;
StagingBufferPool& staging_buffer_pool;
VKUpdateDescriptorQueue& update_descriptor_queue;
};
class Uint8Pass final : public VKComputePass { class Uint8Pass final : public VKComputePass {
public: public:
explicit Uint8Pass(const Device& device_, VKScheduler& scheduler_, explicit Uint8Pass(const Device& device_, VKScheduler& scheduler_,
@ -64,7 +48,9 @@ public:
VKUpdateDescriptorQueue& update_descriptor_queue_); VKUpdateDescriptorQueue& update_descriptor_queue_);
~Uint8Pass(); ~Uint8Pass();
std::pair<VkBuffer, u64> Assemble(u32 num_vertices, VkBuffer src_buffer, u64 src_offset); /// Assemble uint8 indices into an uint16 index buffer
/// Returns a pair with the staging buffer, and the offset where the assembled data is
std::pair<VkBuffer, u32> Assemble(u32 num_vertices, VkBuffer src_buffer, u32 src_offset);
private: private:
VKScheduler& scheduler; VKScheduler& scheduler;
@ -80,9 +66,9 @@ public:
VKUpdateDescriptorQueue& update_descriptor_queue_); VKUpdateDescriptorQueue& update_descriptor_queue_);
~QuadIndexedPass(); ~QuadIndexedPass();
std::pair<VkBuffer, u64> Assemble(Tegra::Engines::Maxwell3D::Regs::IndexFormat index_format, std::pair<VkBuffer, u32> Assemble(Tegra::Engines::Maxwell3D::Regs::IndexFormat index_format,
u32 num_vertices, u32 base_vertex, VkBuffer src_buffer, u32 num_vertices, u32 base_vertex, VkBuffer src_buffer,
u64 src_offset); u32 src_offset);
private: private:
VKScheduler& scheduler; VKScheduler& scheduler;

View file

@ -45,8 +45,8 @@ void InnerFence::Wait() {
} }
VKFenceManager::VKFenceManager(VideoCore::RasterizerInterface& rasterizer_, Tegra::GPU& gpu_, VKFenceManager::VKFenceManager(VideoCore::RasterizerInterface& rasterizer_, Tegra::GPU& gpu_,
Tegra::MemoryManager& memory_manager_, TextureCache& texture_cache_, TextureCache& texture_cache_, BufferCache& buffer_cache_,
VKBufferCache& buffer_cache_, VKQueryCache& query_cache_, VKQueryCache& query_cache_, const Device& device_,
VKScheduler& scheduler_) VKScheduler& scheduler_)
: GenericFenceManager{rasterizer_, gpu_, texture_cache_, buffer_cache_, query_cache_}, : GenericFenceManager{rasterizer_, gpu_, texture_cache_, buffer_cache_, query_cache_},
scheduler{scheduler_} {} scheduler{scheduler_} {}

View file

@ -22,7 +22,6 @@ class RasterizerInterface;
namespace Vulkan { namespace Vulkan {
class Device; class Device;
class VKBufferCache;
class VKQueryCache; class VKQueryCache;
class VKScheduler; class VKScheduler;
@ -45,14 +44,14 @@ private:
using Fence = std::shared_ptr<InnerFence>; using Fence = std::shared_ptr<InnerFence>;
using GenericFenceManager = using GenericFenceManager =
VideoCommon::FenceManager<Fence, TextureCache, VKBufferCache, VKQueryCache>; VideoCommon::FenceManager<Fence, TextureCache, BufferCache, VKQueryCache>;
class VKFenceManager final : public GenericFenceManager { class VKFenceManager final : public GenericFenceManager {
public: public:
explicit VKFenceManager(VideoCore::RasterizerInterface& rasterizer_, Tegra::GPU& gpu_, explicit VKFenceManager(VideoCore::RasterizerInterface& rasterizer, Tegra::GPU& gpu,
Tegra::MemoryManager& memory_manager_, TextureCache& texture_cache_, TextureCache& texture_cache, BufferCache& buffer_cache,
VKBufferCache& buffer_cache_, VKQueryCache& query_cache_, VKQueryCache& query_cache, const Device& device,
VKScheduler& scheduler_); VKScheduler& scheduler);
protected: protected:
Fence CreateFence(u32 value, bool is_stubbed) override; Fence CreateFence(u32 value, bool is_stubbed) override;

View file

@ -8,8 +8,6 @@
#include <mutex> #include <mutex>
#include <vector> #include <vector>
#include <boost/container/static_vector.hpp>
#include "common/alignment.h" #include "common/alignment.h"
#include "common/assert.h" #include "common/assert.h"
#include "common/logging/log.h" #include "common/logging/log.h"
@ -24,7 +22,6 @@
#include "video_core/renderer_vulkan/maxwell_to_vk.h" #include "video_core/renderer_vulkan/maxwell_to_vk.h"
#include "video_core/renderer_vulkan/renderer_vulkan.h" #include "video_core/renderer_vulkan/renderer_vulkan.h"
#include "video_core/renderer_vulkan/vk_buffer_cache.h" #include "video_core/renderer_vulkan/vk_buffer_cache.h"
#include "video_core/renderer_vulkan/vk_compute_pass.h"
#include "video_core/renderer_vulkan/vk_compute_pipeline.h" #include "video_core/renderer_vulkan/vk_compute_pipeline.h"
#include "video_core/renderer_vulkan/vk_descriptor_pool.h" #include "video_core/renderer_vulkan/vk_descriptor_pool.h"
#include "video_core/renderer_vulkan/vk_graphics_pipeline.h" #include "video_core/renderer_vulkan/vk_graphics_pipeline.h"
@ -50,15 +47,16 @@ MICROPROFILE_DEFINE(Vulkan_WaitForWorker, "Vulkan", "Wait for worker", MP_RGB(25
MICROPROFILE_DEFINE(Vulkan_Drawing, "Vulkan", "Record drawing", MP_RGB(192, 128, 128)); MICROPROFILE_DEFINE(Vulkan_Drawing, "Vulkan", "Record drawing", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_Compute, "Vulkan", "Record compute", MP_RGB(192, 128, 128)); MICROPROFILE_DEFINE(Vulkan_Compute, "Vulkan", "Record compute", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_Clearing, "Vulkan", "Record clearing", MP_RGB(192, 128, 128)); MICROPROFILE_DEFINE(Vulkan_Clearing, "Vulkan", "Record clearing", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_Geometry, "Vulkan", "Setup geometry", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_ConstBuffers, "Vulkan", "Setup constant buffers", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_GlobalBuffers, "Vulkan", "Setup global buffers", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_RenderTargets, "Vulkan", "Setup render targets", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_Textures, "Vulkan", "Setup textures", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_Images, "Vulkan", "Setup images", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_PipelineCache, "Vulkan", "Pipeline cache", MP_RGB(192, 128, 128)); MICROPROFILE_DEFINE(Vulkan_PipelineCache, "Vulkan", "Pipeline cache", MP_RGB(192, 128, 128));
namespace { namespace {
struct DrawParams {
u32 base_instance;
u32 num_instances;
u32 base_vertex;
u32 num_vertices;
bool is_indexed;
};
constexpr auto COMPUTE_SHADER_INDEX = static_cast<size_t>(Tegra::Engines::ShaderType::Compute); constexpr auto COMPUTE_SHADER_INDEX = static_cast<size_t>(Tegra::Engines::ShaderType::Compute);
@ -67,7 +65,6 @@ VkViewport GetViewportState(const Device& device, const Maxwell& regs, size_t in
const float width = src.scale_x * 2.0f; const float width = src.scale_x * 2.0f;
const float height = src.scale_y * 2.0f; const float height = src.scale_y * 2.0f;
const float reduce_z = regs.depth_mode == Maxwell::DepthMode::MinusOneToOne ? 1.0f : 0.0f; const float reduce_z = regs.depth_mode == Maxwell::DepthMode::MinusOneToOne ? 1.0f : 0.0f;
VkViewport viewport{ VkViewport viewport{
.x = src.translate_x - src.scale_x, .x = src.translate_x - src.scale_x,
.y = src.translate_y - src.scale_y, .y = src.translate_y - src.scale_y,
@ -76,12 +73,10 @@ VkViewport GetViewportState(const Device& device, const Maxwell& regs, size_t in
.minDepth = src.translate_z - src.scale_z * reduce_z, .minDepth = src.translate_z - src.scale_z * reduce_z,
.maxDepth = src.translate_z + src.scale_z, .maxDepth = src.translate_z + src.scale_z,
}; };
if (!device.IsExtDepthRangeUnrestrictedSupported()) { if (!device.IsExtDepthRangeUnrestrictedSupported()) {
viewport.minDepth = std::clamp(viewport.minDepth, 0.0f, 1.0f); viewport.minDepth = std::clamp(viewport.minDepth, 0.0f, 1.0f);
viewport.maxDepth = std::clamp(viewport.maxDepth, 0.0f, 1.0f); viewport.maxDepth = std::clamp(viewport.maxDepth, 0.0f, 1.0f);
} }
return viewport; return viewport;
} }
@ -146,13 +141,6 @@ TextureHandle GetTextureInfo(const Engine& engine, bool via_header_index, const
return TextureHandle(engine.AccessConstBuffer32(shader_type, buffer, offset), via_header_index); return TextureHandle(engine.AccessConstBuffer32(shader_type, buffer, offset), via_header_index);
} }
template <size_t N>
std::array<VkDeviceSize, N> ExpandStrides(const std::array<u16, N>& strides) {
std::array<VkDeviceSize, N> expanded;
std::copy(strides.begin(), strides.end(), expanded.begin());
return expanded;
}
ImageViewType ImageViewTypeFromEntry(const SamplerEntry& entry) { ImageViewType ImageViewTypeFromEntry(const SamplerEntry& entry) {
if (entry.is_buffer) { if (entry.is_buffer) {
return ImageViewType::e2D; return ImageViewType::e2D;
@ -221,190 +209,25 @@ void PushImageDescriptors(const ShaderEntries& entries, TextureCache& texture_ca
} }
} }
} // Anonymous namespace DrawParams MakeDrawParams(const Maxwell& regs, u32 num_instances, bool is_instanced,
bool is_indexed) {
class BufferBindings final { DrawParams params{
public: .base_instance = regs.vb_base_instance,
void AddVertexBinding(VkBuffer buffer, VkDeviceSize offset, VkDeviceSize size, u32 stride) { .num_instances = is_instanced ? num_instances : 1,
vertex.buffers[vertex.num_buffers] = buffer; .base_vertex = is_indexed ? regs.vb_element_base : regs.vertex_buffer.first,
vertex.offsets[vertex.num_buffers] = offset; .num_vertices = is_indexed ? regs.index_array.count : regs.vertex_buffer.count,
vertex.sizes[vertex.num_buffers] = size; .is_indexed = is_indexed,
vertex.strides[vertex.num_buffers] = static_cast<u16>(stride); };
++vertex.num_buffers; if (regs.draw.topology == Maxwell::PrimitiveTopology::Quads) {
} // 6 triangle vertices per quad, base vertex is part of the index
// See BindQuadArrayIndexBuffer for more details
void SetIndexBinding(VkBuffer buffer, VkDeviceSize offset, VkIndexType type) { params.num_vertices = (params.num_vertices / 4) * 6;
index.buffer = buffer; params.base_vertex = 0;
index.offset = offset; params.is_indexed = true;
index.type = type;
}
void Bind(const Device& device, VKScheduler& scheduler) const {
// Use this large switch case to avoid dispatching more memory in the record lambda than
// what we need. It looks horrible, but it's the best we can do on standard C++.
switch (vertex.num_buffers) {
case 0:
return BindStatic<0>(device, scheduler);
case 1:
return BindStatic<1>(device, scheduler);
case 2:
return BindStatic<2>(device, scheduler);
case 3:
return BindStatic<3>(device, scheduler);
case 4:
return BindStatic<4>(device, scheduler);
case 5:
return BindStatic<5>(device, scheduler);
case 6:
return BindStatic<6>(device, scheduler);
case 7:
return BindStatic<7>(device, scheduler);
case 8:
return BindStatic<8>(device, scheduler);
case 9:
return BindStatic<9>(device, scheduler);
case 10:
return BindStatic<10>(device, scheduler);
case 11:
return BindStatic<11>(device, scheduler);
case 12:
return BindStatic<12>(device, scheduler);
case 13:
return BindStatic<13>(device, scheduler);
case 14:
return BindStatic<14>(device, scheduler);
case 15:
return BindStatic<15>(device, scheduler);
case 16:
return BindStatic<16>(device, scheduler);
case 17:
return BindStatic<17>(device, scheduler);
case 18:
return BindStatic<18>(device, scheduler);
case 19:
return BindStatic<19>(device, scheduler);
case 20:
return BindStatic<20>(device, scheduler);
case 21:
return BindStatic<21>(device, scheduler);
case 22:
return BindStatic<22>(device, scheduler);
case 23:
return BindStatic<23>(device, scheduler);
case 24:
return BindStatic<24>(device, scheduler);
case 25:
return BindStatic<25>(device, scheduler);
case 26:
return BindStatic<26>(device, scheduler);
case 27:
return BindStatic<27>(device, scheduler);
case 28:
return BindStatic<28>(device, scheduler);
case 29:
return BindStatic<29>(device, scheduler);
case 30:
return BindStatic<30>(device, scheduler);
case 31:
return BindStatic<31>(device, scheduler);
case 32:
return BindStatic<32>(device, scheduler);
}
UNREACHABLE();
}
private:
// Some of these fields are intentionally left uninitialized to avoid initializing them twice.
struct {
size_t num_buffers = 0;
std::array<VkBuffer, Maxwell::NumVertexArrays> buffers;
std::array<VkDeviceSize, Maxwell::NumVertexArrays> offsets;
std::array<VkDeviceSize, Maxwell::NumVertexArrays> sizes;
std::array<u16, Maxwell::NumVertexArrays> strides;
} vertex;
struct {
VkBuffer buffer = nullptr;
VkDeviceSize offset;
VkIndexType type;
} index;
template <size_t N>
void BindStatic(const Device& device, VKScheduler& scheduler) const {
if (device.IsExtExtendedDynamicStateSupported()) {
if (index.buffer) {
BindStatic<N, true, true>(scheduler);
} else {
BindStatic<N, false, true>(scheduler);
}
} else {
if (index.buffer) {
BindStatic<N, true, false>(scheduler);
} else {
BindStatic<N, false, false>(scheduler);
}
}
}
template <size_t N, bool is_indexed, bool has_extended_dynamic_state>
void BindStatic(VKScheduler& scheduler) const {
static_assert(N <= Maxwell::NumVertexArrays);
if constexpr (N == 0) {
return;
}
std::array<VkBuffer, N> buffers;
std::array<VkDeviceSize, N> offsets;
std::copy(vertex.buffers.begin(), vertex.buffers.begin() + N, buffers.begin());
std::copy(vertex.offsets.begin(), vertex.offsets.begin() + N, offsets.begin());
if constexpr (has_extended_dynamic_state) {
// With extended dynamic states we can specify the length and stride of a vertex buffer
std::array<VkDeviceSize, N> sizes;
std::array<u16, N> strides;
std::copy(vertex.sizes.begin(), vertex.sizes.begin() + N, sizes.begin());
std::copy(vertex.strides.begin(), vertex.strides.begin() + N, strides.begin());
if constexpr (is_indexed) {
scheduler.Record(
[buffers, offsets, sizes, strides, index = index](vk::CommandBuffer cmdbuf) {
cmdbuf.BindIndexBuffer(index.buffer, index.offset, index.type);
cmdbuf.BindVertexBuffers2EXT(0, static_cast<u32>(N), buffers.data(),
offsets.data(), sizes.data(),
ExpandStrides(strides).data());
});
} else {
scheduler.Record([buffers, offsets, sizes, strides](vk::CommandBuffer cmdbuf) {
cmdbuf.BindVertexBuffers2EXT(0, static_cast<u32>(N), buffers.data(),
offsets.data(), sizes.data(),
ExpandStrides(strides).data());
});
}
return;
}
if constexpr (is_indexed) {
// Indexed draw
scheduler.Record([buffers, offsets, index = index](vk::CommandBuffer cmdbuf) {
cmdbuf.BindIndexBuffer(index.buffer, index.offset, index.type);
cmdbuf.BindVertexBuffers(0, static_cast<u32>(N), buffers.data(), offsets.data());
});
} else {
// Array draw
scheduler.Record([buffers, offsets](vk::CommandBuffer cmdbuf) {
cmdbuf.BindVertexBuffers(0, static_cast<u32>(N), buffers.data(), offsets.data());
});
}
}
};
void RasterizerVulkan::DrawParameters::Draw(vk::CommandBuffer cmdbuf) const {
if (is_indexed) {
cmdbuf.DrawIndexed(num_vertices, num_instances, 0, base_vertex, base_instance);
} else {
cmdbuf.Draw(num_vertices, num_instances, base_vertex, base_instance);
} }
return params;
} }
} // Anonymous namespace
RasterizerVulkan::RasterizerVulkan(Core::Frontend::EmuWindow& emu_window_, Tegra::GPU& gpu_, RasterizerVulkan::RasterizerVulkan(Core::Frontend::EmuWindow& emu_window_, Tegra::GPU& gpu_,
Tegra::MemoryManager& gpu_memory_, Tegra::MemoryManager& gpu_memory_,
@ -414,21 +237,19 @@ RasterizerVulkan::RasterizerVulkan(Core::Frontend::EmuWindow& emu_window_, Tegra
: RasterizerAccelerated{cpu_memory_}, gpu{gpu_}, : RasterizerAccelerated{cpu_memory_}, gpu{gpu_},
gpu_memory{gpu_memory_}, maxwell3d{gpu.Maxwell3D()}, kepler_compute{gpu.KeplerCompute()}, gpu_memory{gpu_memory_}, maxwell3d{gpu.Maxwell3D()}, kepler_compute{gpu.KeplerCompute()},
screen_info{screen_info_}, device{device_}, memory_allocator{memory_allocator_}, screen_info{screen_info_}, device{device_}, memory_allocator{memory_allocator_},
state_tracker{state_tracker_}, scheduler{scheduler_}, stream_buffer(device, scheduler), state_tracker{state_tracker_}, scheduler{scheduler_},
staging_pool(device, memory_allocator, scheduler), descriptor_pool(device, scheduler), staging_pool(device, memory_allocator, scheduler), descriptor_pool(device, scheduler),
update_descriptor_queue(device, scheduler), update_descriptor_queue(device, scheduler),
blit_image(device, scheduler, state_tracker, descriptor_pool), blit_image(device, scheduler, state_tracker, descriptor_pool),
quad_array_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue),
quad_indexed_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue),
uint8_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue),
texture_cache_runtime{device, scheduler, memory_allocator, staging_pool, blit_image}, texture_cache_runtime{device, scheduler, memory_allocator, staging_pool, blit_image},
texture_cache(texture_cache_runtime, *this, maxwell3d, kepler_compute, gpu_memory), texture_cache(texture_cache_runtime, *this, maxwell3d, kepler_compute, gpu_memory),
buffer_cache_runtime(device, memory_allocator, scheduler, staging_pool,
update_descriptor_queue, descriptor_pool),
buffer_cache(*this, maxwell3d, kepler_compute, gpu_memory, cpu_memory_, buffer_cache_runtime),
pipeline_cache(*this, gpu, maxwell3d, kepler_compute, gpu_memory, device, scheduler, pipeline_cache(*this, gpu, maxwell3d, kepler_compute, gpu_memory, device, scheduler,
descriptor_pool, update_descriptor_queue), descriptor_pool, update_descriptor_queue),
buffer_cache(*this, gpu_memory, cpu_memory_, device, memory_allocator, scheduler,
stream_buffer, staging_pool),
query_cache{*this, maxwell3d, gpu_memory, device, scheduler}, query_cache{*this, maxwell3d, gpu_memory, device, scheduler},
fence_manager(*this, gpu, gpu_memory, texture_cache, buffer_cache, query_cache, scheduler), fence_manager(*this, gpu, texture_cache, buffer_cache, query_cache, device, scheduler),
wfi_event(device.GetLogical().CreateEvent()), async_shaders(emu_window_) { wfi_event(device.GetLogical().CreateEvent()), async_shaders(emu_window_) {
scheduler.SetQueryCache(query_cache); scheduler.SetQueryCache(query_cache);
if (device.UseAsynchronousShaders()) { if (device.UseAsynchronousShaders()) {
@ -449,22 +270,14 @@ void RasterizerVulkan::Draw(bool is_indexed, bool is_instanced) {
GraphicsPipelineCacheKey key; GraphicsPipelineCacheKey key;
key.fixed_state.Fill(maxwell3d.regs, device.IsExtExtendedDynamicStateSupported()); key.fixed_state.Fill(maxwell3d.regs, device.IsExtExtendedDynamicStateSupported());
buffer_cache.Map(CalculateGraphicsStreamBufferSize(is_indexed)); std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
BufferBindings buffer_bindings;
const DrawParameters draw_params =
SetupGeometry(key.fixed_state, buffer_bindings, is_indexed, is_instanced);
auto lock = texture_cache.AcquireLock();
texture_cache.SynchronizeGraphicsDescriptors(); texture_cache.SynchronizeGraphicsDescriptors();
texture_cache.UpdateRenderTargets(false); texture_cache.UpdateRenderTargets(false);
const auto shaders = pipeline_cache.GetShaders(); const auto shaders = pipeline_cache.GetShaders();
key.shaders = GetShaderAddresses(shaders); key.shaders = GetShaderAddresses(shaders);
SetupShaderDescriptors(shaders); SetupShaderDescriptors(shaders, is_indexed);
buffer_cache.Unmap();
const Framebuffer* const framebuffer = texture_cache.GetFramebuffer(); const Framebuffer* const framebuffer = texture_cache.GetFramebuffer();
key.renderpass = framebuffer->RenderPass(); key.renderpass = framebuffer->RenderPass();
@ -476,22 +289,29 @@ void RasterizerVulkan::Draw(bool is_indexed, bool is_instanced) {
return; return;
} }
buffer_bindings.Bind(device, scheduler);
BeginTransformFeedback(); BeginTransformFeedback();
scheduler.RequestRenderpass(framebuffer); scheduler.RequestRenderpass(framebuffer);
scheduler.BindGraphicsPipeline(pipeline->GetHandle()); scheduler.BindGraphicsPipeline(pipeline->GetHandle());
UpdateDynamicStates(); UpdateDynamicStates();
const auto pipeline_layout = pipeline->GetLayout(); const auto& regs = maxwell3d.regs;
const auto descriptor_set = pipeline->CommitDescriptorSet(); const u32 num_instances = maxwell3d.mme_draw.instance_count;
const DrawParams draw_params = MakeDrawParams(regs, num_instances, is_instanced, is_indexed);
const VkPipelineLayout pipeline_layout = pipeline->GetLayout();
const VkDescriptorSet descriptor_set = pipeline->CommitDescriptorSet();
scheduler.Record([pipeline_layout, descriptor_set, draw_params](vk::CommandBuffer cmdbuf) { scheduler.Record([pipeline_layout, descriptor_set, draw_params](vk::CommandBuffer cmdbuf) {
if (descriptor_set) { if (descriptor_set) {
cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout, cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout,
DESCRIPTOR_SET, descriptor_set, {}); DESCRIPTOR_SET, descriptor_set, nullptr);
}
if (draw_params.is_indexed) {
cmdbuf.DrawIndexed(draw_params.num_vertices, draw_params.num_instances, 0,
draw_params.base_vertex, draw_params.base_instance);
} else {
cmdbuf.Draw(draw_params.num_vertices, draw_params.num_instances,
draw_params.base_vertex, draw_params.base_instance);
} }
draw_params.Draw(cmdbuf);
}); });
EndTransformFeedback(); EndTransformFeedback();
@ -515,7 +335,7 @@ void RasterizerVulkan::Clear() {
return; return;
} }
auto lock = texture_cache.AcquireLock(); std::scoped_lock lock{texture_cache.mutex};
texture_cache.UpdateRenderTargets(true); texture_cache.UpdateRenderTargets(true);
const Framebuffer* const framebuffer = texture_cache.GetFramebuffer(); const Framebuffer* const framebuffer = texture_cache.GetFramebuffer();
const VkExtent2D render_area = framebuffer->RenderArea(); const VkExtent2D render_area = framebuffer->RenderArea();
@ -559,7 +379,6 @@ void RasterizerVulkan::Clear() {
if (use_stencil) { if (use_stencil) {
aspect_flags |= VK_IMAGE_ASPECT_STENCIL_BIT; aspect_flags |= VK_IMAGE_ASPECT_STENCIL_BIT;
} }
scheduler.Record([clear_depth = regs.clear_depth, clear_stencil = regs.clear_stencil, scheduler.Record([clear_depth = regs.clear_depth, clear_stencil = regs.clear_stencil,
clear_rect, aspect_flags](vk::CommandBuffer cmdbuf) { clear_rect, aspect_flags](vk::CommandBuffer cmdbuf) {
VkClearAttachment attachment; VkClearAttachment attachment;
@ -580,12 +399,11 @@ void RasterizerVulkan::DispatchCompute(GPUVAddr code_addr) {
auto& pipeline = pipeline_cache.GetComputePipeline({ auto& pipeline = pipeline_cache.GetComputePipeline({
.shader = code_addr, .shader = code_addr,
.shared_memory_size = launch_desc.shared_alloc, .shared_memory_size = launch_desc.shared_alloc,
.workgroup_size = .workgroup_size{
{ launch_desc.block_dim_x,
launch_desc.block_dim_x, launch_desc.block_dim_y,
launch_desc.block_dim_y, launch_desc.block_dim_z,
launch_desc.block_dim_z, },
},
}); });
// Compute dispatches can't be executed inside a renderpass // Compute dispatches can't be executed inside a renderpass
@ -594,10 +412,21 @@ void RasterizerVulkan::DispatchCompute(GPUVAddr code_addr) {
image_view_indices.clear(); image_view_indices.clear();
sampler_handles.clear(); sampler_handles.clear();
auto lock = texture_cache.AcquireLock(); std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
texture_cache.SynchronizeComputeDescriptors();
const auto& entries = pipeline.GetEntries(); const auto& entries = pipeline.GetEntries();
buffer_cache.SetEnabledComputeUniformBuffers(entries.enabled_uniform_buffers);
buffer_cache.UnbindComputeStorageBuffers();
u32 ssbo_index = 0;
for (const auto& buffer : entries.global_buffers) {
buffer_cache.BindComputeStorageBuffer(ssbo_index, buffer.cbuf_index, buffer.cbuf_offset,
buffer.is_written);
++ssbo_index;
}
buffer_cache.UpdateComputeBuffers();
texture_cache.SynchronizeComputeDescriptors();
SetupComputeUniformTexels(entries); SetupComputeUniformTexels(entries);
SetupComputeTextures(entries); SetupComputeTextures(entries);
SetupComputeStorageTexels(entries); SetupComputeStorageTexels(entries);
@ -606,20 +435,15 @@ void RasterizerVulkan::DispatchCompute(GPUVAddr code_addr) {
const std::span indices_span(image_view_indices.data(), image_view_indices.size()); const std::span indices_span(image_view_indices.data(), image_view_indices.size());
texture_cache.FillComputeImageViews(indices_span, image_view_ids); texture_cache.FillComputeImageViews(indices_span, image_view_ids);
buffer_cache.Map(CalculateComputeStreamBufferSize());
update_descriptor_queue.Acquire(); update_descriptor_queue.Acquire();
SetupComputeConstBuffers(entries); buffer_cache.BindHostComputeBuffers();
SetupComputeGlobalBuffers(entries);
ImageViewId* image_view_id_ptr = image_view_ids.data(); ImageViewId* image_view_id_ptr = image_view_ids.data();
VkSampler* sampler_ptr = sampler_handles.data(); VkSampler* sampler_ptr = sampler_handles.data();
PushImageDescriptors(entries, texture_cache, update_descriptor_queue, image_view_id_ptr, PushImageDescriptors(entries, texture_cache, update_descriptor_queue, image_view_id_ptr,
sampler_ptr); sampler_ptr);
buffer_cache.Unmap();
const VkPipeline pipeline_handle = pipeline.GetHandle(); const VkPipeline pipeline_handle = pipeline.GetHandle();
const VkPipelineLayout pipeline_layout = pipeline.GetLayout(); const VkPipelineLayout pipeline_layout = pipeline.GetLayout();
const VkDescriptorSet descriptor_set = pipeline.CommitDescriptorSet(); const VkDescriptorSet descriptor_set = pipeline.CommitDescriptorSet();
@ -644,6 +468,11 @@ void RasterizerVulkan::Query(GPUVAddr gpu_addr, VideoCore::QueryType type,
query_cache.Query(gpu_addr, type, timestamp); query_cache.Query(gpu_addr, type, timestamp);
} }
void RasterizerVulkan::BindGraphicsUniformBuffer(size_t stage, u32 index, GPUVAddr gpu_addr,
u32 size) {
buffer_cache.BindGraphicsUniformBuffer(stage, index, gpu_addr, size);
}
void RasterizerVulkan::FlushAll() {} void RasterizerVulkan::FlushAll() {}
void RasterizerVulkan::FlushRegion(VAddr addr, u64 size) { void RasterizerVulkan::FlushRegion(VAddr addr, u64 size) {
@ -651,19 +480,23 @@ void RasterizerVulkan::FlushRegion(VAddr addr, u64 size) {
return; return;
} }
{ {
auto lock = texture_cache.AcquireLock(); std::scoped_lock lock{texture_cache.mutex};
texture_cache.DownloadMemory(addr, size); texture_cache.DownloadMemory(addr, size);
} }
buffer_cache.FlushRegion(addr, size); {
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.DownloadMemory(addr, size);
}
query_cache.FlushRegion(addr, size); query_cache.FlushRegion(addr, size);
} }
bool RasterizerVulkan::MustFlushRegion(VAddr addr, u64 size) { bool RasterizerVulkan::MustFlushRegion(VAddr addr, u64 size) {
std::scoped_lock lock{texture_cache.mutex, buffer_cache.mutex};
if (!Settings::IsGPULevelHigh()) { if (!Settings::IsGPULevelHigh()) {
return buffer_cache.MustFlushRegion(addr, size); return buffer_cache.IsRegionGpuModified(addr, size);
} }
return texture_cache.IsRegionGpuModified(addr, size) || return texture_cache.IsRegionGpuModified(addr, size) ||
buffer_cache.MustFlushRegion(addr, size); buffer_cache.IsRegionGpuModified(addr, size);
} }
void RasterizerVulkan::InvalidateRegion(VAddr addr, u64 size) { void RasterizerVulkan::InvalidateRegion(VAddr addr, u64 size) {
@ -671,11 +504,14 @@ void RasterizerVulkan::InvalidateRegion(VAddr addr, u64 size) {
return; return;
} }
{ {
auto lock = texture_cache.AcquireLock(); std::scoped_lock lock{texture_cache.mutex};
texture_cache.WriteMemory(addr, size); texture_cache.WriteMemory(addr, size);
} }
{
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.WriteMemory(addr, size);
}
pipeline_cache.InvalidateRegion(addr, size); pipeline_cache.InvalidateRegion(addr, size);
buffer_cache.InvalidateRegion(addr, size);
query_cache.InvalidateRegion(addr, size); query_cache.InvalidateRegion(addr, size);
} }
@ -683,25 +519,34 @@ void RasterizerVulkan::OnCPUWrite(VAddr addr, u64 size) {
if (addr == 0 || size == 0) { if (addr == 0 || size == 0) {
return; return;
} }
pipeline_cache.OnCPUWrite(addr, size);
{ {
auto lock = texture_cache.AcquireLock(); std::scoped_lock lock{texture_cache.mutex};
texture_cache.WriteMemory(addr, size); texture_cache.WriteMemory(addr, size);
} }
pipeline_cache.OnCPUWrite(addr, size); {
buffer_cache.OnCPUWrite(addr, size); std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.CachedWriteMemory(addr, size);
}
} }
void RasterizerVulkan::SyncGuestHost() { void RasterizerVulkan::SyncGuestHost() {
buffer_cache.SyncGuestHost();
pipeline_cache.SyncGuestHost(); pipeline_cache.SyncGuestHost();
{
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.FlushCachedWrites();
}
} }
void RasterizerVulkan::UnmapMemory(VAddr addr, u64 size) { void RasterizerVulkan::UnmapMemory(VAddr addr, u64 size) {
{ {
auto lock = texture_cache.AcquireLock(); std::scoped_lock lock{texture_cache.mutex};
texture_cache.UnmapMemory(addr, size); texture_cache.UnmapMemory(addr, size);
} }
buffer_cache.OnCPUWrite(addr, size); {
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.WriteMemory(addr, size);
}
pipeline_cache.OnCPUWrite(addr, size); pipeline_cache.OnCPUWrite(addr, size);
} }
@ -774,18 +619,21 @@ void RasterizerVulkan::TickFrame() {
draw_counter = 0; draw_counter = 0;
update_descriptor_queue.TickFrame(); update_descriptor_queue.TickFrame();
fence_manager.TickFrame(); fence_manager.TickFrame();
buffer_cache.TickFrame();
staging_pool.TickFrame(); staging_pool.TickFrame();
{ {
auto lock = texture_cache.AcquireLock(); std::scoped_lock lock{texture_cache.mutex};
texture_cache.TickFrame(); texture_cache.TickFrame();
} }
{
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.TickFrame();
}
} }
bool RasterizerVulkan::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Surface& src, bool RasterizerVulkan::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Surface& src,
const Tegra::Engines::Fermi2D::Surface& dst, const Tegra::Engines::Fermi2D::Surface& dst,
const Tegra::Engines::Fermi2D::Config& copy_config) { const Tegra::Engines::Fermi2D::Config& copy_config) {
auto lock = texture_cache.AcquireLock(); std::scoped_lock lock{texture_cache.mutex};
texture_cache.BlitImage(dst, src, copy_config); texture_cache.BlitImage(dst, src, copy_config);
return true; return true;
} }
@ -795,13 +643,11 @@ bool RasterizerVulkan::AccelerateDisplay(const Tegra::FramebufferConfig& config,
if (!framebuffer_addr) { if (!framebuffer_addr) {
return false; return false;
} }
std::scoped_lock lock{texture_cache.mutex};
auto lock = texture_cache.AcquireLock();
ImageView* const image_view = texture_cache.TryFindFramebufferImageView(framebuffer_addr); ImageView* const image_view = texture_cache.TryFindFramebufferImageView(framebuffer_addr);
if (!image_view) { if (!image_view) {
return false; return false;
} }
screen_info.image_view = image_view->Handle(VideoCommon::ImageViewType::e2D); screen_info.image_view = image_view->Handle(VideoCommon::ImageViewType::e2D);
screen_info.width = image_view->size.width; screen_info.width = image_view->size.width;
screen_info.height = image_view->size.height; screen_info.height = image_view->size.height;
@ -830,29 +676,8 @@ void RasterizerVulkan::FlushWork() {
draw_counter = 0; draw_counter = 0;
} }
RasterizerVulkan::DrawParameters RasterizerVulkan::SetupGeometry(FixedPipelineState& fixed_state,
BufferBindings& buffer_bindings,
bool is_indexed,
bool is_instanced) {
MICROPROFILE_SCOPE(Vulkan_Geometry);
const auto& regs = maxwell3d.regs;
SetupVertexArrays(buffer_bindings);
const u32 base_instance = regs.vb_base_instance;
const u32 num_instances = is_instanced ? maxwell3d.mme_draw.instance_count : 1;
const u32 base_vertex = is_indexed ? regs.vb_element_base : regs.vertex_buffer.first;
const u32 num_vertices = is_indexed ? regs.index_array.count : regs.vertex_buffer.count;
DrawParameters params{base_instance, num_instances, base_vertex, num_vertices, is_indexed};
SetupIndexBuffer(buffer_bindings, params, is_indexed);
return params;
}
void RasterizerVulkan::SetupShaderDescriptors( void RasterizerVulkan::SetupShaderDescriptors(
const std::array<Shader*, Maxwell::MaxShaderProgram>& shaders) { const std::array<Shader*, Maxwell::MaxShaderProgram>& shaders, bool is_indexed) {
image_view_indices.clear(); image_view_indices.clear();
sampler_handles.clear(); sampler_handles.clear();
for (size_t stage = 0; stage < Maxwell::MaxShaderStage; ++stage) { for (size_t stage = 0; stage < Maxwell::MaxShaderStage; ++stage) {
@ -860,15 +685,27 @@ void RasterizerVulkan::SetupShaderDescriptors(
if (!shader) { if (!shader) {
continue; continue;
} }
const auto& entries = shader->GetEntries(); const ShaderEntries& entries = shader->GetEntries();
SetupGraphicsUniformTexels(entries, stage); SetupGraphicsUniformTexels(entries, stage);
SetupGraphicsTextures(entries, stage); SetupGraphicsTextures(entries, stage);
SetupGraphicsStorageTexels(entries, stage); SetupGraphicsStorageTexels(entries, stage);
SetupGraphicsImages(entries, stage); SetupGraphicsImages(entries, stage);
buffer_cache.SetEnabledUniformBuffers(stage, entries.enabled_uniform_buffers);
buffer_cache.UnbindGraphicsStorageBuffers(stage);
u32 ssbo_index = 0;
for (const auto& buffer : entries.global_buffers) {
buffer_cache.BindGraphicsStorageBuffer(stage, ssbo_index, buffer.cbuf_index,
buffer.cbuf_offset, buffer.is_written);
++ssbo_index;
}
} }
const std::span indices_span(image_view_indices.data(), image_view_indices.size()); const std::span indices_span(image_view_indices.data(), image_view_indices.size());
buffer_cache.UpdateGraphicsBuffers(is_indexed);
texture_cache.FillGraphicsImageViews(indices_span, image_view_ids); texture_cache.FillGraphicsImageViews(indices_span, image_view_ids);
buffer_cache.BindHostGeometryBuffers(is_indexed);
update_descriptor_queue.Acquire(); update_descriptor_queue.Acquire();
ImageViewId* image_view_id_ptr = image_view_ids.data(); ImageViewId* image_view_id_ptr = image_view_ids.data();
@ -879,11 +716,9 @@ void RasterizerVulkan::SetupShaderDescriptors(
if (!shader) { if (!shader) {
continue; continue;
} }
const auto& entries = shader->GetEntries(); buffer_cache.BindHostStageBuffers(stage);
SetupGraphicsConstBuffers(entries, stage); PushImageDescriptors(shader->GetEntries(), texture_cache, update_descriptor_queue,
SetupGraphicsGlobalBuffers(entries, stage); image_view_id_ptr, sampler_ptr);
PushImageDescriptors(entries, texture_cache, update_descriptor_queue, image_view_id_ptr,
sampler_ptr);
} }
} }
@ -916,27 +751,11 @@ void RasterizerVulkan::BeginTransformFeedback() {
LOG_ERROR(Render_Vulkan, "Transform feedbacks used but not supported"); LOG_ERROR(Render_Vulkan, "Transform feedbacks used but not supported");
return; return;
} }
UNIMPLEMENTED_IF(regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationControl) || UNIMPLEMENTED_IF(regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationControl) ||
regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationEval) || regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationEval) ||
regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::Geometry)); regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::Geometry));
scheduler.Record(
UNIMPLEMENTED_IF(regs.tfb_bindings[1].buffer_enable); [](vk::CommandBuffer cmdbuf) { cmdbuf.BeginTransformFeedbackEXT(0, 0, nullptr, nullptr); });
UNIMPLEMENTED_IF(regs.tfb_bindings[2].buffer_enable);
UNIMPLEMENTED_IF(regs.tfb_bindings[3].buffer_enable);
const auto& binding = regs.tfb_bindings[0];
UNIMPLEMENTED_IF(binding.buffer_enable == 0);
UNIMPLEMENTED_IF(binding.buffer_offset != 0);
const GPUVAddr gpu_addr = binding.Address();
const VkDeviceSize size = static_cast<VkDeviceSize>(binding.buffer_size);
const auto info = buffer_cache.UploadMemory(gpu_addr, size, 4, true);
scheduler.Record([buffer = info.handle, offset = info.offset, size](vk::CommandBuffer cmdbuf) {
cmdbuf.BindTransformFeedbackBuffersEXT(0, 1, &buffer, &offset, &size);
cmdbuf.BeginTransformFeedbackEXT(0, 0, nullptr, nullptr);
});
} }
void RasterizerVulkan::EndTransformFeedback() { void RasterizerVulkan::EndTransformFeedback() {
@ -947,104 +766,11 @@ void RasterizerVulkan::EndTransformFeedback() {
if (!device.IsExtTransformFeedbackSupported()) { if (!device.IsExtTransformFeedbackSupported()) {
return; return;
} }
scheduler.Record( scheduler.Record(
[](vk::CommandBuffer cmdbuf) { cmdbuf.EndTransformFeedbackEXT(0, 0, nullptr, nullptr); }); [](vk::CommandBuffer cmdbuf) { cmdbuf.EndTransformFeedbackEXT(0, 0, nullptr, nullptr); });
} }
void RasterizerVulkan::SetupVertexArrays(BufferBindings& buffer_bindings) {
const auto& regs = maxwell3d.regs;
for (size_t index = 0; index < Maxwell::NumVertexArrays; ++index) {
const auto& vertex_array = regs.vertex_array[index];
if (!vertex_array.IsEnabled()) {
continue;
}
const GPUVAddr start{vertex_array.StartAddress()};
const GPUVAddr end{regs.vertex_array_limit[index].LimitAddress()};
ASSERT(end >= start);
const size_t size = end - start;
if (size == 0) {
buffer_bindings.AddVertexBinding(DefaultBuffer(), 0, DEFAULT_BUFFER_SIZE, 0);
continue;
}
const auto info = buffer_cache.UploadMemory(start, size);
buffer_bindings.AddVertexBinding(info.handle, info.offset, size, vertex_array.stride);
}
}
void RasterizerVulkan::SetupIndexBuffer(BufferBindings& buffer_bindings, DrawParameters& params,
bool is_indexed) {
if (params.num_vertices == 0) {
return;
}
const auto& regs = maxwell3d.regs;
switch (regs.draw.topology) {
case Maxwell::PrimitiveTopology::Quads: {
if (!params.is_indexed) {
const auto [buffer, offset] =
quad_array_pass.Assemble(params.num_vertices, params.base_vertex);
buffer_bindings.SetIndexBinding(buffer, offset, VK_INDEX_TYPE_UINT32);
params.base_vertex = 0;
params.num_vertices = params.num_vertices * 6 / 4;
params.is_indexed = true;
break;
}
const GPUVAddr gpu_addr = regs.index_array.IndexStart();
const auto info = buffer_cache.UploadMemory(gpu_addr, CalculateIndexBufferSize());
VkBuffer buffer = info.handle;
u64 offset = info.offset;
std::tie(buffer, offset) = quad_indexed_pass.Assemble(
regs.index_array.format, params.num_vertices, params.base_vertex, buffer, offset);
buffer_bindings.SetIndexBinding(buffer, offset, VK_INDEX_TYPE_UINT32);
params.num_vertices = (params.num_vertices / 4) * 6;
params.base_vertex = 0;
break;
}
default: {
if (!is_indexed) {
break;
}
const GPUVAddr gpu_addr = regs.index_array.IndexStart();
const auto info = buffer_cache.UploadMemory(gpu_addr, CalculateIndexBufferSize());
VkBuffer buffer = info.handle;
u64 offset = info.offset;
auto format = regs.index_array.format;
const bool is_uint8 = format == Maxwell::IndexFormat::UnsignedByte;
if (is_uint8 && !device.IsExtIndexTypeUint8Supported()) {
std::tie(buffer, offset) = uint8_pass.Assemble(params.num_vertices, buffer, offset);
format = Maxwell::IndexFormat::UnsignedShort;
}
buffer_bindings.SetIndexBinding(buffer, offset, MaxwellToVK::IndexFormat(device, format));
break;
}
}
}
void RasterizerVulkan::SetupGraphicsConstBuffers(const ShaderEntries& entries, size_t stage) {
MICROPROFILE_SCOPE(Vulkan_ConstBuffers);
const auto& shader_stage = maxwell3d.state.shader_stages[stage];
for (const auto& entry : entries.const_buffers) {
SetupConstBuffer(entry, shader_stage.const_buffers[entry.GetIndex()]);
}
}
void RasterizerVulkan::SetupGraphicsGlobalBuffers(const ShaderEntries& entries, size_t stage) {
MICROPROFILE_SCOPE(Vulkan_GlobalBuffers);
const auto& cbufs{maxwell3d.state.shader_stages[stage]};
for (const auto& entry : entries.global_buffers) {
const auto addr = cbufs.const_buffers[entry.GetCbufIndex()].address + entry.GetCbufOffset();
SetupGlobalBuffer(entry, addr);
}
}
void RasterizerVulkan::SetupGraphicsUniformTexels(const ShaderEntries& entries, size_t stage) { void RasterizerVulkan::SetupGraphicsUniformTexels(const ShaderEntries& entries, size_t stage) {
MICROPROFILE_SCOPE(Vulkan_Textures);
const auto& regs = maxwell3d.regs; const auto& regs = maxwell3d.regs;
const bool via_header_index = regs.sampler_index == Maxwell::SamplerIndex::ViaHeaderIndex; const bool via_header_index = regs.sampler_index == Maxwell::SamplerIndex::ViaHeaderIndex;
for (const auto& entry : entries.uniform_texels) { for (const auto& entry : entries.uniform_texels) {
@ -1054,7 +780,6 @@ void RasterizerVulkan::SetupGraphicsUniformTexels(const ShaderEntries& entries,
} }
void RasterizerVulkan::SetupGraphicsTextures(const ShaderEntries& entries, size_t stage) { void RasterizerVulkan::SetupGraphicsTextures(const ShaderEntries& entries, size_t stage) {
MICROPROFILE_SCOPE(Vulkan_Textures);
const auto& regs = maxwell3d.regs; const auto& regs = maxwell3d.regs;
const bool via_header_index = regs.sampler_index == Maxwell::SamplerIndex::ViaHeaderIndex; const bool via_header_index = regs.sampler_index == Maxwell::SamplerIndex::ViaHeaderIndex;
for (const auto& entry : entries.samplers) { for (const auto& entry : entries.samplers) {
@ -1070,7 +795,6 @@ void RasterizerVulkan::SetupGraphicsTextures(const ShaderEntries& entries, size_
} }
void RasterizerVulkan::SetupGraphicsStorageTexels(const ShaderEntries& entries, size_t stage) { void RasterizerVulkan::SetupGraphicsStorageTexels(const ShaderEntries& entries, size_t stage) {
MICROPROFILE_SCOPE(Vulkan_Textures);
const auto& regs = maxwell3d.regs; const auto& regs = maxwell3d.regs;
const bool via_header_index = regs.sampler_index == Maxwell::SamplerIndex::ViaHeaderIndex; const bool via_header_index = regs.sampler_index == Maxwell::SamplerIndex::ViaHeaderIndex;
for (const auto& entry : entries.storage_texels) { for (const auto& entry : entries.storage_texels) {
@ -1080,7 +804,6 @@ void RasterizerVulkan::SetupGraphicsStorageTexels(const ShaderEntries& entries,
} }
void RasterizerVulkan::SetupGraphicsImages(const ShaderEntries& entries, size_t stage) { void RasterizerVulkan::SetupGraphicsImages(const ShaderEntries& entries, size_t stage) {
MICROPROFILE_SCOPE(Vulkan_Images);
const auto& regs = maxwell3d.regs; const auto& regs = maxwell3d.regs;
const bool via_header_index = regs.sampler_index == Maxwell::SamplerIndex::ViaHeaderIndex; const bool via_header_index = regs.sampler_index == Maxwell::SamplerIndex::ViaHeaderIndex;
for (const auto& entry : entries.images) { for (const auto& entry : entries.images) {
@ -1089,32 +812,7 @@ void RasterizerVulkan::SetupGraphicsImages(const ShaderEntries& entries, size_t
} }
} }
void RasterizerVulkan::SetupComputeConstBuffers(const ShaderEntries& entries) {
MICROPROFILE_SCOPE(Vulkan_ConstBuffers);
const auto& launch_desc = kepler_compute.launch_description;
for (const auto& entry : entries.const_buffers) {
const auto& config = launch_desc.const_buffer_config[entry.GetIndex()];
const std::bitset<8> mask = launch_desc.const_buffer_enable_mask.Value();
const Tegra::Engines::ConstBufferInfo info{
.address = config.Address(),
.size = config.size,
.enabled = mask[entry.GetIndex()],
};
SetupConstBuffer(entry, info);
}
}
void RasterizerVulkan::SetupComputeGlobalBuffers(const ShaderEntries& entries) {
MICROPROFILE_SCOPE(Vulkan_GlobalBuffers);
const auto& cbufs{kepler_compute.launch_description.const_buffer_config};
for (const auto& entry : entries.global_buffers) {
const auto addr{cbufs[entry.GetCbufIndex()].Address() + entry.GetCbufOffset()};
SetupGlobalBuffer(entry, addr);
}
}
void RasterizerVulkan::SetupComputeUniformTexels(const ShaderEntries& entries) { void RasterizerVulkan::SetupComputeUniformTexels(const ShaderEntries& entries) {
MICROPROFILE_SCOPE(Vulkan_Textures);
const bool via_header_index = kepler_compute.launch_description.linked_tsc; const bool via_header_index = kepler_compute.launch_description.linked_tsc;
for (const auto& entry : entries.uniform_texels) { for (const auto& entry : entries.uniform_texels) {
const TextureHandle handle = const TextureHandle handle =
@ -1124,7 +822,6 @@ void RasterizerVulkan::SetupComputeUniformTexels(const ShaderEntries& entries) {
} }
void RasterizerVulkan::SetupComputeTextures(const ShaderEntries& entries) { void RasterizerVulkan::SetupComputeTextures(const ShaderEntries& entries) {
MICROPROFILE_SCOPE(Vulkan_Textures);
const bool via_header_index = kepler_compute.launch_description.linked_tsc; const bool via_header_index = kepler_compute.launch_description.linked_tsc;
for (const auto& entry : entries.samplers) { for (const auto& entry : entries.samplers) {
for (size_t index = 0; index < entry.size; ++index) { for (size_t index = 0; index < entry.size; ++index) {
@ -1139,7 +836,6 @@ void RasterizerVulkan::SetupComputeTextures(const ShaderEntries& entries) {
} }
void RasterizerVulkan::SetupComputeStorageTexels(const ShaderEntries& entries) { void RasterizerVulkan::SetupComputeStorageTexels(const ShaderEntries& entries) {
MICROPROFILE_SCOPE(Vulkan_Textures);
const bool via_header_index = kepler_compute.launch_description.linked_tsc; const bool via_header_index = kepler_compute.launch_description.linked_tsc;
for (const auto& entry : entries.storage_texels) { for (const auto& entry : entries.storage_texels) {
const TextureHandle handle = const TextureHandle handle =
@ -1149,7 +845,6 @@ void RasterizerVulkan::SetupComputeStorageTexels(const ShaderEntries& entries) {
} }
void RasterizerVulkan::SetupComputeImages(const ShaderEntries& entries) { void RasterizerVulkan::SetupComputeImages(const ShaderEntries& entries) {
MICROPROFILE_SCOPE(Vulkan_Images);
const bool via_header_index = kepler_compute.launch_description.linked_tsc; const bool via_header_index = kepler_compute.launch_description.linked_tsc;
for (const auto& entry : entries.images) { for (const auto& entry : entries.images) {
const TextureHandle handle = const TextureHandle handle =
@ -1158,42 +853,6 @@ void RasterizerVulkan::SetupComputeImages(const ShaderEntries& entries) {
} }
} }
void RasterizerVulkan::SetupConstBuffer(const ConstBufferEntry& entry,
const Tegra::Engines::ConstBufferInfo& buffer) {
if (!buffer.enabled) {
// Set values to zero to unbind buffers
update_descriptor_queue.AddBuffer(DefaultBuffer(), 0, DEFAULT_BUFFER_SIZE);
return;
}
// Align the size to avoid bad std140 interactions
const size_t size = Common::AlignUp(CalculateConstBufferSize(entry, buffer), 4 * sizeof(float));
ASSERT(size <= MaxConstbufferSize);
const u64 alignment = device.GetUniformBufferAlignment();
const auto info = buffer_cache.UploadMemory(buffer.address, size, alignment);
update_descriptor_queue.AddBuffer(info.handle, info.offset, size);
}
void RasterizerVulkan::SetupGlobalBuffer(const GlobalBufferEntry& entry, GPUVAddr address) {
const u64 actual_addr = gpu_memory.Read<u64>(address);
const u32 size = gpu_memory.Read<u32>(address + 8);
if (size == 0) {
// Sometimes global memory pointers don't have a proper size. Upload a dummy entry
// because Vulkan doesn't like empty buffers.
// Note: Do *not* use DefaultBuffer() here, storage buffers can be written breaking the
// default buffer.
static constexpr size_t dummy_size = 4;
const auto info = buffer_cache.GetEmptyBuffer(dummy_size);
update_descriptor_queue.AddBuffer(info.handle, info.offset, dummy_size);
return;
}
const auto info = buffer_cache.UploadMemory(
actual_addr, size, device.GetStorageBufferAlignment(), entry.IsWritten());
update_descriptor_queue.AddBuffer(info.handle, info.offset, size);
}
void RasterizerVulkan::UpdateViewportsState(Tegra::Engines::Maxwell3D::Regs& regs) { void RasterizerVulkan::UpdateViewportsState(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchViewports()) { if (!state_tracker.TouchViewports()) {
return; return;
@ -1206,7 +865,8 @@ void RasterizerVulkan::UpdateViewportsState(Tegra::Engines::Maxwell3D::Regs& reg
GetViewportState(device, regs, 8), GetViewportState(device, regs, 9), GetViewportState(device, regs, 8), GetViewportState(device, regs, 9),
GetViewportState(device, regs, 10), GetViewportState(device, regs, 11), GetViewportState(device, regs, 10), GetViewportState(device, regs, 11),
GetViewportState(device, regs, 12), GetViewportState(device, regs, 13), GetViewportState(device, regs, 12), GetViewportState(device, regs, 13),
GetViewportState(device, regs, 14), GetViewportState(device, regs, 15)}; GetViewportState(device, regs, 14), GetViewportState(device, regs, 15),
};
scheduler.Record([viewports](vk::CommandBuffer cmdbuf) { cmdbuf.SetViewport(0, viewports); }); scheduler.Record([viewports](vk::CommandBuffer cmdbuf) { cmdbuf.SetViewport(0, viewports); });
} }
@ -1214,13 +874,14 @@ void RasterizerVulkan::UpdateScissorsState(Tegra::Engines::Maxwell3D::Regs& regs
if (!state_tracker.TouchScissors()) { if (!state_tracker.TouchScissors()) {
return; return;
} }
const std::array scissors = { const std::array scissors{
GetScissorState(regs, 0), GetScissorState(regs, 1), GetScissorState(regs, 2), GetScissorState(regs, 0), GetScissorState(regs, 1), GetScissorState(regs, 2),
GetScissorState(regs, 3), GetScissorState(regs, 4), GetScissorState(regs, 5), GetScissorState(regs, 3), GetScissorState(regs, 4), GetScissorState(regs, 5),
GetScissorState(regs, 6), GetScissorState(regs, 7), GetScissorState(regs, 8), GetScissorState(regs, 6), GetScissorState(regs, 7), GetScissorState(regs, 8),
GetScissorState(regs, 9), GetScissorState(regs, 10), GetScissorState(regs, 11), GetScissorState(regs, 9), GetScissorState(regs, 10), GetScissorState(regs, 11),
GetScissorState(regs, 12), GetScissorState(regs, 13), GetScissorState(regs, 14), GetScissorState(regs, 12), GetScissorState(regs, 13), GetScissorState(regs, 14),
GetScissorState(regs, 15)}; GetScissorState(regs, 15),
};
scheduler.Record([scissors](vk::CommandBuffer cmdbuf) { cmdbuf.SetScissor(0, scissors); }); scheduler.Record([scissors](vk::CommandBuffer cmdbuf) { cmdbuf.SetScissor(0, scissors); });
} }
@ -1385,73 +1046,4 @@ void RasterizerVulkan::UpdateStencilTestEnable(Tegra::Engines::Maxwell3D::Regs&
}); });
} }
size_t RasterizerVulkan::CalculateGraphicsStreamBufferSize(bool is_indexed) const {
size_t size = CalculateVertexArraysSize();
if (is_indexed) {
size = Common::AlignUp(size, 4) + CalculateIndexBufferSize();
}
size += Maxwell::MaxConstBuffers * (MaxConstbufferSize + device.GetUniformBufferAlignment());
return size;
}
size_t RasterizerVulkan::CalculateComputeStreamBufferSize() const {
return Tegra::Engines::KeplerCompute::NumConstBuffers *
(Maxwell::MaxConstBufferSize + device.GetUniformBufferAlignment());
}
size_t RasterizerVulkan::CalculateVertexArraysSize() const {
const auto& regs = maxwell3d.regs;
size_t size = 0;
for (u32 index = 0; index < Maxwell::NumVertexArrays; ++index) {
// This implementation assumes that all attributes are used in the shader.
const GPUVAddr start{regs.vertex_array[index].StartAddress()};
const GPUVAddr end{regs.vertex_array_limit[index].LimitAddress()};
DEBUG_ASSERT(end >= start);
size += (end - start) * regs.vertex_array[index].enable;
}
return size;
}
size_t RasterizerVulkan::CalculateIndexBufferSize() const {
return static_cast<size_t>(maxwell3d.regs.index_array.count) *
static_cast<size_t>(maxwell3d.regs.index_array.FormatSizeInBytes());
}
size_t RasterizerVulkan::CalculateConstBufferSize(
const ConstBufferEntry& entry, const Tegra::Engines::ConstBufferInfo& buffer) const {
if (entry.IsIndirect()) {
// Buffer is accessed indirectly, so upload the entire thing
return buffer.size;
} else {
// Buffer is accessed directly, upload just what we use
return entry.GetSize();
}
}
VkBuffer RasterizerVulkan::DefaultBuffer() {
if (default_buffer) {
return *default_buffer;
}
default_buffer = device.GetLogical().CreateBuffer({
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.size = DEFAULT_BUFFER_SIZE,
.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT |
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr,
});
default_buffer_commit = memory_allocator.Commit(default_buffer, MemoryUsage::DeviceLocal);
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([buffer = *default_buffer](vk::CommandBuffer cmdbuf) {
cmdbuf.FillBuffer(buffer, 0, DEFAULT_BUFFER_SIZE, 0);
});
return *default_buffer;
}
} // namespace Vulkan } // namespace Vulkan

View file

@ -18,14 +18,12 @@
#include "video_core/renderer_vulkan/blit_image.h" #include "video_core/renderer_vulkan/blit_image.h"
#include "video_core/renderer_vulkan/fixed_pipeline_state.h" #include "video_core/renderer_vulkan/fixed_pipeline_state.h"
#include "video_core/renderer_vulkan/vk_buffer_cache.h" #include "video_core/renderer_vulkan/vk_buffer_cache.h"
#include "video_core/renderer_vulkan/vk_compute_pass.h"
#include "video_core/renderer_vulkan/vk_descriptor_pool.h" #include "video_core/renderer_vulkan/vk_descriptor_pool.h"
#include "video_core/renderer_vulkan/vk_fence_manager.h" #include "video_core/renderer_vulkan/vk_fence_manager.h"
#include "video_core/renderer_vulkan/vk_pipeline_cache.h" #include "video_core/renderer_vulkan/vk_pipeline_cache.h"
#include "video_core/renderer_vulkan/vk_query_cache.h" #include "video_core/renderer_vulkan/vk_query_cache.h"
#include "video_core/renderer_vulkan/vk_scheduler.h" #include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_staging_buffer_pool.h" #include "video_core/renderer_vulkan/vk_staging_buffer_pool.h"
#include "video_core/renderer_vulkan/vk_stream_buffer.h"
#include "video_core/renderer_vulkan/vk_texture_cache.h" #include "video_core/renderer_vulkan/vk_texture_cache.h"
#include "video_core/renderer_vulkan/vk_update_descriptor.h" #include "video_core/renderer_vulkan/vk_update_descriptor.h"
#include "video_core/shader/async_shaders.h" #include "video_core/shader/async_shaders.h"
@ -49,7 +47,6 @@ namespace Vulkan {
struct VKScreenInfo; struct VKScreenInfo;
class StateTracker; class StateTracker;
class BufferBindings;
class RasterizerVulkan final : public VideoCore::RasterizerAccelerated { class RasterizerVulkan final : public VideoCore::RasterizerAccelerated {
public: public:
@ -65,6 +62,7 @@ public:
void DispatchCompute(GPUVAddr code_addr) override; void DispatchCompute(GPUVAddr code_addr) override;
void ResetCounter(VideoCore::QueryType type) override; void ResetCounter(VideoCore::QueryType type) override;
void Query(GPUVAddr gpu_addr, VideoCore::QueryType type, std::optional<u64> timestamp) override; void Query(GPUVAddr gpu_addr, VideoCore::QueryType type, std::optional<u64> timestamp) override;
void BindGraphicsUniformBuffer(size_t stage, u32 index, GPUVAddr gpu_addr, u32 size) override;
void FlushAll() override; void FlushAll() override;
void FlushRegion(VAddr addr, u64 size) override; void FlushRegion(VAddr addr, u64 size) override;
bool MustFlushRegion(VAddr addr, u64 size) override; bool MustFlushRegion(VAddr addr, u64 size) override;
@ -107,24 +105,11 @@ private:
static constexpr VkDeviceSize DEFAULT_BUFFER_SIZE = 4 * sizeof(float); static constexpr VkDeviceSize DEFAULT_BUFFER_SIZE = 4 * sizeof(float);
struct DrawParameters {
void Draw(vk::CommandBuffer cmdbuf) const;
u32 base_instance = 0;
u32 num_instances = 0;
u32 base_vertex = 0;
u32 num_vertices = 0;
bool is_indexed = 0;
};
void FlushWork(); void FlushWork();
/// Setups geometry buffers and state.
DrawParameters SetupGeometry(FixedPipelineState& fixed_state, BufferBindings& buffer_bindings,
bool is_indexed, bool is_instanced);
/// Setup descriptors in the graphics pipeline. /// Setup descriptors in the graphics pipeline.
void SetupShaderDescriptors(const std::array<Shader*, Maxwell::MaxShaderProgram>& shaders); void SetupShaderDescriptors(const std::array<Shader*, Maxwell::MaxShaderProgram>& shaders,
bool is_indexed);
void UpdateDynamicStates(); void UpdateDynamicStates();
@ -132,16 +117,6 @@ private:
void EndTransformFeedback(); void EndTransformFeedback();
void SetupVertexArrays(BufferBindings& buffer_bindings);
void SetupIndexBuffer(BufferBindings& buffer_bindings, DrawParameters& params, bool is_indexed);
/// Setup constant buffers in the graphics pipeline.
void SetupGraphicsConstBuffers(const ShaderEntries& entries, std::size_t stage);
/// Setup global buffers in the graphics pipeline.
void SetupGraphicsGlobalBuffers(const ShaderEntries& entries, std::size_t stage);
/// Setup uniform texels in the graphics pipeline. /// Setup uniform texels in the graphics pipeline.
void SetupGraphicsUniformTexels(const ShaderEntries& entries, std::size_t stage); void SetupGraphicsUniformTexels(const ShaderEntries& entries, std::size_t stage);
@ -154,12 +129,6 @@ private:
/// Setup images in the graphics pipeline. /// Setup images in the graphics pipeline.
void SetupGraphicsImages(const ShaderEntries& entries, std::size_t stage); void SetupGraphicsImages(const ShaderEntries& entries, std::size_t stage);
/// Setup constant buffers in the compute pipeline.
void SetupComputeConstBuffers(const ShaderEntries& entries);
/// Setup global buffers in the compute pipeline.
void SetupComputeGlobalBuffers(const ShaderEntries& entries);
/// Setup texel buffers in the compute pipeline. /// Setup texel buffers in the compute pipeline.
void SetupComputeUniformTexels(const ShaderEntries& entries); void SetupComputeUniformTexels(const ShaderEntries& entries);
@ -172,11 +141,6 @@ private:
/// Setup images in the compute pipeline. /// Setup images in the compute pipeline.
void SetupComputeImages(const ShaderEntries& entries); void SetupComputeImages(const ShaderEntries& entries);
void SetupConstBuffer(const ConstBufferEntry& entry,
const Tegra::Engines::ConstBufferInfo& buffer);
void SetupGlobalBuffer(const GlobalBufferEntry& entry, GPUVAddr address);
void UpdateViewportsState(Tegra::Engines::Maxwell3D::Regs& regs); void UpdateViewportsState(Tegra::Engines::Maxwell3D::Regs& regs);
void UpdateScissorsState(Tegra::Engines::Maxwell3D::Regs& regs); void UpdateScissorsState(Tegra::Engines::Maxwell3D::Regs& regs);
void UpdateDepthBias(Tegra::Engines::Maxwell3D::Regs& regs); void UpdateDepthBias(Tegra::Engines::Maxwell3D::Regs& regs);
@ -193,19 +157,6 @@ private:
void UpdateStencilOp(Tegra::Engines::Maxwell3D::Regs& regs); void UpdateStencilOp(Tegra::Engines::Maxwell3D::Regs& regs);
void UpdateStencilTestEnable(Tegra::Engines::Maxwell3D::Regs& regs); void UpdateStencilTestEnable(Tegra::Engines::Maxwell3D::Regs& regs);
size_t CalculateGraphicsStreamBufferSize(bool is_indexed) const;
size_t CalculateComputeStreamBufferSize() const;
size_t CalculateVertexArraysSize() const;
size_t CalculateIndexBufferSize() const;
size_t CalculateConstBufferSize(const ConstBufferEntry& entry,
const Tegra::Engines::ConstBufferInfo& buffer) const;
VkBuffer DefaultBuffer();
Tegra::GPU& gpu; Tegra::GPU& gpu;
Tegra::MemoryManager& gpu_memory; Tegra::MemoryManager& gpu_memory;
Tegra::Engines::Maxwell3D& maxwell3d; Tegra::Engines::Maxwell3D& maxwell3d;
@ -217,24 +168,19 @@ private:
StateTracker& state_tracker; StateTracker& state_tracker;
VKScheduler& scheduler; VKScheduler& scheduler;
VKStreamBuffer stream_buffer;
StagingBufferPool staging_pool; StagingBufferPool staging_pool;
VKDescriptorPool descriptor_pool; VKDescriptorPool descriptor_pool;
VKUpdateDescriptorQueue update_descriptor_queue; VKUpdateDescriptorQueue update_descriptor_queue;
BlitImageHelper blit_image; BlitImageHelper blit_image;
QuadArrayPass quad_array_pass;
QuadIndexedPass quad_indexed_pass;
Uint8Pass uint8_pass;
TextureCacheRuntime texture_cache_runtime; TextureCacheRuntime texture_cache_runtime;
TextureCache texture_cache; TextureCache texture_cache;
BufferCacheRuntime buffer_cache_runtime;
BufferCache buffer_cache;
VKPipelineCache pipeline_cache; VKPipelineCache pipeline_cache;
VKBufferCache buffer_cache;
VKQueryCache query_cache; VKQueryCache query_cache;
VKFenceManager fence_manager; VKFenceManager fence_manager;
vk::Buffer default_buffer;
MemoryCommit default_buffer_commit;
vk::Event wfi_event; vk::Event wfi_event;
VideoCommon::Shader::AsyncShaders async_shaders; VideoCommon::Shader::AsyncShaders async_shaders;

View file

@ -52,18 +52,6 @@ VKScheduler::~VKScheduler() {
worker_thread.join(); worker_thread.join();
} }
u64 VKScheduler::CurrentTick() const noexcept {
return master_semaphore->CurrentTick();
}
bool VKScheduler::IsFree(u64 tick) const noexcept {
return master_semaphore->IsFree(tick);
}
void VKScheduler::Wait(u64 tick) {
master_semaphore->Wait(tick);
}
void VKScheduler::Flush(VkSemaphore semaphore) { void VKScheduler::Flush(VkSemaphore semaphore) {
SubmitExecution(semaphore); SubmitExecution(semaphore);
AllocateNewContext(); AllocateNewContext();
@ -269,7 +257,7 @@ void VKScheduler::EndRenderPass() {
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, 0, nullptr, nullptr, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, nullptr, nullptr,
vk::Span(barriers.data(), num_images)); vk::Span(barriers.data(), num_images));
}); });
state.renderpass = nullptr; state.renderpass = nullptr;

View file

@ -14,6 +14,7 @@
#include "common/alignment.h" #include "common/alignment.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "common/threadsafe_queue.h" #include "common/threadsafe_queue.h"
#include "video_core/renderer_vulkan/vk_master_semaphore.h"
#include "video_core/vulkan_common/vulkan_wrapper.h" #include "video_core/vulkan_common/vulkan_wrapper.h"
namespace Vulkan { namespace Vulkan {
@ -21,7 +22,6 @@ namespace Vulkan {
class CommandPool; class CommandPool;
class Device; class Device;
class Framebuffer; class Framebuffer;
class MasterSemaphore;
class StateTracker; class StateTracker;
class VKQueryCache; class VKQueryCache;
@ -32,15 +32,6 @@ public:
explicit VKScheduler(const Device& device, StateTracker& state_tracker); explicit VKScheduler(const Device& device, StateTracker& state_tracker);
~VKScheduler(); ~VKScheduler();
/// Returns the current command buffer tick.
[[nodiscard]] u64 CurrentTick() const noexcept;
/// Returns true when a tick has been triggered by the GPU.
[[nodiscard]] bool IsFree(u64 tick) const noexcept;
/// Waits for the given tick to trigger on the GPU.
void Wait(u64 tick);
/// Sends the current execution context to the GPU. /// Sends the current execution context to the GPU.
void Flush(VkSemaphore semaphore = nullptr); void Flush(VkSemaphore semaphore = nullptr);
@ -82,6 +73,21 @@ public:
(void)chunk->Record(command); (void)chunk->Record(command);
} }
/// Returns the current command buffer tick.
[[nodiscard]] u64 CurrentTick() const noexcept {
return master_semaphore->CurrentTick();
}
/// Returns true when a tick has been triggered by the GPU.
[[nodiscard]] bool IsFree(u64 tick) const noexcept {
return master_semaphore->IsFree(tick);
}
/// Waits for the given tick to trigger on the GPU.
void Wait(u64 tick) {
master_semaphore->Wait(tick);
}
/// Returns the master timeline semaphore. /// Returns the master timeline semaphore.
[[nodiscard]] MasterSemaphore& GetMasterSemaphore() const noexcept { [[nodiscard]] MasterSemaphore& GetMasterSemaphore() const noexcept {
return *master_semaphore; return *master_semaphore;

View file

@ -3127,6 +3127,9 @@ ShaderEntries GenerateShaderEntries(const VideoCommon::Shader::ShaderIR& ir) {
entries.attributes.insert(GetGenericAttributeLocation(attribute)); entries.attributes.insert(GetGenericAttributeLocation(attribute));
} }
} }
for (const auto& buffer : entries.const_buffers) {
entries.enabled_uniform_buffers |= 1U << buffer.GetIndex();
}
entries.clip_distances = ir.GetClipDistances(); entries.clip_distances = ir.GetClipDistances();
entries.shader_length = ir.GetLength(); entries.shader_length = ir.GetLength();
entries.uses_warps = ir.UsesWarps(); entries.uses_warps = ir.UsesWarps();

View file

@ -39,24 +39,7 @@ private:
u32 index{}; u32 index{};
}; };
class GlobalBufferEntry { struct GlobalBufferEntry {
public:
constexpr explicit GlobalBufferEntry(u32 cbuf_index_, u32 cbuf_offset_, bool is_written_)
: cbuf_index{cbuf_index_}, cbuf_offset{cbuf_offset_}, is_written{is_written_} {}
constexpr u32 GetCbufIndex() const {
return cbuf_index;
}
constexpr u32 GetCbufOffset() const {
return cbuf_offset;
}
constexpr bool IsWritten() const {
return is_written;
}
private:
u32 cbuf_index{}; u32 cbuf_index{};
u32 cbuf_offset{}; u32 cbuf_offset{};
bool is_written{}; bool is_written{};
@ -78,6 +61,7 @@ struct ShaderEntries {
std::set<u32> attributes; std::set<u32> attributes;
std::array<bool, Maxwell::NumClipDistances> clip_distances{}; std::array<bool, Maxwell::NumClipDistances> clip_distances{};
std::size_t shader_length{}; std::size_t shader_length{};
u32 enabled_uniform_buffers{};
bool uses_warps{}; bool uses_warps{};
}; };

View file

@ -30,15 +30,18 @@ using Table = Maxwell3D::DirtyState::Table;
using Flags = Maxwell3D::DirtyState::Flags; using Flags = Maxwell3D::DirtyState::Flags;
Flags MakeInvalidationFlags() { Flags MakeInvalidationFlags() {
static constexpr std::array INVALIDATION_FLAGS{ static constexpr int INVALIDATION_FLAGS[]{
Viewports, Scissors, DepthBias, BlendConstants, DepthBounds, Viewports, Scissors, DepthBias, BlendConstants, DepthBounds,
StencilProperties, CullMode, DepthBoundsEnable, DepthTestEnable, DepthWriteEnable, StencilProperties, CullMode, DepthBoundsEnable, DepthTestEnable, DepthWriteEnable,
DepthCompareOp, FrontFace, StencilOp, StencilTestEnable, DepthCompareOp, FrontFace, StencilOp, StencilTestEnable, VertexBuffers,
}; };
Flags flags{}; Flags flags{};
for (const int flag : INVALIDATION_FLAGS) { for (const int flag : INVALIDATION_FLAGS) {
flags[flag] = true; flags[flag] = true;
} }
for (int index = VertexBuffer0; index <= VertexBuffer31; ++index) {
flags[index] = true;
}
return flags; return flags;
} }
@ -130,7 +133,7 @@ void SetupDirtyStencilTestEnable(Tables& tables) {
StateTracker::StateTracker(Tegra::GPU& gpu) StateTracker::StateTracker(Tegra::GPU& gpu)
: flags{gpu.Maxwell3D().dirty.flags}, invalidation_flags{MakeInvalidationFlags()} { : flags{gpu.Maxwell3D().dirty.flags}, invalidation_flags{MakeInvalidationFlags()} {
auto& tables = gpu.Maxwell3D().dirty.tables; auto& tables = gpu.Maxwell3D().dirty.tables;
SetupDirtyRenderTargets(tables); SetupDirtyFlags(tables);
SetupDirtyViewports(tables); SetupDirtyViewports(tables);
SetupDirtyScissors(tables); SetupDirtyScissors(tables);
SetupDirtyDepthBias(tables); SetupDirtyDepthBias(tables);

View file

@ -426,46 +426,47 @@ constexpr VkBorderColor ConvertBorderColor(const std::array<float, 4>& color) {
void CopyBufferToImage(vk::CommandBuffer cmdbuf, VkBuffer src_buffer, VkImage image, void CopyBufferToImage(vk::CommandBuffer cmdbuf, VkBuffer src_buffer, VkImage image,
VkImageAspectFlags aspect_mask, bool is_initialized, VkImageAspectFlags aspect_mask, bool is_initialized,
std::span<const VkBufferImageCopy> copies) { std::span<const VkBufferImageCopy> copies) {
static constexpr VkAccessFlags ACCESS_FLAGS = VK_ACCESS_SHADER_WRITE_BIT | static constexpr VkAccessFlags WRITE_ACCESS_FLAGS =
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
static constexpr VkAccessFlags READ_ACCESS_FLAGS = VK_ACCESS_SHADER_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;
const VkImageMemoryBarrier read_barrier{ const VkImageMemoryBarrier read_barrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr, .pNext = nullptr,
.srcAccessMask = ACCESS_FLAGS, .srcAccessMask = WRITE_ACCESS_FLAGS,
.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT, .dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.oldLayout = is_initialized ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_UNDEFINED, .oldLayout = is_initialized ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_UNDEFINED,
.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, .newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = image, .image = image,
.subresourceRange = .subresourceRange{
{ .aspectMask = aspect_mask,
.aspectMask = aspect_mask, .baseMipLevel = 0,
.baseMipLevel = 0, .levelCount = VK_REMAINING_MIP_LEVELS,
.levelCount = VK_REMAINING_MIP_LEVELS, .baseArrayLayer = 0,
.baseArrayLayer = 0, .layerCount = VK_REMAINING_ARRAY_LAYERS,
.layerCount = VK_REMAINING_ARRAY_LAYERS, },
},
}; };
const VkImageMemoryBarrier write_barrier{ const VkImageMemoryBarrier write_barrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr, .pNext = nullptr,
.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT, .srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = ACCESS_FLAGS, .dstAccessMask = WRITE_ACCESS_FLAGS | READ_ACCESS_FLAGS,
.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, .oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.newLayout = VK_IMAGE_LAYOUT_GENERAL, .newLayout = VK_IMAGE_LAYOUT_GENERAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = image, .image = image,
.subresourceRange = .subresourceRange{
{ .aspectMask = aspect_mask,
.aspectMask = aspect_mask, .baseMipLevel = 0,
.baseMipLevel = 0, .levelCount = VK_REMAINING_MIP_LEVELS,
.levelCount = VK_REMAINING_MIP_LEVELS, .baseArrayLayer = 0,
.baseArrayLayer = 0, .layerCount = VK_REMAINING_ARRAY_LAYERS,
.layerCount = VK_REMAINING_ARRAY_LAYERS, },
},
}; };
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0,
read_barrier); read_barrier);
@ -569,20 +570,12 @@ void TextureCacheRuntime::Finish() {
scheduler.Finish(); scheduler.Finish();
} }
ImageBufferMap TextureCacheRuntime::MapUploadBuffer(size_t size) { StagingBufferRef TextureCacheRuntime::UploadStagingBuffer(size_t size) {
const auto staging_ref = staging_buffer_pool.Request(size, MemoryUsage::Upload); return staging_buffer_pool.Request(size, MemoryUsage::Upload);
return {
.handle = staging_ref.buffer,
.span = staging_ref.mapped_span,
};
} }
ImageBufferMap TextureCacheRuntime::MapDownloadBuffer(size_t size) { StagingBufferRef TextureCacheRuntime::DownloadStagingBuffer(size_t size) {
const auto staging_ref = staging_buffer_pool.Request(size, MemoryUsage::Download); return staging_buffer_pool.Request(size, MemoryUsage::Download);
return {
.handle = staging_ref.buffer,
.span = staging_ref.mapped_span,
};
} }
void TextureCacheRuntime::BlitImage(Framebuffer* dst_framebuffer, ImageView& dst, ImageView& src, void TextureCacheRuntime::BlitImage(Framebuffer* dst_framebuffer, ImageView& dst, ImageView& src,
@ -754,7 +747,7 @@ void TextureCacheRuntime::CopyImage(Image& dst, Image& src,
.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | .srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT, .dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL, .oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_GENERAL, .newLayout = VK_IMAGE_LAYOUT_GENERAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
@ -765,12 +758,9 @@ void TextureCacheRuntime::CopyImage(Image& dst, Image& src,
VkImageMemoryBarrier{ VkImageMemoryBarrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr, .pNext = nullptr,
.srcAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT | .srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT, .dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL, .oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, .newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
@ -828,12 +818,12 @@ Image::Image(TextureCacheRuntime& runtime, const ImageInfo& info_, GPUVAddr gpu_
} }
} }
void Image::UploadMemory(const ImageBufferMap& map, size_t buffer_offset, void Image::UploadMemory(const StagingBufferRef& map, size_t buffer_offset,
std::span<const BufferImageCopy> copies) { std::span<const BufferImageCopy> copies) {
// TODO: Move this to another API // TODO: Move this to another API
scheduler->RequestOutsideRenderPassOperationContext(); scheduler->RequestOutsideRenderPassOperationContext();
std::vector vk_copies = TransformBufferImageCopies(copies, buffer_offset, aspect_mask); std::vector vk_copies = TransformBufferImageCopies(copies, buffer_offset, aspect_mask);
const VkBuffer src_buffer = map.handle; const VkBuffer src_buffer = map.buffer;
const VkImage vk_image = *image; const VkImage vk_image = *image;
const VkImageAspectFlags vk_aspect_mask = aspect_mask; const VkImageAspectFlags vk_aspect_mask = aspect_mask;
const bool is_initialized = std::exchange(initialized, true); const bool is_initialized = std::exchange(initialized, true);
@ -843,12 +833,12 @@ void Image::UploadMemory(const ImageBufferMap& map, size_t buffer_offset,
}); });
} }
void Image::UploadMemory(const ImageBufferMap& map, size_t buffer_offset, void Image::UploadMemory(const StagingBufferRef& map, size_t buffer_offset,
std::span<const VideoCommon::BufferCopy> copies) { std::span<const VideoCommon::BufferCopy> copies) {
// TODO: Move this to another API // TODO: Move this to another API
scheduler->RequestOutsideRenderPassOperationContext(); scheduler->RequestOutsideRenderPassOperationContext();
std::vector vk_copies = TransformBufferCopies(copies, buffer_offset); std::vector vk_copies = TransformBufferCopies(copies, buffer_offset);
const VkBuffer src_buffer = map.handle; const VkBuffer src_buffer = map.buffer;
const VkBuffer dst_buffer = *buffer; const VkBuffer dst_buffer = *buffer;
scheduler->Record([src_buffer, dst_buffer, vk_copies](vk::CommandBuffer cmdbuf) { scheduler->Record([src_buffer, dst_buffer, vk_copies](vk::CommandBuffer cmdbuf) {
// TODO: Barriers // TODO: Barriers
@ -856,13 +846,58 @@ void Image::UploadMemory(const ImageBufferMap& map, size_t buffer_offset,
}); });
} }
void Image::DownloadMemory(const ImageBufferMap& map, size_t buffer_offset, void Image::DownloadMemory(const StagingBufferRef& map, size_t buffer_offset,
std::span<const BufferImageCopy> copies) { std::span<const BufferImageCopy> copies) {
std::vector vk_copies = TransformBufferImageCopies(copies, buffer_offset, aspect_mask); std::vector vk_copies = TransformBufferImageCopies(copies, buffer_offset, aspect_mask);
scheduler->Record([buffer = map.handle, image = *image, aspect_mask = aspect_mask, scheduler->Record([buffer = map.buffer, image = *image, aspect_mask = aspect_mask,
vk_copies](vk::CommandBuffer cmdbuf) { vk_copies](vk::CommandBuffer cmdbuf) {
// TODO: Barriers const VkImageMemoryBarrier read_barrier{
cmdbuf.CopyImageToBuffer(image, VK_IMAGE_LAYOUT_GENERAL, buffer, vk_copies); .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT,
.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = image,
.subresourceRange{
.aspectMask = aspect_mask,
.baseMipLevel = 0,
.levelCount = VK_REMAINING_MIP_LEVELS,
.baseArrayLayer = 0,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
};
const VkImageMemoryBarrier image_write_barrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = 0,
.dstAccessMask = VK_ACCESS_MEMORY_WRITE_BIT,
.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
.newLayout = VK_IMAGE_LAYOUT_GENERAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = image,
.subresourceRange{
.aspectMask = aspect_mask,
.baseMipLevel = 0,
.levelCount = VK_REMAINING_MIP_LEVELS,
.baseArrayLayer = 0,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
};
const VkMemoryBarrier memory_write_barrier{
.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT,
.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT,
};
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
0, read_barrier);
cmdbuf.CopyImageToBuffer(image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, buffer, vk_copies);
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
0, memory_write_barrier, nullptr, image_write_barrier);
}); });
} }
@ -1127,7 +1162,7 @@ Framebuffer::Framebuffer(TextureCacheRuntime& runtime, std::span<ImageView*, NUM
.pAttachments = attachments.data(), .pAttachments = attachments.data(),
.width = key.size.width, .width = key.size.width,
.height = key.size.height, .height = key.size.height,
.layers = static_cast<u32>(num_layers), .layers = static_cast<u32>(std::max(num_layers, 1)),
}); });
if (runtime.device.HasDebuggingToolAttached()) { if (runtime.device.HasDebuggingToolAttached()) {
framebuffer.SetObjectNameEXT(VideoCommon::Name(key).c_str()); framebuffer.SetObjectNameEXT(VideoCommon::Name(key).c_str());

View file

@ -7,6 +7,7 @@
#include <compare> #include <compare>
#include <span> #include <span>
#include "video_core/renderer_vulkan/vk_staging_buffer_pool.h"
#include "video_core/texture_cache/texture_cache.h" #include "video_core/texture_cache/texture_cache.h"
#include "video_core/vulkan_common/vulkan_memory_allocator.h" #include "video_core/vulkan_common/vulkan_memory_allocator.h"
#include "video_core/vulkan_common/vulkan_wrapper.h" #include "video_core/vulkan_common/vulkan_wrapper.h"
@ -53,19 +54,6 @@ struct hash<Vulkan::RenderPassKey> {
namespace Vulkan { namespace Vulkan {
struct ImageBufferMap {
[[nodiscard]] VkBuffer Handle() const noexcept {
return handle;
}
[[nodiscard]] std::span<u8> Span() const noexcept {
return span;
}
VkBuffer handle;
std::span<u8> span;
};
struct TextureCacheRuntime { struct TextureCacheRuntime {
const Device& device; const Device& device;
VKScheduler& scheduler; VKScheduler& scheduler;
@ -76,9 +64,9 @@ struct TextureCacheRuntime {
void Finish(); void Finish();
[[nodiscard]] ImageBufferMap MapUploadBuffer(size_t size); [[nodiscard]] StagingBufferRef UploadStagingBuffer(size_t size);
[[nodiscard]] ImageBufferMap MapDownloadBuffer(size_t size); [[nodiscard]] StagingBufferRef DownloadStagingBuffer(size_t size);
void BlitImage(Framebuffer* dst_framebuffer, ImageView& dst, ImageView& src, void BlitImage(Framebuffer* dst_framebuffer, ImageView& dst, ImageView& src,
const std::array<Offset2D, 2>& dst_region, const std::array<Offset2D, 2>& dst_region,
@ -94,7 +82,7 @@ struct TextureCacheRuntime {
return false; return false;
} }
void AccelerateImageUpload(Image&, const ImageBufferMap&, size_t, void AccelerateImageUpload(Image&, const StagingBufferRef&, size_t,
std::span<const VideoCommon::SwizzleParameters>) { std::span<const VideoCommon::SwizzleParameters>) {
UNREACHABLE(); UNREACHABLE();
} }
@ -112,13 +100,13 @@ public:
explicit Image(TextureCacheRuntime&, const VideoCommon::ImageInfo& info, GPUVAddr gpu_addr, explicit Image(TextureCacheRuntime&, const VideoCommon::ImageInfo& info, GPUVAddr gpu_addr,
VAddr cpu_addr); VAddr cpu_addr);
void UploadMemory(const ImageBufferMap& map, size_t buffer_offset, void UploadMemory(const StagingBufferRef& map, size_t buffer_offset,
std::span<const VideoCommon::BufferImageCopy> copies); std::span<const VideoCommon::BufferImageCopy> copies);
void UploadMemory(const ImageBufferMap& map, size_t buffer_offset, void UploadMemory(const StagingBufferRef& map, size_t buffer_offset,
std::span<const VideoCommon::BufferCopy> copies); std::span<const VideoCommon::BufferCopy> copies);
void DownloadMemory(const ImageBufferMap& map, size_t buffer_offset, void DownloadMemory(const StagingBufferRef& map, size_t buffer_offset,
std::span<const VideoCommon::BufferImageCopy> copies); std::span<const VideoCommon::BufferImageCopy> copies);
[[nodiscard]] VkImage Handle() const noexcept { [[nodiscard]] VkImage Handle() const noexcept {

View file

@ -9,16 +9,7 @@
#include <shared_mutex> #include <shared_mutex>
#include <thread> #include <thread>
// This header includes both Vulkan and OpenGL headers, this has to be fixed
// Unfortunately, including OpenGL will include Windows.h that defines macros that can cause issues.
// Forcefully include glad early and undefine macros
#include <glad/glad.h> #include <glad/glad.h>
#ifdef CreateEvent
#undef CreateEvent
#endif
#ifdef CreateSemaphore
#undef CreateSemaphore
#endif
#include "common/common_types.h" #include "common/common_types.h"
#include "video_core/renderer_opengl/gl_device.h" #include "video_core/renderer_opengl/gl_device.h"

View file

@ -76,6 +76,7 @@ u32 ShaderIR::DecodeOther(NodeBlock& bb, u32 pc) {
case SystemVariable::InvocationId: case SystemVariable::InvocationId:
return Operation(OperationCode::InvocationId); return Operation(OperationCode::InvocationId);
case SystemVariable::Ydirection: case SystemVariable::Ydirection:
uses_y_negate = true;
return Operation(OperationCode::YNegate); return Operation(OperationCode::YNegate);
case SystemVariable::InvocationInfo: case SystemVariable::InvocationInfo:
LOG_WARNING(HW_GPU, "S2R instruction with InvocationInfo is incomplete"); LOG_WARNING(HW_GPU, "S2R instruction with InvocationInfo is incomplete");

View file

@ -139,6 +139,10 @@ public:
return uses_legacy_varyings; return uses_legacy_varyings;
} }
bool UsesYNegate() const {
return uses_y_negate;
}
bool UsesWarps() const { bool UsesWarps() const {
return uses_warps; return uses_warps;
} }
@ -465,6 +469,7 @@ private:
bool uses_instance_id{}; bool uses_instance_id{};
bool uses_vertex_id{}; bool uses_vertex_id{};
bool uses_legacy_varyings{}; bool uses_legacy_varyings{};
bool uses_y_negate{};
bool uses_warps{}; bool uses_warps{};
bool uses_indexed_samplers{}; bool uses_indexed_samplers{};

View file

@ -103,9 +103,6 @@ public:
/// Notify the cache that a new frame has been queued /// Notify the cache that a new frame has been queued
void TickFrame(); void TickFrame();
/// Return an unique mutually exclusive lock for the cache
[[nodiscard]] std::unique_lock<std::mutex> AcquireLock();
/// Return a constant reference to the given image view id /// Return a constant reference to the given image view id
[[nodiscard]] const ImageView& GetImageView(ImageViewId id) const noexcept; [[nodiscard]] const ImageView& GetImageView(ImageViewId id) const noexcept;
@ -179,6 +176,8 @@ public:
/// Return true when a CPU region is modified from the GPU /// Return true when a CPU region is modified from the GPU
[[nodiscard]] bool IsRegionGpuModified(VAddr addr, size_t size); [[nodiscard]] bool IsRegionGpuModified(VAddr addr, size_t size);
std::mutex mutex;
private: private:
/// Iterate over all page indices in a range /// Iterate over all page indices in a range
template <typename Func> template <typename Func>
@ -212,8 +211,8 @@ private:
void RefreshContents(Image& image); void RefreshContents(Image& image);
/// Upload data from guest to an image /// Upload data from guest to an image
template <typename MapBuffer> template <typename StagingBuffer>
void UploadImageContents(Image& image, MapBuffer& map, size_t buffer_offset); void UploadImageContents(Image& image, StagingBuffer& staging_buffer, size_t buffer_offset);
/// Find or create an image view from a guest descriptor /// Find or create an image view from a guest descriptor
[[nodiscard]] ImageViewId FindImageView(const TICEntry& config); [[nodiscard]] ImageViewId FindImageView(const TICEntry& config);
@ -325,8 +324,6 @@ private:
RenderTargets render_targets; RenderTargets render_targets;
std::mutex mutex;
std::unordered_map<TICEntry, ImageViewId> image_views; std::unordered_map<TICEntry, ImageViewId> image_views;
std::unordered_map<TSCEntry, SamplerId> samplers; std::unordered_map<TSCEntry, SamplerId> samplers;
std::unordered_map<RenderTargets, FramebufferId> framebuffers; std::unordered_map<RenderTargets, FramebufferId> framebuffers;
@ -385,11 +382,6 @@ void TextureCache<P>::TickFrame() {
++frame_tick; ++frame_tick;
} }
template <class P>
std::unique_lock<std::mutex> TextureCache<P>::AcquireLock() {
return std::unique_lock{mutex};
}
template <class P> template <class P>
const typename P::ImageView& TextureCache<P>::GetImageView(ImageViewId id) const noexcept { const typename P::ImageView& TextureCache<P>::GetImageView(ImageViewId id) const noexcept {
return slot_image_views[id]; return slot_image_views[id];
@ -598,11 +590,11 @@ void TextureCache<P>::DownloadMemory(VAddr cpu_addr, size_t size) {
}); });
for (const ImageId image_id : images) { for (const ImageId image_id : images) {
Image& image = slot_images[image_id]; Image& image = slot_images[image_id];
auto map = runtime.MapDownloadBuffer(image.unswizzled_size_bytes); auto map = runtime.DownloadStagingBuffer(image.unswizzled_size_bytes);
const auto copies = FullDownloadCopies(image.info); const auto copies = FullDownloadCopies(image.info);
image.DownloadMemory(map, 0, copies); image.DownloadMemory(map, 0, copies);
runtime.Finish(); runtime.Finish();
SwizzleImage(gpu_memory, image.gpu_addr, image.info, copies, map.Span()); SwizzleImage(gpu_memory, image.gpu_addr, image.info, copies, map.mapped_span);
} }
} }
@ -757,7 +749,7 @@ void TextureCache<P>::PopAsyncFlushes() {
for (const ImageId image_id : download_ids) { for (const ImageId image_id : download_ids) {
total_size_bytes += slot_images[image_id].unswizzled_size_bytes; total_size_bytes += slot_images[image_id].unswizzled_size_bytes;
} }
auto download_map = runtime.MapDownloadBuffer(total_size_bytes); auto download_map = runtime.DownloadStagingBuffer(total_size_bytes);
size_t buffer_offset = 0; size_t buffer_offset = 0;
for (const ImageId image_id : download_ids) { for (const ImageId image_id : download_ids) {
Image& image = slot_images[image_id]; Image& image = slot_images[image_id];
@ -769,7 +761,7 @@ void TextureCache<P>::PopAsyncFlushes() {
runtime.Finish(); runtime.Finish();
buffer_offset = 0; buffer_offset = 0;
const std::span<u8> download_span = download_map.Span(); const std::span<u8> download_span = download_map.mapped_span;
for (const ImageId image_id : download_ids) { for (const ImageId image_id : download_ids) {
const ImageBase& image = slot_images[image_id]; const ImageBase& image = slot_images[image_id];
const auto copies = FullDownloadCopies(image.info); const auto copies = FullDownloadCopies(image.info);
@ -806,7 +798,7 @@ void TextureCache<P>::RefreshContents(Image& image) {
LOG_WARNING(HW_GPU, "MSAA image uploads are not implemented"); LOG_WARNING(HW_GPU, "MSAA image uploads are not implemented");
return; return;
} }
auto map = runtime.MapUploadBuffer(MapSizeBytes(image)); auto map = runtime.UploadStagingBuffer(MapSizeBytes(image));
UploadImageContents(image, map, 0); UploadImageContents(image, map, 0);
runtime.InsertUploadMemoryBarrier(); runtime.InsertUploadMemoryBarrier();
} }
@ -814,7 +806,7 @@ void TextureCache<P>::RefreshContents(Image& image) {
template <class P> template <class P>
template <typename MapBuffer> template <typename MapBuffer>
void TextureCache<P>::UploadImageContents(Image& image, MapBuffer& map, size_t buffer_offset) { void TextureCache<P>::UploadImageContents(Image& image, MapBuffer& map, size_t buffer_offset) {
const std::span<u8> mapped_span = map.Span().subspan(buffer_offset); const std::span<u8> mapped_span = map.mapped_span.subspan(buffer_offset);
const GPUVAddr gpu_addr = image.gpu_addr; const GPUVAddr gpu_addr = image.gpu_addr;
if (True(image.flags & ImageFlagBits::AcceleratedUpload)) { if (True(image.flags & ImageFlagBits::AcceleratedUpload)) {

View file

@ -78,7 +78,7 @@ public:
* *
* @throw vk::Exception on failure * @throw vk::Exception on failure
*/ */
explicit MemoryAllocator(const Device& device_, bool export_allocations_ = false); explicit MemoryAllocator(const Device& device_, bool export_allocations_);
~MemoryAllocator(); ~MemoryAllocator();
MemoryAllocator& operator=(const MemoryAllocator&) = delete; MemoryAllocator& operator=(const MemoryAllocator&) = delete;