//_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // // AMD FidelityFX SUPER RESOLUTION [FSR 1] ::: SPATIAL SCALING & EXTRAS - v1.20210629 // // //------------------------------------------------------------------------------------------------------------------------------ //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //------------------------------------------------------------------------------------------------------------------------------ // FidelityFX Super Resolution Sample // // Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved. // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files(the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and / or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions : // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. //------------------------------------------------------------------------------------------------------------------------------ //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //------------------------------------------------------------------------------------------------------------------------------ // ABOUT // ===== // FSR is a collection of algorithms relating to generating a higher resolution image. // This specific header focuses on single-image non-temporal image scaling, and related tools. // // The core functions are EASU and RCAS: // [EASU] Edge Adaptive Spatial Upsampling ....... 1x to 4x area range spatial scaling, clamped adaptive elliptical filter. // [RCAS] Robust Contrast Adaptive Sharpening .... A non-scaling variation on CAS. // RCAS needs to be applied after EASU as a separate pass. // // Optional utility functions are: // [LFGA] Linear Film Grain Applicator ........... Tool to apply film grain after scaling. // [SRTM] Simple Reversible Tone-Mapper .......... Linear HDR {0 to FP16_MAX} to {0 to 1} and back. // [TEPD] Temporal Energy Preserving Dither ...... Temporally energy preserving dithered {0 to 1} linear to gamma 2.0 conversion. // See each individual sub-section for inline documentation. //------------------------------------------------------------------------------------------------------------------------------ //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //------------------------------------------------------------------------------------------------------------------------------ // FUNCTION PERMUTATIONS // ===================== // *F() ..... Single item computation with 32-bit. // *H() ..... Single item computation with 16-bit, with packing (aka two 16-bit ops in parallel) when possible. // *Hx2() ... Processing two items in parallel with 16-bit, easier packing. // Not all interfaces in this file have a *Hx2() form. //============================================================================================================================== //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // FSR - [EASU] EDGE ADAPTIVE SPATIAL UPSAMPLING // //------------------------------------------------------------------------------------------------------------------------------ // EASU provides a high quality spatial-only scaling at relatively low cost. // Meaning EASU is appropiate for laptops and other low-end GPUs. // Quality from 1x to 4x area scaling is good. //------------------------------------------------------------------------------------------------------------------------------ // The scalar uses a modified fast approximation to the standard lanczos(size=2) kernel. // EASU runs in a single pass, so it applies a directionally and anisotropically adaptive radial lanczos. // This is also kept as simple as possible to have minimum runtime. //------------------------------------------------------------------------------------------------------------------------------ // The lanzcos filter has negative lobes, so by itself it will introduce ringing. // To remove all ringing, the algorithm uses the nearest 2x2 input texels as a neighborhood, // and limits output to the minimum and maximum of that neighborhood. //------------------------------------------------------------------------------------------------------------------------------ // Input image requirements: // // Color needs to be encoded as 3 channel[red, green, blue](e.g.XYZ not supported) // Each channel needs to be in the range[0, 1] // Any color primaries are supported // Display / tonemapping curve needs to be as if presenting to sRGB display or similar(e.g.Gamma 2.0) // There should be no banding in the input // There should be no high amplitude noise in the input // There should be no noise in the input that is not at input pixel granularity // For performance purposes, use 32bpp formats //------------------------------------------------------------------------------------------------------------------------------ // Best to apply EASU at the end of the frame after tonemapping // but before film grain or composite of the UI. //------------------------------------------------------------------------------------------------------------------------------ // Example of including this header for D3D HLSL : // // #define A_GPU 1 // #define A_HLSL 1 // #define A_HALF 1 // #include "ffx_a.h" // #define FSR_EASU_H 1 // #define FSR_RCAS_H 1 // //declare input callbacks // #include "ffx_fsr1.h" // // Example of including this header for Vulkan GLSL : // // #define A_GPU 1 // #define A_GLSL 1 // #define A_HALF 1 // #include "ffx_a.h" // #define FSR_EASU_H 1 // #define FSR_RCAS_H 1 // //declare input callbacks // #include "ffx_fsr1.h" // // Example of including this header for Vulkan HLSL : // // #define A_GPU 1 // #define A_HLSL 1 // #define A_HLSL_6_2 1 // #define A_NO_16_BIT_CAST 1 // #define A_HALF 1 // #include "ffx_a.h" // #define FSR_EASU_H 1 // #define FSR_RCAS_H 1 // //declare input callbacks // #include "ffx_fsr1.h" // // Example of declaring the required input callbacks for GLSL : // The callbacks need to gather4 for each color channel using the specified texture coordinate 'p'. // EASU uses gather4 to reduce position computation logic and for free Arrays of Structures to Structures of Arrays conversion. // // AH4 FsrEasuRH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,0));} // AH4 FsrEasuGH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,1));} // AH4 FsrEasuBH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,2));} // ... // The FsrEasuCon function needs to be called from the CPU or GPU to set up constants. // The difference in viewport and input image size is there to support Dynamic Resolution Scaling. // To use FsrEasuCon() on the CPU, define A_CPU before including ffx_a and ffx_fsr1. // Including a GPU example here, the 'con0' through 'con3' values would be stored out to a constant buffer. // AU4 con0,con1,con2,con3; // FsrEasuCon(con0,con1,con2,con3, // 1920.0,1080.0, // Viewport size (top left aligned) in the input image which is to be scaled. // 3840.0,2160.0, // The size of the input image. // 2560.0,1440.0); // The output resolution. //============================================================================================================================== //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // CONSTANT SETUP //============================================================================================================================== // Call to setup required constant values (works on CPU or GPU). A_STATIC void FsrEasuCon( outAU4 con0, outAU4 con1, outAU4 con2, outAU4 con3, // This the rendered image resolution being upscaled AF1 inputViewportInPixelsX, AF1 inputViewportInPixelsY, // This is the resolution of the resource containing the input image (useful for dynamic resolution) AF1 inputSizeInPixelsX, AF1 inputSizeInPixelsY, // This is the display resolution which the input image gets upscaled to AF1 outputSizeInPixelsX, AF1 outputSizeInPixelsY){ // Output integer position to a pixel position in viewport. con0[0]=AU1_AF1(inputViewportInPixelsX*ARcpF1(outputSizeInPixelsX)); con0[1]=AU1_AF1(inputViewportInPixelsY*ARcpF1(outputSizeInPixelsY)); con0[2]=AU1_AF1(AF1_(0.5)*inputViewportInPixelsX*ARcpF1(outputSizeInPixelsX)-AF1_(0.5)); con0[3]=AU1_AF1(AF1_(0.5)*inputViewportInPixelsY*ARcpF1(outputSizeInPixelsY)-AF1_(0.5)); // Viewport pixel position to normalized image space. // This is used to get upper-left of 'F' tap. con1[0]=AU1_AF1(ARcpF1(inputSizeInPixelsX)); con1[1]=AU1_AF1(ARcpF1(inputSizeInPixelsY)); // Centers of gather4, first offset from upper-left of 'F'. // +---+---+ // | | | // +--(0)--+ // | b | c | // +---F---+---+---+ // | e | f | g | h | // +--(1)--+--(2)--+ // | i | j | k | l | // +---+---+---+---+ // | n | o | // +--(3)--+ // | | | // +---+---+ con1[2]=AU1_AF1(AF1_( 1.0)*ARcpF1(inputSizeInPixelsX)); con1[3]=AU1_AF1(AF1_(-1.0)*ARcpF1(inputSizeInPixelsY)); // These are from (0) instead of 'F'. con2[0]=AU1_AF1(AF1_(-1.0)*ARcpF1(inputSizeInPixelsX)); con2[1]=AU1_AF1(AF1_( 2.0)*ARcpF1(inputSizeInPixelsY)); con2[2]=AU1_AF1(AF1_( 1.0)*ARcpF1(inputSizeInPixelsX)); con2[3]=AU1_AF1(AF1_( 2.0)*ARcpF1(inputSizeInPixelsY)); con3[0]=AU1_AF1(AF1_( 0.0)*ARcpF1(inputSizeInPixelsX)); con3[1]=AU1_AF1(AF1_( 4.0)*ARcpF1(inputSizeInPixelsY)); con3[2]=con3[3]=0;} //If the an offset into the input image resource A_STATIC void FsrEasuConOffset( outAU4 con0, outAU4 con1, outAU4 con2, outAU4 con3, // This the rendered image resolution being upscaled AF1 inputViewportInPixelsX, AF1 inputViewportInPixelsY, // This is the resolution of the resource containing the input image (useful for dynamic resolution) AF1 inputSizeInPixelsX, AF1 inputSizeInPixelsY, // This is the display resolution which the input image gets upscaled to AF1 outputSizeInPixelsX, AF1 outputSizeInPixelsY, // This is the input image offset into the resource containing it (useful for dynamic resolution) AF1 inputOffsetInPixelsX, AF1 inputOffsetInPixelsY) { FsrEasuCon(con0, con1, con2, con3, inputViewportInPixelsX, inputViewportInPixelsY, inputSizeInPixelsX, inputSizeInPixelsY, outputSizeInPixelsX, outputSizeInPixelsY); con0[2] = AU1_AF1(AF1_(0.5) * inputViewportInPixelsX * ARcpF1(outputSizeInPixelsX) - AF1_(0.5) + inputOffsetInPixelsX); con0[3] = AU1_AF1(AF1_(0.5) * inputViewportInPixelsY * ARcpF1(outputSizeInPixelsY) - AF1_(0.5) + inputOffsetInPixelsY); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // NON-PACKED 32-BIT VERSION //============================================================================================================================== #if defined(A_GPU)&&defined(FSR_EASU_F) // Input callback prototypes, need to be implemented by calling shader AF4 FsrEasuRF(AF2 p); AF4 FsrEasuGF(AF2 p); AF4 FsrEasuBF(AF2 p); //------------------------------------------------------------------------------------------------------------------------------ // Filtering for a given tap for the scalar. void FsrEasuTapF( inout AF3 aC, // Accumulated color, with negative lobe. inout AF1 aW, // Accumulated weight. AF2 off, // Pixel offset from resolve position to tap. AF2 dir, // Gradient direction. AF2 len, // Length. AF1 lob, // Negative lobe strength. AF1 clp, // Clipping point. AF3 c){ // Tap color. // Rotate offset by direction. AF2 v; v.x=(off.x*( dir.x))+(off.y*dir.y); v.y=(off.x*(-dir.y))+(off.y*dir.x); // Anisotropy. v*=len; // Compute distance^2. AF1 d2=v.x*v.x+v.y*v.y; // Limit to the window as at corner, 2 taps can easily be outside. d2=min(d2,clp); // Approximation of lancos2 without sin() or rcp(), or sqrt() to get x. // (25/16 * (2/5 * x^2 - 1)^2 - (25/16 - 1)) * (1/4 * x^2 - 1)^2 // |_______________________________________| |_______________| // base window // The general form of the 'base' is, // (a*(b*x^2-1)^2-(a-1)) // Where 'a=1/(2*b-b^2)' and 'b' moves around the negative lobe. AF1 wB=AF1_(2.0/5.0)*d2+AF1_(-1.0); AF1 wA=lob*d2+AF1_(-1.0); wB*=wB; wA*=wA; wB=AF1_(25.0/16.0)*wB+AF1_(-(25.0/16.0-1.0)); AF1 w=wB*wA; // Do weighted average. aC+=c*w;aW+=w;} //------------------------------------------------------------------------------------------------------------------------------ // Accumulate direction and length. void FsrEasuSetF( inout AF2 dir, inout AF1 len, AF2 pp, AP1 biS,AP1 biT,AP1 biU,AP1 biV, AF1 lA,AF1 lB,AF1 lC,AF1 lD,AF1 lE){ // Compute bilinear weight, branches factor out as predicates are compiler time immediates. // s t // u v AF1 w = AF1_(0.0); if(biS)w=(AF1_(1.0)-pp.x)*(AF1_(1.0)-pp.y); if(biT)w= pp.x *(AF1_(1.0)-pp.y); if(biU)w=(AF1_(1.0)-pp.x)* pp.y ; if(biV)w= pp.x * pp.y ; // Direction is the '+' diff. // a // b c d // e // Then takes magnitude from abs average of both sides of 'c'. // Length converts gradient reversal to 0, smoothly to non-reversal at 1, shaped, then adding horz and vert terms. AF1 dc=lD-lC; AF1 cb=lC-lB; AF1 lenX=max(abs(dc),abs(cb)); lenX=APrxLoRcpF1(lenX); AF1 dirX=lD-lB; dir.x+=dirX*w; lenX=ASatF1(abs(dirX)*lenX); lenX*=lenX; len+=lenX*w; // Repeat for the y axis. AF1 ec=lE-lC; AF1 ca=lC-lA; AF1 lenY=max(abs(ec),abs(ca)); lenY=APrxLoRcpF1(lenY); AF1 dirY=lE-lA; dir.y+=dirY*w; lenY=ASatF1(abs(dirY)*lenY); lenY*=lenY; len+=lenY*w;} //------------------------------------------------------------------------------------------------------------------------------ void FsrEasuF( out AF3 pix, AU2 ip, // Integer pixel position in output. AU4 con0, // Constants generated by FsrEasuCon(). AU4 con1, AU4 con2, AU4 con3){ //------------------------------------------------------------------------------------------------------------------------------ // Get position of 'f'. AF2 pp=AF2(ip)*AF2_AU2(con0.xy)+AF2_AU2(con0.zw); AF2 fp=floor(pp); pp-=fp; //------------------------------------------------------------------------------------------------------------------------------ // 12-tap kernel. // b c // e f g h // i j k l // n o // Gather 4 ordering. // a b // r g // For packed FP16, need either {rg} or {ab} so using the following setup for gather in all versions, // a b <- unused (z) // r g // a b a b // r g r g // a b // r g <- unused (z) // Allowing dead-code removal to remove the 'z's. AF2 p0=fp*AF2_AU2(con1.xy)+AF2_AU2(con1.zw); // These are from p0 to avoid pulling two constants on pre-Navi hardware. AF2 p1=p0+AF2_AU2(con2.xy); AF2 p2=p0+AF2_AU2(con2.zw); AF2 p3=p0+AF2_AU2(con3.xy); AF4 bczzR=FsrEasuRF(p0); AF4 bczzG=FsrEasuGF(p0); AF4 bczzB=FsrEasuBF(p0); AF4 ijfeR=FsrEasuRF(p1); AF4 ijfeG=FsrEasuGF(p1); AF4 ijfeB=FsrEasuBF(p1); AF4 klhgR=FsrEasuRF(p2); AF4 klhgG=FsrEasuGF(p2); AF4 klhgB=FsrEasuBF(p2); AF4 zzonR=FsrEasuRF(p3); AF4 zzonG=FsrEasuGF(p3); AF4 zzonB=FsrEasuBF(p3); //------------------------------------------------------------------------------------------------------------------------------ // Simplest multi-channel approximate luma possible (luma times 2, in 2 FMA/MAD). AF4 bczzL=bczzB*AF4_(0.5)+(bczzR*AF4_(0.5)+bczzG); AF4 ijfeL=ijfeB*AF4_(0.5)+(ijfeR*AF4_(0.5)+ijfeG); AF4 klhgL=klhgB*AF4_(0.5)+(klhgR*AF4_(0.5)+klhgG); AF4 zzonL=zzonB*AF4_(0.5)+(zzonR*AF4_(0.5)+zzonG); // Rename. AF1 bL=bczzL.x; AF1 cL=bczzL.y; AF1 iL=ijfeL.x; AF1 jL=ijfeL.y; AF1 fL=ijfeL.z; AF1 eL=ijfeL.w; AF1 kL=klhgL.x; AF1 lL=klhgL.y; AF1 hL=klhgL.z; AF1 gL=klhgL.w; AF1 oL=zzonL.z; AF1 nL=zzonL.w; // Accumulate for bilinear interpolation. AF2 dir=AF2_(0.0); AF1 len=AF1_(0.0); FsrEasuSetF(dir,len,pp,true, false,false,false,bL,eL,fL,gL,jL); FsrEasuSetF(dir,len,pp,false,true ,false,false,cL,fL,gL,hL,kL); FsrEasuSetF(dir,len,pp,false,false,true ,false,fL,iL,jL,kL,nL); FsrEasuSetF(dir,len,pp,false,false,false,true ,gL,jL,kL,lL,oL); //------------------------------------------------------------------------------------------------------------------------------ // Normalize with approximation, and cleanup close to zero. AF2 dir2=dir*dir; AF1 dirR=dir2.x+dir2.y; AP1 zro=dirR w = -m/(n+e+w+s) // 1 == (w*(n+e+w+s)+m)/(4*w+1) -> w = (1-m)/(n+e+w+s-4*1) // Then chooses the 'w' which results in no clipping, limits 'w', and multiplies by the 'sharp' amount. // This solution above has issues with MSAA input as the steps along the gradient cause edge detection issues. // So RCAS uses 4x the maximum and 4x the minimum (depending on equation)in place of the individual taps. // As well as switching from 'm' to either the minimum or maximum (depending on side), to help in energy conservation. // This stabilizes RCAS. // RCAS does a simple highpass which is normalized against the local contrast then shaped, // 0.25 // 0.25 -1 0.25 // 0.25 // This is used as a noise detection filter, to reduce the effect of RCAS on grain, and focus on real edges. // // GLSL example for the required callbacks : // // AH4 FsrRcasLoadH(ASW2 p){return AH4(imageLoad(imgSrc,ASU2(p)));} // void FsrRcasInputH(inout AH1 r,inout AH1 g,inout AH1 b) // { // //do any simple input color conversions here or leave empty if none needed // } // // FsrRcasCon need to be called from the CPU or GPU to set up constants. // Including a GPU example here, the 'con' value would be stored out to a constant buffer. // // AU4 con; // FsrRcasCon(con, // 0.0); // The scale is {0.0 := maximum sharpness, to N>0, where N is the number of stops (halving) of the reduction of sharpness}. // --------------- // RCAS sharpening supports a CAS-like pass-through alpha via, // #define FSR_RCAS_PASSTHROUGH_ALPHA 1 // RCAS also supports a define to enable a more expensive path to avoid some sharpening of noise. // Would suggest it is better to apply film grain after RCAS sharpening (and after scaling) instead of using this define, // #define FSR_RCAS_DENOISE 1 //============================================================================================================================== // This is set at the limit of providing unnatural results for sharpening. #define FSR_RCAS_LIMIT (0.25-(1.0/16.0)) //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // CONSTANT SETUP //============================================================================================================================== // Call to setup required constant values (works on CPU or GPU). A_STATIC void FsrRcasCon( outAU4 con, // The scale is {0.0 := maximum, to N>0, where N is the number of stops (halving) of the reduction of sharpness}. AF1 sharpness){ // Transform from stops to linear value. sharpness=AExp2F1(-sharpness); varAF2(hSharp)=initAF2(sharpness,sharpness); con[0]=AU1_AF1(sharpness); con[1]=AU1_AH2_AF2(hSharp); con[2]=0; con[3]=0;} //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // NON-PACKED 32-BIT VERSION //============================================================================================================================== #if defined(A_GPU)&&defined(FSR_RCAS_F) // Input callback prototypes that need to be implemented by calling shader AF4 FsrRcasLoadF(ASU2 p); void FsrRcasInputF(inout AF1 r,inout AF1 g,inout AF1 b); //------------------------------------------------------------------------------------------------------------------------------ void FsrRcasF( out AF1 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy. out AF1 pixG, out AF1 pixB, #ifdef FSR_RCAS_PASSTHROUGH_ALPHA out AF1 pixA, #endif AU2 ip, // Integer pixel position in output. AU4 con){ // Constant generated by RcasSetup(). // Algorithm uses minimal 3x3 pixel neighborhood. // b // d e f // h ASU2 sp=ASU2(ip); AF3 b=FsrRcasLoadF(sp+ASU2( 0,-1)).rgb; AF3 d=FsrRcasLoadF(sp+ASU2(-1, 0)).rgb; #ifdef FSR_RCAS_PASSTHROUGH_ALPHA AF4 ee=FsrRcasLoadF(sp); AF3 e=ee.rgb;pixA=ee.a; #else AF3 e=FsrRcasLoadF(sp).rgb; #endif AF3 f=FsrRcasLoadF(sp+ASU2( 1, 0)).rgb; AF3 h=FsrRcasLoadF(sp+ASU2( 0, 1)).rgb; // Rename (32-bit) or regroup (16-bit). AF1 bR=b.r; AF1 bG=b.g; AF1 bB=b.b; AF1 dR=d.r; AF1 dG=d.g; AF1 dB=d.b; AF1 eR=e.r; AF1 eG=e.g; AF1 eB=e.b; AF1 fR=f.r; AF1 fG=f.g; AF1 fB=f.b; AF1 hR=h.r; AF1 hG=h.g; AF1 hB=h.b; // Run optional input transform. FsrRcasInputF(bR,bG,bB); FsrRcasInputF(dR,dG,dB); FsrRcasInputF(eR,eG,eB); FsrRcasInputF(fR,fG,fB); FsrRcasInputF(hR,hG,hB); // Luma times 2. AF1 bL=bB*AF1_(0.5)+(bR*AF1_(0.5)+bG); AF1 dL=dB*AF1_(0.5)+(dR*AF1_(0.5)+dG); AF1 eL=eB*AF1_(0.5)+(eR*AF1_(0.5)+eG); AF1 fL=fB*AF1_(0.5)+(fR*AF1_(0.5)+fG); AF1 hL=hB*AF1_(0.5)+(hR*AF1_(0.5)+hG); // Noise detection. AF1 nz=AF1_(0.25)*bL+AF1_(0.25)*dL+AF1_(0.25)*fL+AF1_(0.25)*hL-eL; nz=ASatF1(abs(nz)*APrxMedRcpF1(AMax3F1(AMax3F1(bL,dL,eL),fL,hL)-AMin3F1(AMin3F1(bL,dL,eL),fL,hL))); nz=AF1_(-0.5)*nz+AF1_(1.0); // Min and max of ring. AF1 mn4R=min(AMin3F1(bR,dR,fR),hR); AF1 mn4G=min(AMin3F1(bG,dG,fG),hG); AF1 mn4B=min(AMin3F1(bB,dB,fB),hB); AF1 mx4R=max(AMax3F1(bR,dR,fR),hR); AF1 mx4G=max(AMax3F1(bG,dG,fG),hG); AF1 mx4B=max(AMax3F1(bB,dB,fB),hB); // Immediate constants for peak range. AF2 peakC=AF2(1.0,-1.0*4.0); // Limiters, these need to be high precision RCPs. AF1 hitMinR=min(mn4R,eR)*ARcpF1(AF1_(4.0)*mx4R); AF1 hitMinG=min(mn4G,eG)*ARcpF1(AF1_(4.0)*mx4G); AF1 hitMinB=min(mn4B,eB)*ARcpF1(AF1_(4.0)*mx4B); AF1 hitMaxR=(peakC.x-max(mx4R,eR))*ARcpF1(AF1_(4.0)*mn4R+peakC.y); AF1 hitMaxG=(peakC.x-max(mx4G,eG))*ARcpF1(AF1_(4.0)*mn4G+peakC.y); AF1 hitMaxB=(peakC.x-max(mx4B,eB))*ARcpF1(AF1_(4.0)*mn4B+peakC.y); AF1 lobeR=max(-hitMinR,hitMaxR); AF1 lobeG=max(-hitMinG,hitMaxG); AF1 lobeB=max(-hitMinB,hitMaxB); AF1 lobe=max(AF1_(-FSR_RCAS_LIMIT),min(AMax3F1(lobeR,lobeG,lobeB),AF1_(0.0)))*AF1_AU1(con.x); // Apply noise removal. #ifdef FSR_RCAS_DENOISE lobe*=nz; #endif // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes. AF1 rcpL=APrxMedRcpF1(AF1_(4.0)*lobe+AF1_(1.0)); pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL; pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL; pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL; return;} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // NON-PACKED 16-BIT VERSION //============================================================================================================================== #if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_RCAS_H) // Input callback prototypes that need to be implemented by calling shader AH4 FsrRcasLoadH(ASW2 p); void FsrRcasInputH(inout AH1 r,inout AH1 g,inout AH1 b); //------------------------------------------------------------------------------------------------------------------------------ void FsrRcasH( out AH1 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy. out AH1 pixG, out AH1 pixB, #ifdef FSR_RCAS_PASSTHROUGH_ALPHA out AH1 pixA, #endif AU2 ip, // Integer pixel position in output. AU4 con){ // Constant generated by RcasSetup(). // Sharpening algorithm uses minimal 3x3 pixel neighborhood. // b // d e f // h ASW2 sp=ASW2(ip); AH3 b=FsrRcasLoadH(sp+ASW2( 0,-1)).rgb; AH3 d=FsrRcasLoadH(sp+ASW2(-1, 0)).rgb; #ifdef FSR_RCAS_PASSTHROUGH_ALPHA AH4 ee=FsrRcasLoadH(sp); AH3 e=ee.rgb;pixA=ee.a; #else AH3 e=FsrRcasLoadH(sp).rgb; #endif AH3 f=FsrRcasLoadH(sp+ASW2( 1, 0)).rgb; AH3 h=FsrRcasLoadH(sp+ASW2( 0, 1)).rgb; // Rename (32-bit) or regroup (16-bit). AH1 bR=b.r; AH1 bG=b.g; AH1 bB=b.b; AH1 dR=d.r; AH1 dG=d.g; AH1 dB=d.b; AH1 eR=e.r; AH1 eG=e.g; AH1 eB=e.b; AH1 fR=f.r; AH1 fG=f.g; AH1 fB=f.b; AH1 hR=h.r; AH1 hG=h.g; AH1 hB=h.b; // Run optional input transform. FsrRcasInputH(bR,bG,bB); FsrRcasInputH(dR,dG,dB); FsrRcasInputH(eR,eG,eB); FsrRcasInputH(fR,fG,fB); FsrRcasInputH(hR,hG,hB); // Luma times 2. AH1 bL=bB*AH1_(0.5)+(bR*AH1_(0.5)+bG); AH1 dL=dB*AH1_(0.5)+(dR*AH1_(0.5)+dG); AH1 eL=eB*AH1_(0.5)+(eR*AH1_(0.5)+eG); AH1 fL=fB*AH1_(0.5)+(fR*AH1_(0.5)+fG); AH1 hL=hB*AH1_(0.5)+(hR*AH1_(0.5)+hG); // Noise detection. AH1 nz=AH1_(0.25)*bL+AH1_(0.25)*dL+AH1_(0.25)*fL+AH1_(0.25)*hL-eL; nz=ASatH1(abs(nz)*APrxMedRcpH1(AMax3H1(AMax3H1(bL,dL,eL),fL,hL)-AMin3H1(AMin3H1(bL,dL,eL),fL,hL))); nz=AH1_(-0.5)*nz+AH1_(1.0); // Min and max of ring. AH1 mn4R=min(AMin3H1(bR,dR,fR),hR); AH1 mn4G=min(AMin3H1(bG,dG,fG),hG); AH1 mn4B=min(AMin3H1(bB,dB,fB),hB); AH1 mx4R=max(AMax3H1(bR,dR,fR),hR); AH1 mx4G=max(AMax3H1(bG,dG,fG),hG); AH1 mx4B=max(AMax3H1(bB,dB,fB),hB); // Immediate constants for peak range. AH2 peakC=AH2(1.0,-1.0*4.0); // Limiters, these need to be high precision RCPs. AH1 hitMinR=min(mn4R,eR)*ARcpH1(AH1_(4.0)*mx4R); AH1 hitMinG=min(mn4G,eG)*ARcpH1(AH1_(4.0)*mx4G); AH1 hitMinB=min(mn4B,eB)*ARcpH1(AH1_(4.0)*mx4B); AH1 hitMaxR=(peakC.x-max(mx4R,eR))*ARcpH1(AH1_(4.0)*mn4R+peakC.y); AH1 hitMaxG=(peakC.x-max(mx4G,eG))*ARcpH1(AH1_(4.0)*mn4G+peakC.y); AH1 hitMaxB=(peakC.x-max(mx4B,eB))*ARcpH1(AH1_(4.0)*mn4B+peakC.y); AH1 lobeR=max(-hitMinR,hitMaxR); AH1 lobeG=max(-hitMinG,hitMaxG); AH1 lobeB=max(-hitMinB,hitMaxB); AH1 lobe=max(AH1_(-FSR_RCAS_LIMIT),min(AMax3H1(lobeR,lobeG,lobeB),AH1_(0.0)))*AH2_AU1(con.y).x; // Apply noise removal. #ifdef FSR_RCAS_DENOISE lobe*=nz; #endif // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes. AH1 rcpL=APrxMedRcpH1(AH1_(4.0)*lobe+AH1_(1.0)); pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL; pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL; pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // PACKED 16-BIT VERSION //============================================================================================================================== #if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_RCAS_HX2) // Input callback prototypes that need to be implemented by the calling shader AH4 FsrRcasLoadHx2(ASW2 p); void FsrRcasInputHx2(inout AH2 r,inout AH2 g,inout AH2 b); //------------------------------------------------------------------------------------------------------------------------------ // Can be used to convert from packed Structures of Arrays to Arrays of Structures for store. void FsrRcasDepackHx2(out AH4 pix0,out AH4 pix1,AH2 pixR,AH2 pixG,AH2 pixB){ #ifdef A_HLSL // Invoke a slower path for DX only, since it won't allow uninitialized values. pix0.a=pix1.a=0.0; #endif pix0.rgb=AH3(pixR.x,pixG.x,pixB.x); pix1.rgb=AH3(pixR.y,pixG.y,pixB.y);} //------------------------------------------------------------------------------------------------------------------------------ void FsrRcasHx2( // Output values are for 2 8x8 tiles in a 16x8 region. // pix.x = left 8x8 tile // pix.y = right 8x8 tile // This enables later processing to easily be packed as well. out AH2 pixR, out AH2 pixG, out AH2 pixB, #ifdef FSR_RCAS_PASSTHROUGH_ALPHA out AH2 pixA, #endif AU2 ip, // Integer pixel position in output. AU4 con){ // Constant generated by RcasSetup(). // No scaling algorithm uses minimal 3x3 pixel neighborhood. ASW2 sp0=ASW2(ip); AH3 b0=FsrRcasLoadHx2(sp0+ASW2( 0,-1)).rgb; AH3 d0=FsrRcasLoadHx2(sp0+ASW2(-1, 0)).rgb; #ifdef FSR_RCAS_PASSTHROUGH_ALPHA AH4 ee0=FsrRcasLoadHx2(sp0); AH3 e0=ee0.rgb;pixA.r=ee0.a; #else AH3 e0=FsrRcasLoadHx2(sp0).rgb; #endif AH3 f0=FsrRcasLoadHx2(sp0+ASW2( 1, 0)).rgb; AH3 h0=FsrRcasLoadHx2(sp0+ASW2( 0, 1)).rgb; ASW2 sp1=sp0+ASW2(8,0); AH3 b1=FsrRcasLoadHx2(sp1+ASW2( 0,-1)).rgb; AH3 d1=FsrRcasLoadHx2(sp1+ASW2(-1, 0)).rgb; #ifdef FSR_RCAS_PASSTHROUGH_ALPHA AH4 ee1=FsrRcasLoadHx2(sp1); AH3 e1=ee1.rgb;pixA.g=ee1.a; #else AH3 e1=FsrRcasLoadHx2(sp1).rgb; #endif AH3 f1=FsrRcasLoadHx2(sp1+ASW2( 1, 0)).rgb; AH3 h1=FsrRcasLoadHx2(sp1+ASW2( 0, 1)).rgb; // Arrays of Structures to Structures of Arrays conversion. AH2 bR=AH2(b0.r,b1.r); AH2 bG=AH2(b0.g,b1.g); AH2 bB=AH2(b0.b,b1.b); AH2 dR=AH2(d0.r,d1.r); AH2 dG=AH2(d0.g,d1.g); AH2 dB=AH2(d0.b,d1.b); AH2 eR=AH2(e0.r,e1.r); AH2 eG=AH2(e0.g,e1.g); AH2 eB=AH2(e0.b,e1.b); AH2 fR=AH2(f0.r,f1.r); AH2 fG=AH2(f0.g,f1.g); AH2 fB=AH2(f0.b,f1.b); AH2 hR=AH2(h0.r,h1.r); AH2 hG=AH2(h0.g,h1.g); AH2 hB=AH2(h0.b,h1.b); // Run optional input transform. FsrRcasInputHx2(bR,bG,bB); FsrRcasInputHx2(dR,dG,dB); FsrRcasInputHx2(eR,eG,eB); FsrRcasInputHx2(fR,fG,fB); FsrRcasInputHx2(hR,hG,hB); // Luma times 2. AH2 bL=bB*AH2_(0.5)+(bR*AH2_(0.5)+bG); AH2 dL=dB*AH2_(0.5)+(dR*AH2_(0.5)+dG); AH2 eL=eB*AH2_(0.5)+(eR*AH2_(0.5)+eG); AH2 fL=fB*AH2_(0.5)+(fR*AH2_(0.5)+fG); AH2 hL=hB*AH2_(0.5)+(hR*AH2_(0.5)+hG); // Noise detection. AH2 nz=AH2_(0.25)*bL+AH2_(0.25)*dL+AH2_(0.25)*fL+AH2_(0.25)*hL-eL; nz=ASatH2(abs(nz)*APrxMedRcpH2(AMax3H2(AMax3H2(bL,dL,eL),fL,hL)-AMin3H2(AMin3H2(bL,dL,eL),fL,hL))); nz=AH2_(-0.5)*nz+AH2_(1.0); // Min and max of ring. AH2 mn4R=min(AMin3H2(bR,dR,fR),hR); AH2 mn4G=min(AMin3H2(bG,dG,fG),hG); AH2 mn4B=min(AMin3H2(bB,dB,fB),hB); AH2 mx4R=max(AMax3H2(bR,dR,fR),hR); AH2 mx4G=max(AMax3H2(bG,dG,fG),hG); AH2 mx4B=max(AMax3H2(bB,dB,fB),hB); // Immediate constants for peak range. AH2 peakC=AH2(1.0,-1.0*4.0); // Limiters, these need to be high precision RCPs. AH2 hitMinR=min(mn4R,eR)*ARcpH2(AH2_(4.0)*mx4R); AH2 hitMinG=min(mn4G,eG)*ARcpH2(AH2_(4.0)*mx4G); AH2 hitMinB=min(mn4B,eB)*ARcpH2(AH2_(4.0)*mx4B); AH2 hitMaxR=(peakC.x-max(mx4R,eR))*ARcpH2(AH2_(4.0)*mn4R+peakC.y); AH2 hitMaxG=(peakC.x-max(mx4G,eG))*ARcpH2(AH2_(4.0)*mn4G+peakC.y); AH2 hitMaxB=(peakC.x-max(mx4B,eB))*ARcpH2(AH2_(4.0)*mn4B+peakC.y); AH2 lobeR=max(-hitMinR,hitMaxR); AH2 lobeG=max(-hitMinG,hitMaxG); AH2 lobeB=max(-hitMinB,hitMaxB); AH2 lobe=max(AH2_(-FSR_RCAS_LIMIT),min(AMax3H2(lobeR,lobeG,lobeB),AH2_(0.0)))*AH2_(AH2_AU1(con.y).x); // Apply noise removal. #ifdef FSR_RCAS_DENOISE lobe*=nz; #endif // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes. AH2 rcpL=APrxMedRcpH2(AH2_(4.0)*lobe+AH2_(1.0)); pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL; pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL; pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // FSR - [LFGA] LINEAR FILM GRAIN APPLICATOR // //------------------------------------------------------------------------------------------------------------------------------ // Adding output-resolution film grain after scaling is a good way to mask both rendering and scaling artifacts. // Suggest using tiled blue noise as film grain input, with peak noise frequency set for a specific look and feel. // The 'Lfga*()' functions provide a convenient way to introduce grain. // These functions limit grain based on distance to signal limits. // This is done so that the grain is temporally energy preserving, and thus won't modify image tonality. // Grain application should be done in a linear colorspace. // The grain should be temporally changing, but have a temporal sum per pixel that adds to zero (non-biased). //------------------------------------------------------------------------------------------------------------------------------ // Usage, // FsrLfga*( // color, // In/out linear colorspace color {0 to 1} ranged. // grain, // Per pixel grain texture value {-0.5 to 0.5} ranged, input is 3-channel to support colored grain. // amount); // Amount of grain (0 to 1} ranged. //------------------------------------------------------------------------------------------------------------------------------ // Example if grain texture is monochrome: 'FsrLfgaF(color,AF3_(grain),amount)' //============================================================================================================================== #if defined(A_GPU) // Maximum grain is the minimum distance to the signal limit. void FsrLfgaF(inout AF3 c,AF3 t,AF1 a){c+=(t*AF3_(a))*min(AF3_(1.0)-c,c);} #endif //============================================================================================================================== #if defined(A_GPU)&&defined(A_HALF) // Half precision version (slower). void FsrLfgaH(inout AH3 c,AH3 t,AH1 a){c+=(t*AH3_(a))*min(AH3_(1.0)-c,c);} //------------------------------------------------------------------------------------------------------------------------------ // Packed half precision version (faster). void FsrLfgaHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 tR,AH2 tG,AH2 tB,AH1 a){ cR+=(tR*AH2_(a))*min(AH2_(1.0)-cR,cR);cG+=(tG*AH2_(a))*min(AH2_(1.0)-cG,cG);cB+=(tB*AH2_(a))*min(AH2_(1.0)-cB,cB);} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // FSR - [SRTM] SIMPLE REVERSIBLE TONE-MAPPER // //------------------------------------------------------------------------------------------------------------------------------ // This provides a way to take linear HDR color {0 to FP16_MAX} and convert it into a temporary {0 to 1} ranged post-tonemapped linear. // The tonemapper preserves RGB ratio, which helps maintain HDR color bleed during filtering. //------------------------------------------------------------------------------------------------------------------------------ // Reversible tonemapper usage, // FsrSrtm*(color); // {0 to FP16_MAX} converted to {0 to 1}. // FsrSrtmInv*(color); // {0 to 1} converted into {0 to 32768, output peak safe for FP16}. //============================================================================================================================== #if defined(A_GPU) void FsrSrtmF(inout AF3 c){c*=AF3_(ARcpF1(AMax3F1(c.r,c.g,c.b)+AF1_(1.0)));} // The extra max solves the c=1.0 case (which is a /0). void FsrSrtmInvF(inout AF3 c){c*=AF3_(ARcpF1(max(AF1_(1.0/32768.0),AF1_(1.0)-AMax3F1(c.r,c.g,c.b))));} #endif //============================================================================================================================== #if defined(A_GPU)&&defined(A_HALF) void FsrSrtmH(inout AH3 c){c*=AH3_(ARcpH1(AMax3H1(c.r,c.g,c.b)+AH1_(1.0)));} void FsrSrtmInvH(inout AH3 c){c*=AH3_(ARcpH1(max(AH1_(1.0/32768.0),AH1_(1.0)-AMax3H1(c.r,c.g,c.b))));} //------------------------------------------------------------------------------------------------------------------------------ void FsrSrtmHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB){ AH2 rcp=ARcpH2(AMax3H2(cR,cG,cB)+AH2_(1.0));cR*=rcp;cG*=rcp;cB*=rcp;} void FsrSrtmInvHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB){ AH2 rcp=ARcpH2(max(AH2_(1.0/32768.0),AH2_(1.0)-AMax3H2(cR,cG,cB)));cR*=rcp;cG*=rcp;cB*=rcp;} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // FSR - [TEPD] TEMPORAL ENERGY PRESERVING DITHER // //------------------------------------------------------------------------------------------------------------------------------ // Temporally energy preserving dithered {0 to 1} linear to gamma 2.0 conversion. // Gamma 2.0 is used so that the conversion back to linear is just to square the color. // The conversion comes in 8-bit and 10-bit modes, designed for output to 8-bit UNORM or 10:10:10:2 respectively. // Given good non-biased temporal blue noise as dither input, // the output dither will temporally conserve energy. // This is done by choosing the linear nearest step point instead of perceptual nearest. // See code below for details. //------------------------------------------------------------------------------------------------------------------------------ // DX SPEC RULES FOR FLOAT->UNORM 8-BIT CONVERSION // =============================================== // - Output is 'uint(floor(saturate(n)*255.0+0.5))'. // - Thus rounding is to nearest. // - NaN gets converted to zero. // - INF is clamped to {0.0 to 1.0}. //============================================================================================================================== #if defined(A_GPU) // Hand tuned integer position to dither value, with more values than simple checkerboard. // Only 32-bit has enough precision for this compddation. // Output is {0 to <1}. AF1 FsrTepdDitF(AU2 p,AU1 f){ AF1 x=AF1_(p.x+f); AF1 y=AF1_(p.y); // The 1.61803 golden ratio. AF1 a=AF1_((1.0+sqrt(5.0))/2.0); // Number designed to provide a good visual pattern. AF1 b=AF1_(1.0/3.69); x=x*a+(y*b); return AFractF1(x);} //------------------------------------------------------------------------------------------------------------------------------ // This version is 8-bit gamma 2.0. // The 'c' input is {0 to 1}. // Output is {0 to 1} ready for image store. void FsrTepdC8F(inout AF3 c,AF1 dit){ AF3 n=sqrt(c); n=floor(n*AF3_(255.0))*AF3_(1.0/255.0); AF3 a=n*n; AF3 b=n+AF3_(1.0/255.0);b=b*b; // Ratio of 'a' to 'b' required to produce 'c'. // APrxLoRcpF1() won't work here (at least for very high dynamic ranges). // APrxMedRcpF1() is an IADD,FMA,MUL. AF3 r=(c-b)*APrxMedRcpF3(a-b); // Use the ratio as a cutoff to choose 'a' or 'b'. // AGtZeroF1() is a MUL. c=ASatF3(n+AGtZeroF3(AF3_(dit)-r)*AF3_(1.0/255.0));} //------------------------------------------------------------------------------------------------------------------------------ // This version is 10-bit gamma 2.0. // The 'c' input is {0 to 1}. // Output is {0 to 1} ready for image store. void FsrTepdC10F(inout AF3 c,AF1 dit){ AF3 n=sqrt(c); n=floor(n*AF3_(1023.0))*AF3_(1.0/1023.0); AF3 a=n*n; AF3 b=n+AF3_(1.0/1023.0);b=b*b; AF3 r=(c-b)*APrxMedRcpF3(a-b); c=ASatF3(n+AGtZeroF3(AF3_(dit)-r)*AF3_(1.0/1023.0));} #endif //============================================================================================================================== #if defined(A_GPU)&&defined(A_HALF) AH1 FsrTepdDitH(AU2 p,AU1 f){ AF1 x=AF1_(p.x+f); AF1 y=AF1_(p.y); AF1 a=AF1_((1.0+sqrt(5.0))/2.0); AF1 b=AF1_(1.0/3.69); x=x*a+(y*b); return AH1(AFractF1(x));} //------------------------------------------------------------------------------------------------------------------------------ void FsrTepdC8H(inout AH3 c,AH1 dit){ AH3 n=sqrt(c); n=floor(n*AH3_(255.0))*AH3_(1.0/255.0); AH3 a=n*n; AH3 b=n+AH3_(1.0/255.0);b=b*b; AH3 r=(c-b)*APrxMedRcpH3(a-b); c=ASatH3(n+AGtZeroH3(AH3_(dit)-r)*AH3_(1.0/255.0));} //------------------------------------------------------------------------------------------------------------------------------ void FsrTepdC10H(inout AH3 c,AH1 dit){ AH3 n=sqrt(c); n=floor(n*AH3_(1023.0))*AH3_(1.0/1023.0); AH3 a=n*n; AH3 b=n+AH3_(1.0/1023.0);b=b*b; AH3 r=(c-b)*APrxMedRcpH3(a-b); c=ASatH3(n+AGtZeroH3(AH3_(dit)-r)*AH3_(1.0/1023.0));} //============================================================================================================================== // This computes dither for positions 'p' and 'p+{8,0}'. AH2 FsrTepdDitHx2(AU2 p,AU1 f){ AF2 x; x.x=AF1_(p.x+f); x.y=x.x+AF1_(8.0); AF1 y=AF1_(p.y); AF1 a=AF1_((1.0+sqrt(5.0))/2.0); AF1 b=AF1_(1.0/3.69); x=x*AF2_(a)+AF2_(y*b); return AH2(AFractF2(x));} //------------------------------------------------------------------------------------------------------------------------------ void FsrTepdC8Hx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 dit){ AH2 nR=sqrt(cR); AH2 nG=sqrt(cG); AH2 nB=sqrt(cB); nR=floor(nR*AH2_(255.0))*AH2_(1.0/255.0); nG=floor(nG*AH2_(255.0))*AH2_(1.0/255.0); nB=floor(nB*AH2_(255.0))*AH2_(1.0/255.0); AH2 aR=nR*nR; AH2 aG=nG*nG; AH2 aB=nB*nB; AH2 bR=nR+AH2_(1.0/255.0);bR=bR*bR; AH2 bG=nG+AH2_(1.0/255.0);bG=bG*bG; AH2 bB=nB+AH2_(1.0/255.0);bB=bB*bB; AH2 rR=(cR-bR)*APrxMedRcpH2(aR-bR); AH2 rG=(cG-bG)*APrxMedRcpH2(aG-bG); AH2 rB=(cB-bB)*APrxMedRcpH2(aB-bB); cR=ASatH2(nR+AGtZeroH2(dit-rR)*AH2_(1.0/255.0)); cG=ASatH2(nG+AGtZeroH2(dit-rG)*AH2_(1.0/255.0)); cB=ASatH2(nB+AGtZeroH2(dit-rB)*AH2_(1.0/255.0));} //------------------------------------------------------------------------------------------------------------------------------ void FsrTepdC10Hx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 dit){ AH2 nR=sqrt(cR); AH2 nG=sqrt(cG); AH2 nB=sqrt(cB); nR=floor(nR*AH2_(1023.0))*AH2_(1.0/1023.0); nG=floor(nG*AH2_(1023.0))*AH2_(1.0/1023.0); nB=floor(nB*AH2_(1023.0))*AH2_(1.0/1023.0); AH2 aR=nR*nR; AH2 aG=nG*nG; AH2 aB=nB*nB; AH2 bR=nR+AH2_(1.0/1023.0);bR=bR*bR; AH2 bG=nG+AH2_(1.0/1023.0);bG=bG*bG; AH2 bB=nB+AH2_(1.0/1023.0);bB=bB*bB; AH2 rR=(cR-bR)*APrxMedRcpH2(aR-bR); AH2 rG=(cG-bG)*APrxMedRcpH2(aG-bG); AH2 rB=(cB-bB)*APrxMedRcpH2(aB-bB); cR=ASatH2(nR+AGtZeroH2(dit-rR)*AH2_(1.0/1023.0)); cG=ASatH2(nG+AGtZeroH2(dit-rG)*AH2_(1.0/1023.0)); cB=ASatH2(nB+AGtZeroH2(dit-rB)*AH2_(1.0/1023.0));} #endif