ryujinx-mirror/ARMeilleure/CodeGen/Optimizations/ConstantFolding.cs
gdkchan a731ab3a2a Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project

* Refactoring around the old IRAdapter, now renamed to PreAllocator

* Optimize the LowestBitSet method

* Add CLZ support and fix CLS implementation

* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks

* Implement the ByteSwap IR instruction, and some refactoring on the assembler

* Implement the DivideUI IR instruction and fix 64-bits IDIV

* Correct constant operand type on CSINC

* Move division instructions implementation to InstEmitDiv

* Fix destination type for the ConditionalSelect IR instruction

* Implement UMULH and SMULH, with new IR instructions

* Fix some issues with shift instructions

* Fix constant types for BFM instructions

* Fix up new tests using the new V128 struct

* Update tests

* Move DIV tests to a separate file

* Add support for calls, and some instructions that depends on them

* Start adding support for SIMD & FP types, along with some of the related ARM instructions

* Fix some typos and the divide instruction with FP operands

* Fix wrong method call on Clz_V

* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes

* Implement SIMD logical instructions and more misc. fixes

* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations

* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes

* Implement SIMD shift instruction and fix Dup_V

* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table

* Fix check with tolerance on tester

* Implement FP & SIMD comparison instructions, and some fixes

* Update FCVT (Scalar) encoding on the table to support the Half-float variants

* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes

* Use old memory access methods, made a start on SIMD memory insts support, some fixes

* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes

* Fix arguments count with struct return values, other fixes

* More instructions

* Misc. fixes and integrate LDj3SNuD fixes

* Update tests

* Add a faster linear scan allocator, unwinding support on windows, and other changes

* Update Ryujinx.HLE

* Update Ryujinx.Graphics

* Fix V128 return pointer passing, RCX is clobbered

* Update Ryujinx.Tests

* Update ITimeZoneService

* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks

* Use generic GetFunctionPointerForDelegate method and other tweaks

* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics

* Remove some unused code on the assembler

* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler

* Add hardware capability detection

* Fix regression on Sha1h and revert Fcm** changes

* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator

* Fix silly mistake introduced on last commit on CpuId

* Generate inline stack probes when the stack allocation is too large

* Initial support for the System-V ABI

* Support multiple destination operands

* Fix SSE2 VectorInsert8 path, and other fixes

* Change placement of XMM callee save and restore code to match other compilers

* Rename Dest to Destination and Inst to Instruction

* Fix a regression related to calls and the V128 type

* Add an extra space on comments to match code style

* Some refactoring

* Fix vector insert FP32 SSE2 path

* Port over the ARM32 instructions

* Avoid memory protection races on JIT Cache

* Another fix on VectorInsert FP32 (thanks to LDj3SNuD

* Float operands don't need to use the same register when VEX is supported

* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks

* Some nits, small improvements on the pre allocator

* CpuThreadState is gone

* Allow changing CPU emulators with a config entry

* Add runtime identifiers on the ARMeilleure project

* Allow switching between CPUs through a config entry (pt. 2)

* Change win10-x64 to win-x64 on projects

* Update the Ryujinx project to use ARMeilleure

* Ensure that the selected register is valid on the hybrid allocator

* Allow exiting on returns to 0 (should fix test regression)

* Remove register assignments for most used variables on the hybrid allocator

* Do not use fixed registers as spill temp

* Add missing namespace and remove unneeded using

* Address PR feedback

* Fix types, etc

* Enable AssumeStrictAbiCompliance by default

* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 21:56:22 +03:00

258 lines
No EOL
8.8 KiB
C#

using ARMeilleure.IntermediateRepresentation;
using System;
using static ARMeilleure.IntermediateRepresentation.OperandHelper;
namespace ARMeilleure.CodeGen.Optimizations
{
static class ConstantFolding
{
public static void RunPass(Operation operation)
{
if (operation.Destination == null || operation.SourcesCount == 0)
{
return;
}
if (!AreAllSourcesConstant(operation))
{
return;
}
OperandType type = operation.Destination.Type;
switch (operation.Instruction)
{
case Instruction.Add:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => x + y);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => x + y);
}
break;
case Instruction.BitwiseAnd:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => x & y);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => x & y);
}
break;
case Instruction.BitwiseExclusiveOr:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => x ^ y);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => x ^ y);
}
break;
case Instruction.BitwiseNot:
if (type == OperandType.I32)
{
EvaluateUnaryI32(operation, (x) => ~x);
}
else if (type == OperandType.I64)
{
EvaluateUnaryI64(operation, (x) => ~x);
}
break;
case Instruction.BitwiseOr:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => x | y);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => x | y);
}
break;
case Instruction.Copy:
if (type == OperandType.I32)
{
EvaluateUnaryI32(operation, (x) => x);
}
else if (type == OperandType.I64)
{
EvaluateUnaryI64(operation, (x) => x);
}
break;
case Instruction.Divide:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => y != 0 ? x / y : 0);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => y != 0 ? x / y : 0);
}
break;
case Instruction.DivideUI:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => y != 0 ? (int)((uint)x / (uint)y) : 0);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => y != 0 ? (long)((ulong)x / (ulong)y) : 0);
}
break;
case Instruction.Multiply:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => x * y);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => x * y);
}
break;
case Instruction.Negate:
if (type == OperandType.I32)
{
EvaluateUnaryI32(operation, (x) => -x);
}
else if (type == OperandType.I64)
{
EvaluateUnaryI64(operation, (x) => -x);
}
break;
case Instruction.ShiftLeft:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => x << y);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => x << (int)y);
}
break;
case Instruction.ShiftRightSI:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => x >> y);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => x >> (int)y);
}
break;
case Instruction.ShiftRightUI:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => (int)((uint)x >> y));
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => (long)((ulong)x >> (int)y));
}
break;
case Instruction.SignExtend16:
if (type == OperandType.I32)
{
EvaluateUnaryI32(operation, (x) => (short)x);
}
else if (type == OperandType.I64)
{
EvaluateUnaryI64(operation, (x) => (short)x);
}
break;
case Instruction.SignExtend32:
if (type == OperandType.I32)
{
EvaluateUnaryI32(operation, (x) => x);
}
else if (type == OperandType.I64)
{
EvaluateUnaryI64(operation, (x) => (int)x);
}
break;
case Instruction.SignExtend8:
if (type == OperandType.I32)
{
EvaluateUnaryI32(operation, (x) => (sbyte)x);
}
else if (type == OperandType.I64)
{
EvaluateUnaryI64(operation, (x) => (sbyte)x);
}
break;
case Instruction.Subtract:
if (type == OperandType.I32)
{
EvaluateBinaryI32(operation, (x, y) => x - y);
}
else if (type == OperandType.I64)
{
EvaluateBinaryI64(operation, (x, y) => x - y);
}
break;
}
}
private static bool AreAllSourcesConstant(Operation operation)
{
for (int index = 0; index < operation.SourcesCount; index++)
{
if (operation.GetSource(index).Kind != OperandKind.Constant)
{
return false;
}
}
return true;
}
private static void EvaluateUnaryI32(Operation operation, Func<int, int> op)
{
int x = operation.GetSource(0).AsInt32();
operation.TurnIntoCopy(Const(op(x)));
}
private static void EvaluateUnaryI64(Operation operation, Func<long, long> op)
{
long x = operation.GetSource(0).AsInt64();
operation.TurnIntoCopy(Const(op(x)));
}
private static void EvaluateBinaryI32(Operation operation, Func<int, int, int> op)
{
int x = operation.GetSource(0).AsInt32();
int y = operation.GetSource(1).AsInt32();
operation.TurnIntoCopy(Const(op(x, y)));
}
private static void EvaluateBinaryI64(Operation operation, Func<long, long, long> op)
{
long x = operation.GetSource(0).AsInt64();
long y = operation.GetSource(1).AsInt64();
operation.TurnIntoCopy(Const(op(x, y)));
}
}
}