mirror of
https://github.com/coop-deluxe/sm64coopdx.git
synced 2024-11-29 15:33:01 +00:00
343 lines
7.3 KiB
C
343 lines
7.3 KiB
C
|
#include <math.h>
|
||
|
#include <stdlib.h>
|
||
|
#include "tabledesign.h"
|
||
|
|
||
|
/**
|
||
|
* Computes the autocorrelation of a vector. More precisely, it computes the
|
||
|
* dot products of vec[i:] and vec[:-i] for i in [0, k). Unused.
|
||
|
*
|
||
|
* See https://en.wikipedia.org/wiki/Autocorrelation.
|
||
|
*/
|
||
|
void acf(double *vec, int n, double *out, int k)
|
||
|
{
|
||
|
int i, j;
|
||
|
double sum;
|
||
|
for (i = 0; i < k; i++)
|
||
|
{
|
||
|
sum = 0.0;
|
||
|
for (j = 0; j < n - i; j++)
|
||
|
{
|
||
|
sum += vec[j + i] * vec[j];
|
||
|
}
|
||
|
out[i] = sum;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// https://en.wikipedia.org/wiki/Durbin%E2%80%93Watson_statistic ?
|
||
|
// "detects the presence of autocorrelation at lag 1 in the residuals (prediction errors)"
|
||
|
int durbin(double *arg0, int n, double *arg2, double *arg3, double *outSomething)
|
||
|
{
|
||
|
int i, j;
|
||
|
double sum, div;
|
||
|
int ret;
|
||
|
|
||
|
arg3[0] = 1.0;
|
||
|
div = arg0[0];
|
||
|
ret = 0;
|
||
|
|
||
|
for (i = 1; i <= n; i++)
|
||
|
{
|
||
|
sum = 0.0;
|
||
|
for (j = 1; j <= i-1; j++)
|
||
|
{
|
||
|
sum += arg3[j] * arg0[i - j];
|
||
|
}
|
||
|
|
||
|
arg3[i] = (div > 0.0 ? -(arg0[i] + sum) / div : 0.0);
|
||
|
arg2[i] = arg3[i];
|
||
|
|
||
|
if (fabs(arg2[i]) > 1.0)
|
||
|
{
|
||
|
ret++;
|
||
|
}
|
||
|
|
||
|
for (j = 1; j < i; j++)
|
||
|
{
|
||
|
arg3[j] += arg3[i - j] * arg3[i];
|
||
|
}
|
||
|
|
||
|
div *= 1.0 - arg3[i] * arg3[i];
|
||
|
}
|
||
|
*outSomething = div;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void afromk(double *in, double *out, int n)
|
||
|
{
|
||
|
int i, j;
|
||
|
out[0] = 1.0;
|
||
|
for (i = 1; i <= n; i++)
|
||
|
{
|
||
|
out[i] = in[i];
|
||
|
for (j = 1; j <= i - 1; j++)
|
||
|
{
|
||
|
out[j] += out[i - j] * out[i];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int kfroma(double *in, double *out, int n)
|
||
|
{
|
||
|
int i, j;
|
||
|
double div;
|
||
|
double temp;
|
||
|
double *next;
|
||
|
int ret;
|
||
|
|
||
|
ret = 0;
|
||
|
next = malloc((n + 1) * sizeof(double));
|
||
|
|
||
|
out[n] = in[n];
|
||
|
for (i = n - 1; i >= 1; i--)
|
||
|
{
|
||
|
for (j = 0; j <= i; j++)
|
||
|
{
|
||
|
temp = out[i + 1];
|
||
|
div = 1.0 - (temp * temp);
|
||
|
if (div == 0.0)
|
||
|
{
|
||
|
free(next);
|
||
|
return 1;
|
||
|
}
|
||
|
next[j] = (in[j] - in[i + 1 - j] * temp) / div;
|
||
|
}
|
||
|
|
||
|
for (j = 0; j <= i; j++)
|
||
|
{
|
||
|
in[j] = next[j];
|
||
|
}
|
||
|
|
||
|
out[i] = next[i];
|
||
|
if (fabs(out[i]) > 1.0)
|
||
|
{
|
||
|
ret++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
free(next);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void rfroma(double *arg0, int n, double *arg2)
|
||
|
{
|
||
|
int i, j;
|
||
|
double **mat;
|
||
|
double div;
|
||
|
|
||
|
mat = malloc((n + 1) * sizeof(double*));
|
||
|
mat[n] = malloc((n + 1) * sizeof(double));
|
||
|
mat[n][0] = 1.0;
|
||
|
for (i = 1; i <= n; i++)
|
||
|
{
|
||
|
mat[n][i] = -arg0[i];
|
||
|
}
|
||
|
|
||
|
for (i = n; i >= 1; i--)
|
||
|
{
|
||
|
mat[i - 1] = malloc(i * sizeof(double));
|
||
|
div = 1.0 - mat[i][i] * mat[i][i];
|
||
|
for (j = 1; j <= i - 1; j++)
|
||
|
{
|
||
|
mat[i - 1][j] = (mat[i][i - j] * mat[i][i] + mat[i][j]) / div;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
arg2[0] = 1.0;
|
||
|
for (i = 1; i <= n; i++)
|
||
|
{
|
||
|
arg2[i] = 0.0;
|
||
|
for (j = 1; j <= i; j++)
|
||
|
{
|
||
|
arg2[i] += mat[i][j] * arg2[i - j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
free(mat[n]);
|
||
|
for (i = n; i > 0; i--)
|
||
|
{
|
||
|
free(mat[i - 1]);
|
||
|
}
|
||
|
free(mat);
|
||
|
}
|
||
|
|
||
|
double model_dist(double *arg0, double *arg1, int n)
|
||
|
{
|
||
|
double *sp3C;
|
||
|
double *sp38;
|
||
|
double ret;
|
||
|
int i, j;
|
||
|
|
||
|
sp3C = malloc((n + 1) * sizeof(double));
|
||
|
sp38 = malloc((n + 1) * sizeof(double));
|
||
|
rfroma(arg1, n, sp3C);
|
||
|
|
||
|
for (i = 0; i <= n; i++)
|
||
|
{
|
||
|
sp38[i] = 0.0;
|
||
|
for (j = 0; j <= n - i; j++)
|
||
|
{
|
||
|
sp38[i] += arg0[j] * arg0[i + j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ret = sp38[0] * sp3C[0];
|
||
|
for (i = 1; i <= n; i++)
|
||
|
{
|
||
|
ret += 2 * sp3C[i] * sp38[i];
|
||
|
}
|
||
|
|
||
|
free(sp3C);
|
||
|
free(sp38);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
// compute autocorrelation matrix?
|
||
|
void acmat(short *in, int n, int m, double **out)
|
||
|
{
|
||
|
int i, j, k;
|
||
|
for (i = 1; i <= n; i++)
|
||
|
{
|
||
|
for (j = 1; j <= n; j++)
|
||
|
{
|
||
|
out[i][j] = 0.0;
|
||
|
for (k = 0; k < m; k++)
|
||
|
{
|
||
|
out[i][j] += in[k - i] * in[k - j];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// compute autocorrelation vector?
|
||
|
void acvect(short *in, int n, int m, double *out)
|
||
|
{
|
||
|
int i, j;
|
||
|
for (i = 0; i <= n; i++)
|
||
|
{
|
||
|
out[i] = 0.0;
|
||
|
for (j = 0; j < m; j++)
|
||
|
{
|
||
|
out[i] -= in[j - i] * in[j];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Replaces a real n-by-n matrix "a" with the LU decomposition of a row-wise
|
||
|
* permutation of itself.
|
||
|
*
|
||
|
* Input parameters:
|
||
|
* a: The matrix which is operated on. 1-indexed; it should be of size
|
||
|
* (n+1) x (n+1), and row/column index 0 is not used.
|
||
|
* n: The size of the matrix.
|
||
|
*
|
||
|
* Output parameters:
|
||
|
* indx: The row permutation performed. 1-indexed; it should be of size n+1,
|
||
|
* and index 0 is not used.
|
||
|
* d: the determinant of the permutation matrix.
|
||
|
*
|
||
|
* Returns 1 to indicate failure if the matrix is singular or has zeroes on the
|
||
|
* diagonal, 0 on success.
|
||
|
*
|
||
|
* Derived from ludcmp in "Numerical Recipes in C: The Art of Scientific Computing",
|
||
|
* with modified error handling.
|
||
|
*/
|
||
|
int lud(double **a, int n, int *indx, int *d)
|
||
|
{
|
||
|
int i,imax,j,k;
|
||
|
double big,dum,sum,temp;
|
||
|
double min,max;
|
||
|
double *vv;
|
||
|
|
||
|
vv = malloc((n + 1) * sizeof(double));
|
||
|
*d=1;
|
||
|
for (i=1;i<=n;i++) {
|
||
|
big=0.0;
|
||
|
for (j=1;j<=n;j++)
|
||
|
if ((temp=fabs(a[i][j])) > big) big=temp;
|
||
|
if (big == 0.0) return 1;
|
||
|
vv[i]=1.0/big;
|
||
|
}
|
||
|
for (j=1;j<=n;j++) {
|
||
|
for (i=1;i<j;i++) {
|
||
|
sum=a[i][j];
|
||
|
for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
|
||
|
a[i][j]=sum;
|
||
|
}
|
||
|
big=0.0;
|
||
|
for (i=j;i<=n;i++) {
|
||
|
sum=a[i][j];
|
||
|
for (k=1;k<j;k++)
|
||
|
sum -= a[i][k]*a[k][j];
|
||
|
a[i][j]=sum;
|
||
|
if ( (dum=vv[i]*fabs(sum)) >= big) {
|
||
|
big=dum;
|
||
|
imax=i;
|
||
|
}
|
||
|
}
|
||
|
if (j != imax) {
|
||
|
for (k=1;k<=n;k++) {
|
||
|
dum=a[imax][k];
|
||
|
a[imax][k]=a[j][k];
|
||
|
a[j][k]=dum;
|
||
|
}
|
||
|
*d = -(*d);
|
||
|
vv[imax]=vv[j];
|
||
|
}
|
||
|
indx[j]=imax;
|
||
|
if (a[j][j] == 0.0) return 1;
|
||
|
if (j != n) {
|
||
|
dum=1.0/(a[j][j]);
|
||
|
for (i=j+1;i<=n;i++) a[i][j] *= dum;
|
||
|
}
|
||
|
}
|
||
|
free(vv);
|
||
|
|
||
|
min = 1e10;
|
||
|
max = 0.0;
|
||
|
for (i = 1; i <= n; i++)
|
||
|
{
|
||
|
temp = fabs(a[i][i]);
|
||
|
if (temp < min) min = temp;
|
||
|
if (temp > max) max = temp;
|
||
|
}
|
||
|
return min / max < 1e-10 ? 1 : 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Solves the set of n linear equations Ax = b, using LU decomposition
|
||
|
* back-substitution.
|
||
|
*
|
||
|
* Input parameters:
|
||
|
* a: The LU decomposition of a matrix, created by "lud".
|
||
|
* n: The size of the matrix.
|
||
|
* indx: Row permutation vector, created by "lud".
|
||
|
* b: The vector b in the equation. 1-indexed; is should be of size n+1, and
|
||
|
* index 0 is not used.
|
||
|
*
|
||
|
* Output parameters:
|
||
|
* b: The output vector x. 1-indexed.
|
||
|
*
|
||
|
* From "Numerical Recipes in C: The Art of Scientific Computing".
|
||
|
*/
|
||
|
void lubksb(double **a, int n, int *indx, double *b)
|
||
|
{
|
||
|
int i,ii=0,ip,j;
|
||
|
double sum;
|
||
|
|
||
|
for (i=1;i<=n;i++) {
|
||
|
ip=indx[i];
|
||
|
sum=b[ip];
|
||
|
b[ip]=b[i];
|
||
|
if (ii)
|
||
|
for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
|
||
|
else if (sum) ii=i;
|
||
|
b[i]=sum;
|
||
|
}
|
||
|
for (i=n;i>=1;i--) {
|
||
|
sum=b[i];
|
||
|
for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
|
||
|
b[i]=sum/a[i][i];
|
||
|
}
|
||
|
}
|