ryujinx-mirror/Ryujinx.HLE/HOS/Kernel/Threading/KAddressArbiter.cs
gdkchan 532b8cad13
Update KAddressArbiter implementation to 11.x kernel (#1851)
* Update KAddressArbiter implementation to 11.x kernel

* InsertSortedByPriority is no longer needed
2021-01-01 14:59:26 -03:00

576 lines
17 KiB
C#

using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Process;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
namespace Ryujinx.HLE.HOS.Kernel.Threading
{
class KAddressArbiter
{
private const int HasListenersMask = 0x40000000;
private readonly KernelContext _context;
private readonly List<KThread> _condVarThreads;
private readonly List<KThread> _arbiterThreads;
public KAddressArbiter(KernelContext context)
{
_context = context;
_condVarThreads = new List<KThread>();
_arbiterThreads = new List<KThread>();
}
public KernelResult ArbitrateLock(int ownerHandle, ulong mutexAddress, int requesterHandle)
{
KThread currentThread = KernelStatic.GetCurrentThread();
_context.CriticalSection.Enter();
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = KernelResult.Success;
KProcess currentProcess = KernelStatic.GetCurrentProcess();
if (!KernelTransfer.UserToKernelInt32(_context, mutexAddress, out int mutexValue))
{
_context.CriticalSection.Leave();
return KernelResult.InvalidMemState;
}
if (mutexValue != (ownerHandle | HasListenersMask))
{
_context.CriticalSection.Leave();
return 0;
}
KThread mutexOwner = currentProcess.HandleTable.GetObject<KThread>(ownerHandle);
if (mutexOwner == null)
{
_context.CriticalSection.Leave();
return KernelResult.InvalidHandle;
}
currentThread.MutexAddress = mutexAddress;
currentThread.ThreadHandleForUserMutex = requesterHandle;
mutexOwner.AddMutexWaiter(currentThread);
currentThread.Reschedule(ThreadSchedState.Paused);
_context.CriticalSection.Leave();
_context.CriticalSection.Enter();
if (currentThread.MutexOwner != null)
{
currentThread.MutexOwner.RemoveMutexWaiter(currentThread);
}
_context.CriticalSection.Leave();
return currentThread.ObjSyncResult;
}
public KernelResult ArbitrateUnlock(ulong mutexAddress)
{
_context.CriticalSection.Enter();
KThread currentThread = KernelStatic.GetCurrentThread();
(int mutexValue, KThread newOwnerThread) = MutexUnlock(currentThread, mutexAddress);
KernelResult result = KernelResult.Success;
if (!KernelTransfer.KernelToUserInt32(_context, mutexAddress, mutexValue))
{
result = KernelResult.InvalidMemState;
}
if (result != KernelResult.Success && newOwnerThread != null)
{
newOwnerThread.SignaledObj = null;
newOwnerThread.ObjSyncResult = result;
}
_context.CriticalSection.Leave();
return result;
}
public KernelResult WaitProcessWideKeyAtomic(ulong mutexAddress, ulong condVarAddress, int threadHandle, long timeout)
{
_context.CriticalSection.Enter();
KThread currentThread = KernelStatic.GetCurrentThread();
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = KernelResult.TimedOut;
if (currentThread.ShallBeTerminated ||
currentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
_context.CriticalSection.Leave();
return KernelResult.ThreadTerminating;
}
(int mutexValue, _) = MutexUnlock(currentThread, mutexAddress);
KernelTransfer.KernelToUserInt32(_context, condVarAddress, 1);
if (!KernelTransfer.KernelToUserInt32(_context, mutexAddress, mutexValue))
{
_context.CriticalSection.Leave();
return KernelResult.InvalidMemState;
}
currentThread.MutexAddress = mutexAddress;
currentThread.ThreadHandleForUserMutex = threadHandle;
currentThread.CondVarAddress = condVarAddress;
_condVarThreads.Add(currentThread);
if (timeout != 0)
{
currentThread.Reschedule(ThreadSchedState.Paused);
if (timeout > 0)
{
_context.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
}
}
_context.CriticalSection.Leave();
if (timeout > 0)
{
_context.TimeManager.UnscheduleFutureInvocation(currentThread);
}
_context.CriticalSection.Enter();
if (currentThread.MutexOwner != null)
{
currentThread.MutexOwner.RemoveMutexWaiter(currentThread);
}
_condVarThreads.Remove(currentThread);
_context.CriticalSection.Leave();
return currentThread.ObjSyncResult;
}
private (int, KThread) MutexUnlock(KThread currentThread, ulong mutexAddress)
{
KThread newOwnerThread = currentThread.RelinquishMutex(mutexAddress, out int count);
int mutexValue = 0;
if (newOwnerThread != null)
{
mutexValue = newOwnerThread.ThreadHandleForUserMutex;
if (count >= 2)
{
mutexValue |= HasListenersMask;
}
newOwnerThread.SignaledObj = null;
newOwnerThread.ObjSyncResult = KernelResult.Success;
newOwnerThread.ReleaseAndResume();
}
return (mutexValue, newOwnerThread);
}
public void SignalProcessWideKey(ulong address, int count)
{
_context.CriticalSection.Enter();
WakeThreads(_condVarThreads, count, TryAcquireMutex, x => x.CondVarAddress == address);
if (!_condVarThreads.Any(x => x.CondVarAddress == address))
{
KernelTransfer.KernelToUserInt32(_context, address, 0);
}
_context.CriticalSection.Leave();
}
private static void TryAcquireMutex(KThread requester)
{
ulong address = requester.MutexAddress;
KProcess currentProcess = KernelStatic.GetCurrentProcess();
if (!currentProcess.CpuMemory.IsMapped(address))
{
// Invalid address.
requester.SignaledObj = null;
requester.ObjSyncResult = KernelResult.InvalidMemState;
return;
}
ref int mutexRef = ref currentProcess.CpuMemory.GetRef<int>(address);
int mutexValue, newMutexValue;
do
{
mutexValue = mutexRef;
if (mutexValue != 0)
{
// Update value to indicate there is a mutex waiter now.
newMutexValue = mutexValue | HasListenersMask;
}
else
{
// No thread owning the mutex, assign to requesting thread.
newMutexValue = requester.ThreadHandleForUserMutex;
}
}
while (Interlocked.CompareExchange(ref mutexRef, newMutexValue, mutexValue) != mutexValue);
if (mutexValue == 0)
{
// We now own the mutex.
requester.SignaledObj = null;
requester.ObjSyncResult = KernelResult.Success;
requester.ReleaseAndResume();
return;
}
mutexValue &= ~HasListenersMask;
KThread mutexOwner = currentProcess.HandleTable.GetObject<KThread>(mutexValue);
if (mutexOwner != null)
{
// Mutex already belongs to another thread, wait for it.
mutexOwner.AddMutexWaiter(requester);
}
else
{
// Invalid mutex owner.
requester.SignaledObj = null;
requester.ObjSyncResult = KernelResult.InvalidHandle;
requester.ReleaseAndResume();
}
}
public KernelResult WaitForAddressIfEqual(ulong address, int value, long timeout)
{
KThread currentThread = KernelStatic.GetCurrentThread();
_context.CriticalSection.Enter();
if (currentThread.ShallBeTerminated ||
currentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
_context.CriticalSection.Leave();
return KernelResult.ThreadTerminating;
}
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = KernelResult.TimedOut;
if (!KernelTransfer.UserToKernelInt32(_context, address, out int currentValue))
{
_context.CriticalSection.Leave();
return KernelResult.InvalidMemState;
}
if (currentValue == value)
{
if (timeout == 0)
{
_context.CriticalSection.Leave();
return KernelResult.TimedOut;
}
currentThread.MutexAddress = address;
currentThread.WaitingInArbitration = true;
_arbiterThreads.Add(currentThread);
currentThread.Reschedule(ThreadSchedState.Paused);
if (timeout > 0)
{
_context.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
}
_context.CriticalSection.Leave();
if (timeout > 0)
{
_context.TimeManager.UnscheduleFutureInvocation(currentThread);
}
_context.CriticalSection.Enter();
if (currentThread.WaitingInArbitration)
{
_arbiterThreads.Remove(currentThread);
currentThread.WaitingInArbitration = false;
}
_context.CriticalSection.Leave();
return currentThread.ObjSyncResult;
}
_context.CriticalSection.Leave();
return KernelResult.InvalidState;
}
public KernelResult WaitForAddressIfLessThan(ulong address, int value, bool shouldDecrement, long timeout)
{
KThread currentThread = KernelStatic.GetCurrentThread();
_context.CriticalSection.Enter();
if (currentThread.ShallBeTerminated ||
currentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
_context.CriticalSection.Leave();
return KernelResult.ThreadTerminating;
}
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = KernelResult.TimedOut;
KProcess currentProcess = KernelStatic.GetCurrentProcess();
if (!KernelTransfer.UserToKernelInt32(_context, address, out int currentValue))
{
_context.CriticalSection.Leave();
return KernelResult.InvalidMemState;
}
if (shouldDecrement)
{
currentValue = Interlocked.Decrement(ref currentProcess.CpuMemory.GetRef<int>(address)) + 1;
}
if (currentValue < value)
{
if (timeout == 0)
{
_context.CriticalSection.Leave();
return KernelResult.TimedOut;
}
currentThread.MutexAddress = address;
currentThread.WaitingInArbitration = true;
_arbiterThreads.Add(currentThread);
currentThread.Reschedule(ThreadSchedState.Paused);
if (timeout > 0)
{
_context.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
}
_context.CriticalSection.Leave();
if (timeout > 0)
{
_context.TimeManager.UnscheduleFutureInvocation(currentThread);
}
_context.CriticalSection.Enter();
if (currentThread.WaitingInArbitration)
{
_arbiterThreads.Remove(currentThread);
currentThread.WaitingInArbitration = false;
}
_context.CriticalSection.Leave();
return currentThread.ObjSyncResult;
}
_context.CriticalSection.Leave();
return KernelResult.InvalidState;
}
public KernelResult Signal(ulong address, int count)
{
_context.CriticalSection.Enter();
WakeArbiterThreads(address, count);
_context.CriticalSection.Leave();
return KernelResult.Success;
}
public KernelResult SignalAndIncrementIfEqual(ulong address, int value, int count)
{
_context.CriticalSection.Enter();
KProcess currentProcess = KernelStatic.GetCurrentProcess();
if (!currentProcess.CpuMemory.IsMapped(address))
{
_context.CriticalSection.Leave();
return KernelResult.InvalidMemState;
}
ref int valueRef = ref currentProcess.CpuMemory.GetRef<int>(address);
int currentValue;
do
{
currentValue = valueRef;
if (currentValue != value)
{
_context.CriticalSection.Leave();
return KernelResult.InvalidState;
}
}
while (Interlocked.CompareExchange(ref valueRef, currentValue + 1, currentValue) != currentValue);
WakeArbiterThreads(address, count);
_context.CriticalSection.Leave();
return KernelResult.Success;
}
public KernelResult SignalAndModifyIfEqual(ulong address, int value, int count)
{
_context.CriticalSection.Enter();
int addend;
// The value is decremented if the number of threads waiting is less
// or equal to the Count of threads to be signaled, or Count is zero
// or negative. It is incremented if there are no threads waiting.
int waitingCount = 0;
foreach (KThread thread in _arbiterThreads.Where(x => x.MutexAddress == address))
{
if (++waitingCount >= count)
{
break;
}
}
if (waitingCount > 0)
{
if (count <= 0)
{
addend = -2;
}
else if (waitingCount < count)
{
addend = -1;
}
else
{
addend = 0;
}
}
else
{
addend = 1;
}
KProcess currentProcess = KernelStatic.GetCurrentProcess();
if (!currentProcess.CpuMemory.IsMapped(address))
{
_context.CriticalSection.Leave();
return KernelResult.InvalidMemState;
}
ref int valueRef = ref currentProcess.CpuMemory.GetRef<int>(address);
int currentValue;
do
{
currentValue = valueRef;
if (currentValue != value)
{
_context.CriticalSection.Leave();
return KernelResult.InvalidState;
}
}
while (Interlocked.CompareExchange(ref valueRef, currentValue + addend, currentValue) != currentValue);
WakeArbiterThreads(address, count);
_context.CriticalSection.Leave();
return KernelResult.Success;
}
private void WakeArbiterThreads(ulong address, int count)
{
static void RemoveArbiterThread(KThread thread)
{
thread.SignaledObj = null;
thread.ObjSyncResult = KernelResult.Success;
thread.ReleaseAndResume();
thread.WaitingInArbitration = false;
}
WakeThreads(_arbiterThreads, count, RemoveArbiterThread, x => x.MutexAddress == address);
}
private static void WakeThreads(
List<KThread> threads,
int count,
Action<KThread> removeCallback,
Func<KThread, bool> predicate)
{
var candidates = threads.Where(predicate).OrderBy(x => x.DynamicPriority);
var toSignal = (count > 0 ? candidates.Take(count) : candidates).ToArray();
foreach (KThread thread in toSignal)
{
removeCallback(thread);
threads.Remove(thread);
}
}
}
}