284 lines
9 KiB
C
Executable file
284 lines
9 KiB
C
Executable file
/* $OpenBSD: sha256.c,v 1.10 2019/01/21 23:20:31 jsg Exp $ */
|
|
/* ====================================================================
|
|
* Copyright (c) 2004 The OpenSSL Project. All rights reserved
|
|
* according to the OpenSSL license [found in ../../LICENSE].
|
|
* ====================================================================
|
|
*/
|
|
|
|
#include <openssl/opensslconf.h>
|
|
|
|
#if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)
|
|
|
|
#include <machine/endian.h>
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/sha.h>
|
|
#include <openssl/opensslv.h>
|
|
|
|
int SHA224_Init(SHA256_CTX *c)
|
|
{
|
|
memset (c,0,sizeof(*c));
|
|
c->h[0]=0xc1059ed8UL; c->h[1]=0x367cd507UL;
|
|
c->h[2]=0x3070dd17UL; c->h[3]=0xf70e5939UL;
|
|
c->h[4]=0xffc00b31UL; c->h[5]=0x68581511UL;
|
|
c->h[6]=0x64f98fa7UL; c->h[7]=0xbefa4fa4UL;
|
|
c->md_len=SHA224_DIGEST_LENGTH;
|
|
return 1;
|
|
}
|
|
|
|
int SHA256_Init(SHA256_CTX *c)
|
|
{
|
|
memset (c,0,sizeof(*c));
|
|
c->h[0]=0x6a09e667UL; c->h[1]=0xbb67ae85UL;
|
|
c->h[2]=0x3c6ef372UL; c->h[3]=0xa54ff53aUL;
|
|
c->h[4]=0x510e527fUL; c->h[5]=0x9b05688cUL;
|
|
c->h[6]=0x1f83d9abUL; c->h[7]=0x5be0cd19UL;
|
|
c->md_len=SHA256_DIGEST_LENGTH;
|
|
return 1;
|
|
}
|
|
|
|
unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
|
|
{
|
|
SHA256_CTX c;
|
|
static unsigned char m[SHA224_DIGEST_LENGTH];
|
|
|
|
if (md == NULL) md=m;
|
|
SHA224_Init(&c);
|
|
SHA256_Update(&c,d,n);
|
|
SHA256_Final(md,&c);
|
|
explicit_bzero(&c,sizeof(c));
|
|
return(md);
|
|
}
|
|
|
|
unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
|
|
{
|
|
SHA256_CTX c;
|
|
static unsigned char m[SHA256_DIGEST_LENGTH];
|
|
|
|
if (md == NULL) md=m;
|
|
SHA256_Init(&c);
|
|
SHA256_Update(&c,d,n);
|
|
SHA256_Final(md,&c);
|
|
explicit_bzero(&c,sizeof(c));
|
|
return(md);
|
|
}
|
|
|
|
int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
|
|
{ return SHA256_Update (c,data,len); }
|
|
int SHA224_Final (unsigned char *md, SHA256_CTX *c)
|
|
{ return SHA256_Final (md,c); }
|
|
|
|
#define DATA_ORDER_IS_BIG_ENDIAN
|
|
|
|
#define HASH_LONG SHA_LONG
|
|
#define HASH_CTX SHA256_CTX
|
|
#define HASH_CBLOCK SHA_CBLOCK
|
|
/*
|
|
* Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
|
|
* default: case below covers for it. It's not clear however if it's
|
|
* permitted to truncate to amount of bytes not divisible by 4. I bet not,
|
|
* but if it is, then default: case shall be extended. For reference.
|
|
* Idea behind separate cases for pre-defined lengths is to let the
|
|
* compiler decide if it's appropriate to unroll small loops.
|
|
*/
|
|
#define HASH_MAKE_STRING(c,s) do { \
|
|
unsigned long ll; \
|
|
unsigned int nn; \
|
|
switch ((c)->md_len) \
|
|
{ case SHA224_DIGEST_LENGTH: \
|
|
for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++) \
|
|
{ ll=(c)->h[nn]; HOST_l2c(ll,(s)); } \
|
|
break; \
|
|
case SHA256_DIGEST_LENGTH: \
|
|
for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++) \
|
|
{ ll=(c)->h[nn]; HOST_l2c(ll,(s)); } \
|
|
break; \
|
|
default: \
|
|
if ((c)->md_len > SHA256_DIGEST_LENGTH) \
|
|
return 0; \
|
|
for (nn=0;nn<(c)->md_len/4;nn++) \
|
|
{ ll=(c)->h[nn]; HOST_l2c(ll,(s)); } \
|
|
break; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define HASH_UPDATE SHA256_Update
|
|
#define HASH_TRANSFORM SHA256_Transform
|
|
#define HASH_FINAL SHA256_Final
|
|
#define HASH_BLOCK_DATA_ORDER sha256_block_data_order
|
|
#ifndef SHA256_ASM
|
|
static
|
|
#endif
|
|
void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
|
|
|
|
#include "md32_common.h"
|
|
|
|
#ifndef SHA256_ASM
|
|
static const SHA_LONG K256[64] = {
|
|
0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
|
|
0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
|
|
0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
|
|
0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
|
|
0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
|
|
0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
|
|
0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
|
|
0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
|
|
0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
|
|
0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
|
|
0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
|
|
0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
|
|
0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
|
|
0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
|
|
0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
|
|
0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
|
|
|
|
/*
|
|
* FIPS specification refers to right rotations, while our ROTATE macro
|
|
* is left one. This is why you might notice that rotation coefficients
|
|
* differ from those observed in FIPS document by 32-N...
|
|
*/
|
|
#define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
|
|
#define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
|
|
#define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
|
|
#define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
|
|
|
|
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
|
|
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
|
|
|
#ifdef OPENSSL_SMALL_FOOTPRINT
|
|
|
|
static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
|
|
{
|
|
unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
|
|
SHA_LONG X[16],l;
|
|
int i;
|
|
const unsigned char *data=in;
|
|
|
|
while (num--) {
|
|
|
|
a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
|
|
e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
|
|
|
|
for (i=0;i<16;i++)
|
|
{
|
|
HOST_c2l(data,l); T1 = X[i] = l;
|
|
T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
|
|
T2 = Sigma0(a) + Maj(a,b,c);
|
|
h = g; g = f; f = e; e = d + T1;
|
|
d = c; c = b; b = a; a = T1 + T2;
|
|
}
|
|
|
|
for (;i<64;i++)
|
|
{
|
|
s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
|
|
s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);
|
|
|
|
T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
|
|
T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
|
|
T2 = Sigma0(a) + Maj(a,b,c);
|
|
h = g; g = f; f = e; e = d + T1;
|
|
d = c; c = b; b = a; a = T1 + T2;
|
|
}
|
|
|
|
ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
|
|
ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
|
|
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
#define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
|
|
T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \
|
|
h = Sigma0(a) + Maj(a,b,c); \
|
|
d += T1; h += T1; } while (0)
|
|
|
|
#define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \
|
|
s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \
|
|
s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \
|
|
T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \
|
|
ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)
|
|
|
|
static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
|
|
{
|
|
unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
|
|
SHA_LONG X[16];
|
|
int i;
|
|
const unsigned char *data=in;
|
|
|
|
while (num--) {
|
|
|
|
a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
|
|
e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
|
|
|
|
if (BYTE_ORDER != LITTLE_ENDIAN &&
|
|
sizeof(SHA_LONG)==4 && ((size_t)in%4)==0)
|
|
{
|
|
const SHA_LONG *W=(const SHA_LONG *)data;
|
|
|
|
T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
|
|
T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
|
|
T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
|
|
T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
|
|
T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
|
|
T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
|
|
T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
|
|
T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
|
|
T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
|
|
T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
|
|
T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
|
|
T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
|
|
T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
|
|
T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
|
|
T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
|
|
T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);
|
|
|
|
data += SHA256_CBLOCK;
|
|
}
|
|
else
|
|
{
|
|
SHA_LONG l;
|
|
|
|
HOST_c2l(data,l); T1 = X[0] = l; ROUND_00_15(0,a,b,c,d,e,f,g,h);
|
|
HOST_c2l(data,l); T1 = X[1] = l; ROUND_00_15(1,h,a,b,c,d,e,f,g);
|
|
HOST_c2l(data,l); T1 = X[2] = l; ROUND_00_15(2,g,h,a,b,c,d,e,f);
|
|
HOST_c2l(data,l); T1 = X[3] = l; ROUND_00_15(3,f,g,h,a,b,c,d,e);
|
|
HOST_c2l(data,l); T1 = X[4] = l; ROUND_00_15(4,e,f,g,h,a,b,c,d);
|
|
HOST_c2l(data,l); T1 = X[5] = l; ROUND_00_15(5,d,e,f,g,h,a,b,c);
|
|
HOST_c2l(data,l); T1 = X[6] = l; ROUND_00_15(6,c,d,e,f,g,h,a,b);
|
|
HOST_c2l(data,l); T1 = X[7] = l; ROUND_00_15(7,b,c,d,e,f,g,h,a);
|
|
HOST_c2l(data,l); T1 = X[8] = l; ROUND_00_15(8,a,b,c,d,e,f,g,h);
|
|
HOST_c2l(data,l); T1 = X[9] = l; ROUND_00_15(9,h,a,b,c,d,e,f,g);
|
|
HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
|
|
HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
|
|
HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
|
|
HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
|
|
HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
|
|
HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
|
|
}
|
|
|
|
for (i=16;i<64;i+=8)
|
|
{
|
|
ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
|
|
ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
|
|
ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
|
|
ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
|
|
ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
|
|
ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
|
|
ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
|
|
ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
|
|
}
|
|
|
|
ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
|
|
ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
|
|
|
|
}
|
|
}
|
|
|
|
#endif
|
|
#endif /* SHA256_ASM */
|
|
|
|
#endif /* OPENSSL_NO_SHA256 */
|