ryujinx-mirror/Ryujinx.Tests/Cpu/CpuTestSimdCrypto.cs
LDj3SNuD d021d5dfa9 Add AESD, AESE, AESIMC, AESMC instructions; add 4 simple Tests (closed box). (#365)
* Create CpuTestSimdCrypto.cs

* Update AOpCodeTable.cs

* Create AInstEmitSimdCrypto.cs

* Update ASoftFallback.cs

* Create ACryptoHelper.cs
2018-08-20 01:20:26 -03:00

135 lines
5.8 KiB
C#

// https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
using ChocolArm64.State;
using NUnit.Framework;
using System.Runtime.Intrinsics;
namespace Ryujinx.Tests.Cpu
{
public class CpuTestSimdCrypto : CpuTest
{
[Test, Explicit, Description("AESD <Vd>.16B, <Vn>.16B")]
public void Aesd_V([Values(0u)] uint Rd,
[Values(1u)] uint Rn,
[Values(0x7B5B546573745665ul)] ulong ValueH,
[Values(0x63746F725D53475Dul)] ulong ValueL,
[Random(2)] ulong RoundKeyH,
[Random(2)] ulong RoundKeyL,
[Values(0x8DCAB9BC035006BCul)] ulong ResultH,
[Values(0x8F57161E00CAFD8Dul)] ulong ResultL)
{
uint Opcode = 0x4E285800; // AESD V0.16B, V0.16B
Opcode |= ((Rn & 31) << 5) | ((Rd & 31) << 0);
Vector128<float> V0 = MakeVectorE0E1(RoundKeyL ^ ValueL, RoundKeyH ^ ValueH);
Vector128<float> V1 = MakeVectorE0E1(RoundKeyL, RoundKeyH);
AThreadState ThreadState = SingleOpcode(Opcode, V0: V0, V1: V1);
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(ThreadState.V0), Is.EqualTo(ResultL));
Assert.That(GetVectorE1(ThreadState.V0), Is.EqualTo(ResultH));
});
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(ThreadState.V1), Is.EqualTo(RoundKeyL));
Assert.That(GetVectorE1(ThreadState.V1), Is.EqualTo(RoundKeyH));
});
}
[Test, Explicit, Description("AESE <Vd>.16B, <Vn>.16B")]
public void Aese_V([Values(0u)] uint Rd,
[Values(1u)] uint Rn,
[Values(0x7B5B546573745665ul)] ulong ValueH,
[Values(0x63746F725D53475Dul)] ulong ValueL,
[Random(2)] ulong RoundKeyH,
[Random(2)] ulong RoundKeyL,
[Values(0x8F92A04DFBED204Dul)] ulong ResultH,
[Values(0x4C39B1402192A84Cul)] ulong ResultL)
{
uint Opcode = 0x4E284800; // AESE V0.16B, V0.16B
Opcode |= ((Rn & 31) << 5) | ((Rd & 31) << 0);
Vector128<float> V0 = MakeVectorE0E1(RoundKeyL ^ ValueL, RoundKeyH ^ ValueH);
Vector128<float> V1 = MakeVectorE0E1(RoundKeyL, RoundKeyH);
AThreadState ThreadState = SingleOpcode(Opcode, V0: V0, V1: V1);
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(ThreadState.V0), Is.EqualTo(ResultL));
Assert.That(GetVectorE1(ThreadState.V0), Is.EqualTo(ResultH));
});
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(ThreadState.V1), Is.EqualTo(RoundKeyL));
Assert.That(GetVectorE1(ThreadState.V1), Is.EqualTo(RoundKeyH));
});
}
[Test, Explicit, Description("AESIMC <Vd>.16B, <Vn>.16B")]
public void Aesimc_V([Values(0u)] uint Rd,
[Values(1u, 0u)] uint Rn,
[Values(0x8DCAB9DC035006BCul)] ulong ValueH,
[Values(0x8F57161E00CAFD8Dul)] ulong ValueL,
[Values(0xD635A667928B5EAEul)] ulong ResultH,
[Values(0xEEC9CC3BC55F5777ul)] ulong ResultL)
{
uint Opcode = 0x4E287800; // AESIMC V0.16B, V0.16B
Opcode |= ((Rn & 31) << 5) | ((Rd & 31) << 0);
Vector128<float> V = MakeVectorE0E1(ValueL, ValueH);
AThreadState ThreadState = SingleOpcode(
Opcode,
V0: Rn == 0u ? V : default(Vector128<float>),
V1: Rn == 1u ? V : default(Vector128<float>));
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(ThreadState.V0), Is.EqualTo(ResultL));
Assert.That(GetVectorE1(ThreadState.V0), Is.EqualTo(ResultH));
});
if (Rn == 1u)
{
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(ThreadState.V1), Is.EqualTo(ValueL));
Assert.That(GetVectorE1(ThreadState.V1), Is.EqualTo(ValueH));
});
}
}
[Test, Explicit, Description("AESMC <Vd>.16B, <Vn>.16B")]
public void Aesmc_V([Values(0u)] uint Rd,
[Values(1u, 0u)] uint Rn,
[Values(0x627A6F6644B109C8ul)] ulong ValueH,
[Values(0x2B18330A81C3B3E5ul)] ulong ValueL,
[Values(0x7B5B546573745665ul)] ulong ResultH,
[Values(0x63746F725D53475Dul)] ulong ResultL)
{
uint Opcode = 0x4E286800; // AESMC V0.16B, V0.16B
Opcode |= ((Rn & 31) << 5) | ((Rd & 31) << 0);
Vector128<float> V = MakeVectorE0E1(ValueL, ValueH);
AThreadState ThreadState = SingleOpcode(
Opcode,
V0: Rn == 0u ? V : default(Vector128<float>),
V1: Rn == 1u ? V : default(Vector128<float>));
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(ThreadState.V0), Is.EqualTo(ResultL));
Assert.That(GetVectorE1(ThreadState.V0), Is.EqualTo(ResultH));
});
if (Rn == 1u)
{
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(ThreadState.V1), Is.EqualTo(ValueL));
Assert.That(GetVectorE1(ThreadState.V1), Is.EqualTo(ValueH));
});
}
}
}
}