ryujinx-mirror/Ryujinx.Graphics.Gpu/Memory/MemoryManager.cs
gdkchan 43ebd7a9bb
New shader cache implementation (#3194)
* New shader cache implementation

* Remove some debug code

* Take transform feedback varying count into account

* Create shader cache directory if it does not exist + fragment output map related fixes

* Remove debug code

* Only check texture descriptors if the constant buffer is bound

* Also check CPU VA on GetSpanMapped

* Remove more unused code and move cache related code

* XML docs + remove more unused methods

* Better codegen for TransformFeedbackDescriptor.AsSpan

* Support migration from old cache format, remove more unused code

Shader cache rebuild now also rewrites the shared toc and data files

* Fix migration error with BRX shaders

* Add a limit to the async translation queue

 Avoid async translation threads not being able to keep up and the queue growing very large

* Re-create specialization state on recompile

This might be required if a new version of the shader translator requires more or less state, or if there is a bug related to the GPU state access

* Make shader cache more error resilient

* Add some missing XML docs and move GpuAccessor docs to the interface/use inheritdoc

* Address early PR feedback

* Fix rebase

* Remove IRenderer.CompileShader and IShader interface, replace with new ShaderSource struct passed to CreateProgram directly

* Handle some missing exceptions

* Make shader cache purge delete both old and new shader caches

* Register textures on new specialization state

* Translate and compile shaders in forward order (eliminates diffs due to different binding numbers)

* Limit in-flight shader compilation to the maximum number of compilation threads

* Replace ParallelDiskCacheLoader state changed event with a callback function

* Better handling for invalid constant buffer 1 data length

* Do not create the old cache directory structure if the old cache does not exist

* Constant buffer use should be per-stage. This change will invalidate existing new caches (file format version was incremented)

* Replace rectangle texture with just coordinate normalization

* Skip incompatible shaders that are missing texture information, instead of crashing

This is required if we, for example, support new texture instruction to the shader translator, and then they allow access to textures that were not accessed before. In this scenario, the old cache entry is no longer usable

* Fix coordinates normalization on cubemap textures

* Check if title ID is null before combining shader cache path

* More robust constant buffer address validation on spec state

* More robust constant buffer address validation on spec state (2)

* Regenerate shader cache with one stream, rather than one per shader.

* Only create shader cache directory during initialization

* Logging improvements

* Proper shader program disposal

* PR feedback, and add a comment on serialized structs

* XML docs for RegisterTexture

Co-authored-by: riperiperi <rhy3756547@hotmail.com>
2022-04-10 10:49:44 -03:00

681 lines
No EOL
23 KiB
C#

using Ryujinx.Memory;
using Ryujinx.Memory.Range;
using System;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Gpu.Memory
{
/// <summary>
/// GPU memory manager.
/// </summary>
public class MemoryManager : IWritableBlock
{
private const int PtLvl0Bits = 14;
private const int PtLvl1Bits = 14;
public const int PtPageBits = 12;
private const ulong PtLvl0Size = 1UL << PtLvl0Bits;
private const ulong PtLvl1Size = 1UL << PtLvl1Bits;
public const ulong PageSize = 1UL << PtPageBits;
private const ulong PtLvl0Mask = PtLvl0Size - 1;
private const ulong PtLvl1Mask = PtLvl1Size - 1;
public const ulong PageMask = PageSize - 1;
private const int PtLvl0Bit = PtPageBits + PtLvl1Bits;
private const int PtLvl1Bit = PtPageBits;
private const int AddressSpaceBits = PtPageBits + PtLvl1Bits + PtLvl0Bits;
public const ulong PteUnmapped = ulong.MaxValue;
private readonly ulong[][] _pageTable;
public event EventHandler<UnmapEventArgs> MemoryUnmapped;
/// <summary>
/// Physical memory where the virtual memory is mapped into.
/// </summary>
internal PhysicalMemory Physical { get; }
/// <summary>
/// Cache of GPU counters.
/// </summary>
internal CounterCache CounterCache { get; }
/// <summary>
/// Creates a new instance of the GPU memory manager.
/// </summary>
/// <param name="physicalMemory">Physical memory that this memory manager will map into</param>
internal MemoryManager(PhysicalMemory physicalMemory)
{
Physical = physicalMemory;
CounterCache = new CounterCache();
_pageTable = new ulong[PtLvl0Size][];
MemoryUnmapped += Physical.TextureCache.MemoryUnmappedHandler;
MemoryUnmapped += Physical.BufferCache.MemoryUnmappedHandler;
MemoryUnmapped += CounterCache.MemoryUnmappedHandler;
}
/// <summary>
/// Reads data from GPU mapped memory.
/// </summary>
/// <typeparam name="T">Type of the data</typeparam>
/// <param name="va">GPU virtual address where the data is located</param>
/// <param name="tracked">True if read tracking is triggered on the memory region</param>
/// <returns>The data at the specified memory location</returns>
public T Read<T>(ulong va, bool tracked = false) where T : unmanaged
{
int size = Unsafe.SizeOf<T>();
if (IsContiguous(va, size))
{
ulong address = Translate(va);
if (tracked)
{
return Physical.ReadTracked<T>(address);
}
else
{
return Physical.Read<T>(address);
}
}
else
{
Span<byte> data = new byte[size];
ReadImpl(va, data, tracked);
return MemoryMarshal.Cast<byte, T>(data)[0];
}
}
/// <summary>
/// Gets a read-only span of data from GPU mapped memory.
/// </summary>
/// <param name="va">GPU virtual address where the data is located</param>
/// <param name="size">Size of the data</param>
/// <param name="tracked">True if read tracking is triggered on the span</param>
/// <returns>The span of the data at the specified memory location</returns>
public ReadOnlySpan<byte> GetSpan(ulong va, int size, bool tracked = false)
{
if (IsContiguous(va, size))
{
return Physical.GetSpan(Translate(va), size, tracked);
}
else
{
Span<byte> data = new byte[size];
ReadImpl(va, data, tracked);
return data;
}
}
/// <summary>
/// Gets a read-only span of data from GPU mapped memory, up to the entire range specified,
/// or the last mapped page if the range is not fully mapped.
/// </summary>
/// <param name="va">GPU virtual address where the data is located</param>
/// <param name="size">Size of the data</param>
/// <param name="tracked">True if read tracking is triggered on the span</param>
/// <returns>The span of the data at the specified memory location</returns>
public ReadOnlySpan<byte> GetSpanMapped(ulong va, int size, bool tracked = false)
{
bool isContiguous = true;
int mappedSize;
if (ValidateAddress(va) && GetPte(va) != PteUnmapped && Physical.IsMapped(Translate(va)))
{
ulong endVa = va + (ulong)size;
ulong endVaAligned = (endVa + PageMask) & ~PageMask;
ulong currentVa = va & ~PageMask;
int pages = (int)((endVaAligned - currentVa) / PageSize);
for (int page = 0; page < pages - 1; page++)
{
ulong nextVa = currentVa + PageSize;
ulong nextPa = Translate(nextVa);
if (!ValidateAddress(nextVa) || GetPte(nextVa) == PteUnmapped || !Physical.IsMapped(nextPa))
{
break;
}
if (Translate(currentVa) + PageSize != nextPa)
{
isContiguous = false;
}
currentVa += PageSize;
}
currentVa += PageSize;
if (currentVa > endVa)
{
currentVa = endVa;
}
mappedSize = (int)(currentVa - va);
}
else
{
return ReadOnlySpan<byte>.Empty;
}
if (isContiguous)
{
return Physical.GetSpan(Translate(va), mappedSize, tracked);
}
else
{
Span<byte> data = new byte[mappedSize];
ReadImpl(va, data, tracked);
return data;
}
}
/// <summary>
/// Reads data from a possibly non-contiguous region of GPU mapped memory.
/// </summary>
/// <param name="va">GPU virtual address of the data</param>
/// <param name="data">Span to write the read data into</param>
/// <param name="tracked">True to enable write tracking on read, false otherwise</param>
private void ReadImpl(ulong va, Span<byte> data, bool tracked)
{
if (data.Length == 0)
{
return;
}
int offset = 0, size;
if ((va & PageMask) != 0)
{
ulong pa = Translate(va);
size = Math.Min(data.Length, (int)PageSize - (int)(va & PageMask));
Physical.GetSpan(pa, size, tracked).CopyTo(data.Slice(0, size));
offset += size;
}
for (; offset < data.Length; offset += size)
{
ulong pa = Translate(va + (ulong)offset);
size = Math.Min(data.Length - offset, (int)PageSize);
Physical.GetSpan(pa, size, tracked).CopyTo(data.Slice(offset, size));
}
}
/// <summary>
/// Gets a writable region from GPU mapped memory.
/// </summary>
/// <param name="va">Start address of the range</param>
/// <param name="size">Size in bytes to be range</param>
/// <param name="tracked">True if write tracking is triggered on the span</param>
/// <returns>A writable region with the data at the specified memory location</returns>
public WritableRegion GetWritableRegion(ulong va, int size, bool tracked = false)
{
if (IsContiguous(va, size))
{
return Physical.GetWritableRegion(Translate(va), size, tracked);
}
else
{
Memory<byte> memory = new byte[size];
GetSpan(va, size).CopyTo(memory.Span);
return new WritableRegion(this, va, memory, tracked);
}
}
/// <summary>
/// Writes data to GPU mapped memory.
/// </summary>
/// <typeparam name="T">Type of the data</typeparam>
/// <param name="va">GPU virtual address to write the value into</param>
/// <param name="value">The value to be written</param>
public void Write<T>(ulong va, T value) where T : unmanaged
{
Write(va, MemoryMarshal.Cast<T, byte>(MemoryMarshal.CreateSpan(ref value, 1)));
}
/// <summary>
/// Writes data to GPU mapped memory.
/// </summary>
/// <param name="va">GPU virtual address to write the data into</param>
/// <param name="data">The data to be written</param>
public void Write(ulong va, ReadOnlySpan<byte> data)
{
WriteImpl(va, data, Physical.Write);
}
/// <summary>
/// Writes data to GPU mapped memory, destined for a tracked resource.
/// </summary>
/// <param name="va">GPU virtual address to write the data into</param>
/// <param name="data">The data to be written</param>
public void WriteTrackedResource(ulong va, ReadOnlySpan<byte> data)
{
WriteImpl(va, data, Physical.WriteTrackedResource);
}
/// <summary>
/// Writes data to GPU mapped memory without write tracking.
/// </summary>
/// <param name="va">GPU virtual address to write the data into</param>
/// <param name="data">The data to be written</param>
public void WriteUntracked(ulong va, ReadOnlySpan<byte> data)
{
WriteImpl(va, data, Physical.WriteUntracked);
}
private delegate void WriteCallback(ulong address, ReadOnlySpan<byte> data);
/// <summary>
/// Writes data to possibly non-contiguous GPU mapped memory.
/// </summary>
/// <param name="va">GPU virtual address of the region to write into</param>
/// <param name="data">Data to be written</param>
/// <param name="writeCallback">Write callback</param>
private void WriteImpl(ulong va, ReadOnlySpan<byte> data, WriteCallback writeCallback)
{
if (IsContiguous(va, data.Length))
{
writeCallback(Translate(va), data);
}
else
{
int offset = 0, size;
if ((va & PageMask) != 0)
{
ulong pa = Translate(va);
size = Math.Min(data.Length, (int)PageSize - (int)(va & PageMask));
writeCallback(pa, data.Slice(0, size));
offset += size;
}
for (; offset < data.Length; offset += size)
{
ulong pa = Translate(va + (ulong)offset);
size = Math.Min(data.Length - offset, (int)PageSize);
writeCallback(pa, data.Slice(offset, size));
}
}
}
/// <summary>
/// Writes data to GPU mapped memory, stopping at the first unmapped page at the memory region, if any.
/// </summary>
/// <param name="va">GPU virtual address to write the data into</param>
/// <param name="data">The data to be written</param>
public void WriteMapped(ulong va, ReadOnlySpan<byte> data)
{
if (IsContiguous(va, data.Length))
{
Physical.Write(Translate(va), data);
}
else
{
int offset = 0, size;
if ((va & PageMask) != 0)
{
ulong pa = Translate(va);
size = Math.Min(data.Length, (int)PageSize - (int)(va & PageMask));
if (pa != PteUnmapped && Physical.IsMapped(pa))
{
Physical.Write(pa, data.Slice(0, size));
}
offset += size;
}
for (; offset < data.Length; offset += size)
{
ulong pa = Translate(va + (ulong)offset);
size = Math.Min(data.Length - offset, (int)PageSize);
if (pa != PteUnmapped && Physical.IsMapped(pa))
{
Physical.Write(pa, data.Slice(offset, size));
}
}
}
}
/// <summary>
/// Maps a given range of pages to the specified CPU virtual address.
/// </summary>
/// <remarks>
/// All addresses and sizes must be page aligned.
/// </remarks>
/// <param name="pa">CPU virtual address to map into</param>
/// <param name="va">GPU virtual address to be mapped</param>
/// <param name="size">Size in bytes of the mapping</param>
/// <param name="kind">Kind of the resource located at the mapping</param>
public void Map(ulong pa, ulong va, ulong size, PteKind kind)
{
lock (_pageTable)
{
MemoryUnmapped?.Invoke(this, new UnmapEventArgs(va, size));
for (ulong offset = 0; offset < size; offset += PageSize)
{
SetPte(va + offset, PackPte(pa + offset, kind));
}
}
}
/// <summary>
/// Unmaps a given range of pages at the specified GPU virtual memory region.
/// </summary>
/// <param name="va">GPU virtual address to unmap</param>
/// <param name="size">Size in bytes of the region being unmapped</param>
public void Unmap(ulong va, ulong size)
{
lock (_pageTable)
{
// Event handlers are not expected to be thread safe.
MemoryUnmapped?.Invoke(this, new UnmapEventArgs(va, size));
for (ulong offset = 0; offset < size; offset += PageSize)
{
SetPte(va + offset, PteUnmapped);
}
}
}
/// <summary>
/// Checks if a region of GPU mapped memory is contiguous.
/// </summary>
/// <param name="va">GPU virtual address of the region</param>
/// <param name="size">Size of the region</param>
/// <returns>True if the region is contiguous, false otherwise</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private bool IsContiguous(ulong va, int size)
{
if (!ValidateAddress(va) || GetPte(va) == PteUnmapped)
{
return false;
}
ulong endVa = (va + (ulong)size + PageMask) & ~PageMask;
va &= ~PageMask;
int pages = (int)((endVa - va) / PageSize);
for (int page = 0; page < pages - 1; page++)
{
if (!ValidateAddress(va + PageSize) || GetPte(va + PageSize) == PteUnmapped)
{
return false;
}
if (Translate(va) + PageSize != Translate(va + PageSize))
{
return false;
}
va += PageSize;
}
return true;
}
/// <summary>
/// Gets the physical regions that make up the given virtual address region.
/// </summary>
/// <param name="va">Virtual address of the range</param>
/// <param name="size">Size of the range</param>
/// <returns>Multi-range with the physical regions</returns>
public MultiRange GetPhysicalRegions(ulong va, ulong size)
{
if (IsContiguous(va, (int)size))
{
return new MultiRange(Translate(va), size);
}
ulong regionStart = Translate(va);
ulong regionSize = Math.Min(size, PageSize - (va & PageMask));
ulong endVa = va + size;
ulong endVaRounded = (endVa + PageMask) & ~PageMask;
va &= ~PageMask;
int pages = (int)((endVaRounded - va) / PageSize);
var regions = new List<MemoryRange>();
for (int page = 0; page < pages - 1; page++)
{
ulong currPa = Translate(va);
ulong newPa = Translate(va + PageSize);
if ((currPa != PteUnmapped || newPa != PteUnmapped) && currPa + PageSize != newPa)
{
regions.Add(new MemoryRange(regionStart, regionSize));
regionStart = newPa;
regionSize = 0;
}
va += PageSize;
regionSize += Math.Min(endVa - va, PageSize);
}
regions.Add(new MemoryRange(regionStart, regionSize));
return new MultiRange(regions.ToArray());
}
/// <summary>
/// Checks if a given GPU virtual memory range is mapped to the same physical regions
/// as the specified physical memory multi-range.
/// </summary>
/// <param name="range">Physical memory multi-range</param>
/// <param name="va">GPU virtual memory address</param>
/// <returns>True if the virtual memory region is mapped into the specified physical one, false otherwise</returns>
public bool CompareRange(MultiRange range, ulong va)
{
va &= ~PageMask;
for (int i = 0; i < range.Count; i++)
{
MemoryRange currentRange = range.GetSubRange(i);
if (currentRange.Address != PteUnmapped)
{
ulong address = currentRange.Address & ~PageMask;
ulong endAddress = (currentRange.EndAddress + PageMask) & ~PageMask;
while (address < endAddress)
{
if (Translate(va) != address)
{
return false;
}
va += PageSize;
address += PageSize;
}
}
else
{
ulong endVa = va + (((currentRange.Size) + PageMask) & ~PageMask);
while (va < endVa)
{
if (Translate(va) != PteUnmapped)
{
return false;
}
va += PageSize;
}
}
}
return true;
}
/// <summary>
/// Validates a GPU virtual address.
/// </summary>
/// <param name="va">Address to validate</param>
/// <returns>True if the address is valid, false otherwise</returns>
private static bool ValidateAddress(ulong va)
{
return va < (1UL << AddressSpaceBits);
}
/// <summary>
/// Checks if a given page is mapped.
/// </summary>
/// <param name="va">GPU virtual address of the page to check</param>
/// <returns>True if the page is mapped, false otherwise</returns>
public bool IsMapped(ulong va)
{
return Translate(va) != PteUnmapped;
}
/// <summary>
/// Translates a GPU virtual address to a CPU virtual address.
/// </summary>
/// <param name="va">GPU virtual address to be translated</param>
/// <returns>CPU virtual address, or <see cref="PteUnmapped"/> if unmapped</returns>
public ulong Translate(ulong va)
{
if (!ValidateAddress(va))
{
return PteUnmapped;
}
ulong pte = GetPte(va);
if (pte == PteUnmapped)
{
return PteUnmapped;
}
return UnpackPaFromPte(pte) + (va & PageMask);
}
/// <summary>
/// Gets the kind of a given memory page.
/// This might indicate the type of resource that can be allocated on the page, and also texture tiling.
/// </summary>
/// <param name="va">GPU virtual address</param>
/// <returns>Kind of the memory page</returns>
public PteKind GetKind(ulong va)
{
if (!ValidateAddress(va))
{
return PteKind.Invalid;
}
ulong pte = GetPte(va);
if (pte == PteUnmapped)
{
return PteKind.Invalid;
}
return UnpackKindFromPte(pte);
}
/// <summary>
/// Gets the Page Table entry for a given GPU virtual address.
/// </summary>
/// <param name="va">GPU virtual address</param>
/// <returns>Page table entry (CPU virtual address)</returns>
private ulong GetPte(ulong va)
{
ulong l0 = (va >> PtLvl0Bit) & PtLvl0Mask;
ulong l1 = (va >> PtLvl1Bit) & PtLvl1Mask;
if (_pageTable[l0] == null)
{
return PteUnmapped;
}
return _pageTable[l0][l1];
}
/// <summary>
/// Sets a Page Table entry at a given GPU virtual address.
/// </summary>
/// <param name="va">GPU virtual address</param>
/// <param name="pte">Page table entry (CPU virtual address)</param>
private void SetPte(ulong va, ulong pte)
{
ulong l0 = (va >> PtLvl0Bit) & PtLvl0Mask;
ulong l1 = (va >> PtLvl1Bit) & PtLvl1Mask;
if (_pageTable[l0] == null)
{
_pageTable[l0] = new ulong[PtLvl1Size];
for (ulong index = 0; index < PtLvl1Size; index++)
{
_pageTable[l0][index] = PteUnmapped;
}
}
_pageTable[l0][l1] = pte;
}
/// <summary>
/// Creates a page table entry from a physical address and kind.
/// </summary>
/// <param name="pa">Physical address</param>
/// <param name="kind">Kind</param>
/// <returns>Page table entry</returns>
private static ulong PackPte(ulong pa, PteKind kind)
{
return pa | ((ulong)kind << 56);
}
/// <summary>
/// Unpacks kind from a page table entry.
/// </summary>
/// <param name="pte">Page table entry</param>
/// <returns>Kind</returns>
private static PteKind UnpackKindFromPte(ulong pte)
{
return (PteKind)(pte >> 56);
}
/// <summary>
/// Unpacks physical address from a page table entry.
/// </summary>
/// <param name="pte">Page table entry</param>
/// <returns>Physical address</returns>
private static ulong UnpackPaFromPte(ulong pte)
{
return pte & 0xffffffffffffffUL;
}
}
}