// SPDX-FileCopyrightText: 2015 Citra Emulator Project // SPDX-FileCopyrightText: 2018 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include #include #include #include #include "common/assert.h" #include "common/atomic_ops.h" #include "common/common_types.h" #include "common/heap_tracker.h" #include "common/logging/log.h" #include "common/page_table.h" #include "common/scope_exit.h" #include "common/settings.h" #include "common/swap.h" #include "core/core.h" #include "core/device_memory.h" #include "core/gpu_dirty_memory_manager.h" #include "core/hardware_properties.h" #include "core/hle/kernel/k_page_table.h" #include "core/hle/kernel/k_process.h" #include "core/memory.h" #include "video_core/gpu.h" #include "video_core/host1x/gpu_device_memory_manager.h" #include "video_core/host1x/host1x.h" #include "video_core/rasterizer_download_area.h" namespace Core::Memory { namespace { bool AddressSpaceContains(const Common::PageTable& table, const Common::ProcessAddress addr, const std::size_t size) { const Common::ProcessAddress max_addr = 1ULL << table.GetAddressSpaceBits(); return addr + size >= addr && addr + size <= max_addr; } } // namespace // Implementation class used to keep the specifics of the memory subsystem hidden // from outside classes. This also allows modification to the internals of the memory // subsystem without needing to rebuild all files that make use of the memory interface. struct Memory::Impl { explicit Impl(Core::System& system_) : system{system_} {} void SetCurrentPageTable(Kernel::KProcess& process) { current_page_table = &process.GetPageTable().GetImpl(); if (process.IsApplication() && Settings::IsFastmemEnabled()) { current_page_table->fastmem_arena = system.DeviceMemory().buffer.VirtualBasePointer(); } else { current_page_table->fastmem_arena = nullptr; } #ifdef __linux__ heap_tracker.emplace(system.DeviceMemory().buffer); buffer = std::addressof(*heap_tracker); #else buffer = std::addressof(system.DeviceMemory().buffer); #endif } void MapMemoryRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size, Common::PhysicalAddress target, Common::MemoryPermission perms, bool separate_heap) { ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size); ASSERT_MSG((base & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", GetInteger(base)); ASSERT_MSG(target >= DramMemoryMap::Base, "Out of bounds target: {:016X}", GetInteger(target)); MapPages(page_table, base / YUZU_PAGESIZE, size / YUZU_PAGESIZE, target, Common::PageType::Memory); if (current_page_table->fastmem_arena) { buffer->Map(GetInteger(base), GetInteger(target) - DramMemoryMap::Base, size, perms, separate_heap); } } void UnmapRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size, bool separate_heap) { ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size); ASSERT_MSG((base & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", GetInteger(base)); MapPages(page_table, base / YUZU_PAGESIZE, size / YUZU_PAGESIZE, 0, Common::PageType::Unmapped); if (current_page_table->fastmem_arena) { buffer->Unmap(GetInteger(base), size, separate_heap); } } void ProtectRegion(Common::PageTable& page_table, VAddr vaddr, u64 size, Common::MemoryPermission perms) { ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size); ASSERT_MSG((vaddr & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", vaddr); if (!current_page_table->fastmem_arena) { return; } u64 protect_bytes{}; u64 protect_begin{}; for (u64 addr = vaddr; addr < vaddr + size; addr += YUZU_PAGESIZE) { const Common::PageType page_type{ current_page_table->pointers[addr >> YUZU_PAGEBITS].Type()}; switch (page_type) { case Common::PageType::RasterizerCachedMemory: if (protect_bytes > 0) { buffer->Protect(protect_begin, protect_bytes, perms); protect_bytes = 0; } break; default: if (protect_bytes == 0) { protect_begin = addr; } protect_bytes += YUZU_PAGESIZE; } } if (protect_bytes > 0) { buffer->Protect(protect_begin, protect_bytes, perms); } } [[nodiscard]] u8* GetPointerFromRasterizerCachedMemory(u64 vaddr) const { const Common::PhysicalAddress paddr{ current_page_table->backing_addr[vaddr >> YUZU_PAGEBITS]}; if (!paddr) { return {}; } return system.DeviceMemory().GetPointer(paddr + vaddr); } [[nodiscard]] u8* GetPointerFromDebugMemory(u64 vaddr) const { const Common::PhysicalAddress paddr{ current_page_table->backing_addr[vaddr >> YUZU_PAGEBITS]}; if (paddr == 0) { return {}; } return system.DeviceMemory().GetPointer(paddr + vaddr); } u8 Read8(const Common::ProcessAddress addr) { return Read(addr); } u16 Read16(const Common::ProcessAddress addr) { if ((addr & 1) == 0) { return Read(addr); } else { const u32 a{Read(addr)}; const u32 b{Read(addr + sizeof(u8))}; return static_cast((b << 8) | a); } } u32 Read32(const Common::ProcessAddress addr) { if ((addr & 3) == 0) { return Read(addr); } else { const u32 a{Read16(addr)}; const u32 b{Read16(addr + sizeof(u16))}; return (b << 16) | a; } } u64 Read64(const Common::ProcessAddress addr) { if ((addr & 7) == 0) { return Read(addr); } else { const u32 a{Read32(addr)}; const u32 b{Read32(addr + sizeof(u32))}; return (static_cast(b) << 32) | a; } } void Write8(const Common::ProcessAddress addr, const u8 data) { Write(addr, data); } void Write16(const Common::ProcessAddress addr, const u16 data) { if ((addr & 1) == 0) { Write(addr, data); } else { Write(addr, static_cast(data)); Write(addr + sizeof(u8), static_cast(data >> 8)); } } void Write32(const Common::ProcessAddress addr, const u32 data) { if ((addr & 3) == 0) { Write(addr, data); } else { Write16(addr, static_cast(data)); Write16(addr + sizeof(u16), static_cast(data >> 16)); } } void Write64(const Common::ProcessAddress addr, const u64 data) { if ((addr & 7) == 0) { Write(addr, data); } else { Write32(addr, static_cast(data)); Write32(addr + sizeof(u32), static_cast(data >> 32)); } } bool WriteExclusive8(const Common::ProcessAddress addr, const u8 data, const u8 expected) { return WriteExclusive(addr, data, expected); } bool WriteExclusive16(const Common::ProcessAddress addr, const u16 data, const u16 expected) { return WriteExclusive(addr, data, expected); } bool WriteExclusive32(const Common::ProcessAddress addr, const u32 data, const u32 expected) { return WriteExclusive(addr, data, expected); } bool WriteExclusive64(const Common::ProcessAddress addr, const u64 data, const u64 expected) { return WriteExclusive(addr, data, expected); } std::string ReadCString(Common::ProcessAddress vaddr, std::size_t max_length) { std::string string; string.reserve(max_length); for (std::size_t i = 0; i < max_length; ++i) { const char c = Read(vaddr); if (c == '\0') { break; } string.push_back(c); ++vaddr; } string.shrink_to_fit(); return string; } bool WalkBlock(const Common::ProcessAddress addr, const std::size_t size, auto on_unmapped, auto on_memory, auto on_rasterizer, auto increment) { const auto& page_table = *current_page_table; std::size_t remaining_size = size; std::size_t page_index = addr >> YUZU_PAGEBITS; std::size_t page_offset = addr & YUZU_PAGEMASK; bool user_accessible = true; if (!AddressSpaceContains(page_table, addr, size)) [[unlikely]] { on_unmapped(size, addr); return false; } while (remaining_size) { const std::size_t copy_amount = std::min(static_cast(YUZU_PAGESIZE) - page_offset, remaining_size); const auto current_vaddr = static_cast((page_index << YUZU_PAGEBITS) + page_offset); const auto [pointer, type] = page_table.pointers[page_index].PointerType(); switch (type) { case Common::PageType::Unmapped: { user_accessible = false; on_unmapped(copy_amount, current_vaddr); break; } case Common::PageType::Memory: { u8* mem_ptr = reinterpret_cast(pointer + page_offset + (page_index << YUZU_PAGEBITS)); on_memory(copy_amount, mem_ptr); break; } case Common::PageType::DebugMemory: { u8* const mem_ptr{GetPointerFromDebugMemory(current_vaddr)}; on_memory(copy_amount, mem_ptr); break; } case Common::PageType::RasterizerCachedMemory: { u8* const host_ptr{GetPointerFromRasterizerCachedMemory(current_vaddr)}; on_rasterizer(current_vaddr, copy_amount, host_ptr); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; increment(copy_amount); remaining_size -= copy_amount; } return user_accessible; } template bool ReadBlockImpl(const Common::ProcessAddress src_addr, void* dest_buffer, const std::size_t size) { return WalkBlock( src_addr, size, [src_addr, size, &dest_buffer](const std::size_t copy_amount, const Common::ProcessAddress current_vaddr) { LOG_ERROR(HW_Memory, "Unmapped ReadBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})", GetInteger(current_vaddr), GetInteger(src_addr), size); std::memset(dest_buffer, 0, copy_amount); }, [&](const std::size_t copy_amount, const u8* const src_ptr) { std::memcpy(dest_buffer, src_ptr, copy_amount); }, [&](const Common::ProcessAddress current_vaddr, const std::size_t copy_amount, const u8* const host_ptr) { if constexpr (!UNSAFE) { HandleRasterizerDownload(GetInteger(current_vaddr), copy_amount); } std::memcpy(dest_buffer, host_ptr, copy_amount); }, [&](const std::size_t copy_amount) { dest_buffer = static_cast(dest_buffer) + copy_amount; }); } bool ReadBlock(const Common::ProcessAddress src_addr, void* dest_buffer, const std::size_t size) { return ReadBlockImpl(src_addr, dest_buffer, size); } bool ReadBlockUnsafe(const Common::ProcessAddress src_addr, void* dest_buffer, const std::size_t size) { return ReadBlockImpl(src_addr, dest_buffer, size); } const u8* GetSpan(const VAddr src_addr, const std::size_t size) const { if (current_page_table->blocks[src_addr >> YUZU_PAGEBITS] == current_page_table->blocks[(src_addr + size) >> YUZU_PAGEBITS]) { return GetPointerSilent(src_addr); } return nullptr; } u8* GetSpan(const VAddr src_addr, const std::size_t size) { if (current_page_table->blocks[src_addr >> YUZU_PAGEBITS] == current_page_table->blocks[(src_addr + size) >> YUZU_PAGEBITS]) { return GetPointerSilent(src_addr); } return nullptr; } template bool WriteBlockImpl(const Common::ProcessAddress dest_addr, const void* src_buffer, const std::size_t size) { return WalkBlock( dest_addr, size, [dest_addr, size](const std::size_t copy_amount, const Common::ProcessAddress current_vaddr) { LOG_ERROR(HW_Memory, "Unmapped WriteBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})", GetInteger(current_vaddr), GetInteger(dest_addr), size); }, [&](const std::size_t copy_amount, u8* const dest_ptr) { std::memcpy(dest_ptr, src_buffer, copy_amount); }, [&](const Common::ProcessAddress current_vaddr, const std::size_t copy_amount, u8* const host_ptr) { if constexpr (!UNSAFE) { HandleRasterizerWrite(GetInteger(current_vaddr), copy_amount); } std::memcpy(host_ptr, src_buffer, copy_amount); }, [&](const std::size_t copy_amount) { src_buffer = static_cast(src_buffer) + copy_amount; }); } bool WriteBlock(const Common::ProcessAddress dest_addr, const void* src_buffer, const std::size_t size) { return WriteBlockImpl(dest_addr, src_buffer, size); } bool WriteBlockUnsafe(const Common::ProcessAddress dest_addr, const void* src_buffer, const std::size_t size) { return WriteBlockImpl(dest_addr, src_buffer, size); } bool ZeroBlock(const Common::ProcessAddress dest_addr, const std::size_t size) { return WalkBlock( dest_addr, size, [dest_addr, size](const std::size_t copy_amount, const Common::ProcessAddress current_vaddr) { LOG_ERROR(HW_Memory, "Unmapped ZeroBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})", GetInteger(current_vaddr), GetInteger(dest_addr), size); }, [](const std::size_t copy_amount, u8* const dest_ptr) { std::memset(dest_ptr, 0, copy_amount); }, [&](const Common::ProcessAddress current_vaddr, const std::size_t copy_amount, u8* const host_ptr) { HandleRasterizerWrite(GetInteger(current_vaddr), copy_amount); std::memset(host_ptr, 0, copy_amount); }, [](const std::size_t copy_amount) {}); } bool CopyBlock(Common::ProcessAddress dest_addr, Common::ProcessAddress src_addr, const std::size_t size) { return WalkBlock( dest_addr, size, [&](const std::size_t copy_amount, const Common::ProcessAddress current_vaddr) { LOG_ERROR(HW_Memory, "Unmapped CopyBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})", GetInteger(current_vaddr), GetInteger(src_addr), size); ZeroBlock(dest_addr, copy_amount); }, [&](const std::size_t copy_amount, const u8* const src_ptr) { WriteBlockImpl(dest_addr, src_ptr, copy_amount); }, [&](const Common::ProcessAddress current_vaddr, const std::size_t copy_amount, u8* const host_ptr) { HandleRasterizerDownload(GetInteger(current_vaddr), copy_amount); WriteBlockImpl(dest_addr, host_ptr, copy_amount); }, [&](const std::size_t copy_amount) { dest_addr += copy_amount; src_addr += copy_amount; }); } template Result PerformCacheOperation(Common::ProcessAddress dest_addr, std::size_t size, Callback&& cb) { class InvalidMemoryException : public std::exception {}; try { WalkBlock( dest_addr, size, [&](const std::size_t block_size, const Common::ProcessAddress current_vaddr) { LOG_ERROR(HW_Memory, "Unmapped cache maintenance @ {:#018X}", GetInteger(current_vaddr)); throw InvalidMemoryException(); }, [&](const std::size_t block_size, u8* const host_ptr) {}, [&](const Common::ProcessAddress current_vaddr, const std::size_t block_size, u8* const host_ptr) { cb(current_vaddr, block_size); }, [](const std::size_t block_size) {}); } catch (InvalidMemoryException&) { return Kernel::ResultInvalidCurrentMemory; } return ResultSuccess; } Result InvalidateDataCache(Common::ProcessAddress dest_addr, std::size_t size) { auto on_rasterizer = [&](const Common::ProcessAddress current_vaddr, const std::size_t block_size) { // dc ivac: Invalidate to point of coherency // GPU flush -> CPU invalidate HandleRasterizerDownload(GetInteger(current_vaddr), block_size); }; return PerformCacheOperation(dest_addr, size, on_rasterizer); } Result StoreDataCache(Common::ProcessAddress dest_addr, std::size_t size) { auto on_rasterizer = [&](const Common::ProcessAddress current_vaddr, const std::size_t block_size) { // dc cvac: Store to point of coherency // CPU flush -> GPU invalidate HandleRasterizerWrite(GetInteger(current_vaddr), block_size); }; return PerformCacheOperation(dest_addr, size, on_rasterizer); } Result FlushDataCache(Common::ProcessAddress dest_addr, std::size_t size) { auto on_rasterizer = [&](const Common::ProcessAddress current_vaddr, const std::size_t block_size) { // dc civac: Store to point of coherency, and invalidate from cache // CPU flush -> GPU invalidate HandleRasterizerWrite(GetInteger(current_vaddr), block_size); }; return PerformCacheOperation(dest_addr, size, on_rasterizer); } void MarkRegionDebug(u64 vaddr, u64 size, bool debug) { if (vaddr == 0 || !AddressSpaceContains(*current_page_table, vaddr, size)) { return; } if (current_page_table->fastmem_arena) { const auto perm{debug ? Common::MemoryPermission{} : Common::MemoryPermission::ReadWrite}; buffer->Protect(vaddr, size, perm); } // Iterate over a contiguous CPU address space, marking/unmarking the region. // The region is at a granularity of CPU pages. const u64 num_pages = ((vaddr + size - 1) >> YUZU_PAGEBITS) - (vaddr >> YUZU_PAGEBITS) + 1; for (u64 i = 0; i < num_pages; ++i, vaddr += YUZU_PAGESIZE) { const Common::PageType page_type{ current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Type()}; if (debug) { // Switch page type to debug if now debug switch (page_type) { case Common::PageType::Unmapped: ASSERT_MSG(false, "Attempted to mark unmapped pages as debug"); break; case Common::PageType::RasterizerCachedMemory: case Common::PageType::DebugMemory: // Page is already marked. break; case Common::PageType::Memory: current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store( 0, Common::PageType::DebugMemory); break; default: UNREACHABLE(); } } else { // Switch page type to non-debug if now non-debug switch (page_type) { case Common::PageType::Unmapped: ASSERT_MSG(false, "Attempted to mark unmapped pages as non-debug"); break; case Common::PageType::RasterizerCachedMemory: case Common::PageType::Memory: // Don't mess with already non-debug or rasterizer memory. break; case Common::PageType::DebugMemory: { u8* const pointer{GetPointerFromDebugMemory(vaddr & ~YUZU_PAGEMASK)}; current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store( reinterpret_cast(pointer) - (vaddr & ~YUZU_PAGEMASK), Common::PageType::Memory); break; } default: UNREACHABLE(); } } } } void RasterizerMarkRegionCached(u64 vaddr, u64 size, bool cached) { if (vaddr == 0 || !AddressSpaceContains(*current_page_table, vaddr, size)) { return; } if (current_page_table->fastmem_arena) { Common::MemoryPermission perm{}; if (!Settings::values.use_reactive_flushing.GetValue() || !cached) { perm |= Common::MemoryPermission::Read; } if (!cached) { perm |= Common::MemoryPermission::Write; } buffer->Protect(vaddr, size, perm); } // Iterate over a contiguous CPU address space, which corresponds to the specified GPU // address space, marking the region as un/cached. The region is marked un/cached at a // granularity of CPU pages, hence why we iterate on a CPU page basis (note: GPU page size // is different). This assumes the specified GPU address region is contiguous as well. const u64 num_pages = ((vaddr + size - 1) >> YUZU_PAGEBITS) - (vaddr >> YUZU_PAGEBITS) + 1; for (u64 i = 0; i < num_pages; ++i, vaddr += YUZU_PAGESIZE) { const Common::PageType page_type{ current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Type()}; if (cached) { // Switch page type to cached if now cached switch (page_type) { case Common::PageType::Unmapped: // It is not necessary for a process to have this region mapped into its address // space, for example, a system module need not have a VRAM mapping. break; case Common::PageType::DebugMemory: case Common::PageType::Memory: current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store( 0, Common::PageType::RasterizerCachedMemory); break; case Common::PageType::RasterizerCachedMemory: // There can be more than one GPU region mapped per CPU region, so it's common // that this area is already marked as cached. break; default: UNREACHABLE(); } } else { // Switch page type to uncached if now uncached switch (page_type) { case Common::PageType::Unmapped: // NOLINT(bugprone-branch-clone) // It is not necessary for a process to have this region mapped into its address // space, for example, a system module need not have a VRAM mapping. break; case Common::PageType::DebugMemory: case Common::PageType::Memory: // There can be more than one GPU region mapped per CPU region, so it's common // that this area is already unmarked as cached. break; case Common::PageType::RasterizerCachedMemory: { u8* const pointer{GetPointerFromRasterizerCachedMemory(vaddr & ~YUZU_PAGEMASK)}; if (pointer == nullptr) { // It's possible that this function has been called while updating the // pagetable after unmapping a VMA. In that case the underlying VMA will no // longer exist, and we should just leave the pagetable entry blank. current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store( 0, Common::PageType::Unmapped); } else { current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store( reinterpret_cast(pointer) - (vaddr & ~YUZU_PAGEMASK), Common::PageType::Memory); } break; } default: UNREACHABLE(); } } } } /** * Maps a region of pages as a specific type. * * @param page_table The page table to use to perform the mapping. * @param base The base address to begin mapping at. * @param size The total size of the range in bytes. * @param target The target address to begin mapping from. * @param type The page type to map the memory as. */ void MapPages(Common::PageTable& page_table, Common::ProcessAddress base_address, u64 size, Common::PhysicalAddress target, Common::PageType type) { auto base = GetInteger(base_address); LOG_DEBUG(HW_Memory, "Mapping {:016X} onto {:016X}-{:016X}", GetInteger(target), base * YUZU_PAGESIZE, (base + size) * YUZU_PAGESIZE); const auto end = base + size; ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}", base + page_table.pointers.size()); if (!target) { ASSERT_MSG(type != Common::PageType::Memory, "Mapping memory page without a pointer @ {:016x}", base * YUZU_PAGESIZE); while (base != end) { page_table.pointers[base].Store(0, type); page_table.backing_addr[base] = 0; page_table.blocks[base] = 0; base += 1; } } else { auto orig_base = base; while (base != end) { auto host_ptr = reinterpret_cast(system.DeviceMemory().GetPointer(target)) - (base << YUZU_PAGEBITS); auto backing = GetInteger(target) - (base << YUZU_PAGEBITS); page_table.pointers[base].Store(host_ptr, type); page_table.backing_addr[base] = backing; page_table.blocks[base] = orig_base << YUZU_PAGEBITS; ASSERT_MSG(page_table.pointers[base].Pointer(), "memory mapping base yield a nullptr within the table"); base += 1; target += YUZU_PAGESIZE; } } } [[nodiscard]] u8* GetPointerImpl(u64 vaddr, auto on_unmapped, auto on_rasterizer) const { // AARCH64 masks the upper 16 bit of all memory accesses vaddr = vaddr & 0xffffffffffffULL; if (!AddressSpaceContains(*current_page_table, vaddr, 1)) [[unlikely]] { on_unmapped(); return nullptr; } // Avoid adding any extra logic to this fast-path block const uintptr_t raw_pointer = current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Raw(); if (const uintptr_t pointer = Common::PageTable::PageInfo::ExtractPointer(raw_pointer)) { return reinterpret_cast(pointer + vaddr); } switch (Common::PageTable::PageInfo::ExtractType(raw_pointer)) { case Common::PageType::Unmapped: on_unmapped(); return nullptr; case Common::PageType::Memory: ASSERT_MSG(false, "Mapped memory page without a pointer @ 0x{:016X}", vaddr); return nullptr; case Common::PageType::DebugMemory: return GetPointerFromDebugMemory(vaddr); case Common::PageType::RasterizerCachedMemory: { u8* const host_ptr{GetPointerFromRasterizerCachedMemory(vaddr)}; on_rasterizer(); return host_ptr; } default: UNREACHABLE(); } return nullptr; } [[nodiscard]] u8* GetPointer(const Common::ProcessAddress vaddr) const { return GetPointerImpl( GetInteger(vaddr), [vaddr]() { LOG_ERROR(HW_Memory, "Unmapped GetPointer @ 0x{:016X}", GetInteger(vaddr)); }, []() {}); } [[nodiscard]] u8* GetPointerSilent(const Common::ProcessAddress vaddr) const { return GetPointerImpl( GetInteger(vaddr), []() {}, []() {}); } /** * Reads a particular data type out of memory at the given virtual address. * * @param vaddr The virtual address to read the data type from. * * @tparam T The data type to read out of memory. This type *must* be * trivially copyable, otherwise the behavior of this function * is undefined. * * @returns The instance of T read from the specified virtual address. */ template T Read(Common::ProcessAddress vaddr) { T result = 0; const u8* const ptr = GetPointerImpl( GetInteger(vaddr), [vaddr]() { LOG_ERROR(HW_Memory, "Unmapped Read{} @ 0x{:016X}", sizeof(T) * 8, GetInteger(vaddr)); }, [&]() { HandleRasterizerDownload(GetInteger(vaddr), sizeof(T)); }); if (ptr) { std::memcpy(&result, ptr, sizeof(T)); } return result; } /** * Writes a particular data type to memory at the given virtual address. * * @param vaddr The virtual address to write the data type to. * * @tparam T The data type to write to memory. This type *must* be * trivially copyable, otherwise the behavior of this function * is undefined. */ template void Write(Common::ProcessAddress vaddr, const T data) { u8* const ptr = GetPointerImpl( GetInteger(vaddr), [vaddr, data]() { LOG_ERROR(HW_Memory, "Unmapped Write{} @ 0x{:016X} = 0x{:016X}", sizeof(T) * 8, GetInteger(vaddr), static_cast(data)); }, [&]() { HandleRasterizerWrite(GetInteger(vaddr), sizeof(T)); }); if (ptr) { std::memcpy(ptr, &data, sizeof(T)); } } template bool WriteExclusive(Common::ProcessAddress vaddr, const T data, const T expected) { u8* const ptr = GetPointerImpl( GetInteger(vaddr), [vaddr, data]() { LOG_ERROR(HW_Memory, "Unmapped WriteExclusive{} @ 0x{:016X} = 0x{:016X}", sizeof(T) * 8, GetInteger(vaddr), static_cast(data)); }, [&]() { HandleRasterizerWrite(GetInteger(vaddr), sizeof(T)); }); if (ptr) { return Common::AtomicCompareAndSwap(reinterpret_cast(ptr), data, expected); } return true; } bool WriteExclusive128(Common::ProcessAddress vaddr, const u128 data, const u128 expected) { u8* const ptr = GetPointerImpl( GetInteger(vaddr), [vaddr, data]() { LOG_ERROR(HW_Memory, "Unmapped WriteExclusive128 @ 0x{:016X} = 0x{:016X}{:016X}", GetInteger(vaddr), static_cast(data[1]), static_cast(data[0])); }, [&]() { HandleRasterizerWrite(GetInteger(vaddr), sizeof(u128)); }); if (ptr) { return Common::AtomicCompareAndSwap(reinterpret_cast(ptr), data, expected); } return true; } void HandleRasterizerDownload(VAddr v_address, size_t size) { const auto* p = GetPointerImpl( v_address, []() {}, []() {}); if (!gpu_device_memory) [[unlikely]] { gpu_device_memory = &system.Host1x().MemoryManager(); } const size_t core = system.GetCurrentHostThreadID(); auto& current_area = rasterizer_read_areas[core]; gpu_device_memory->ApplyOpOnPointer(p, scratch_buffers[core], [&](DAddr address) { const DAddr end_address = address + size; if (current_area.start_address <= address && end_address <= current_area.end_address) [[likely]] { return; } current_area = system.GPU().OnCPURead(address, size); }); } void HandleRasterizerWrite(VAddr v_address, size_t size) { const auto* p = GetPointerImpl( v_address, []() {}, []() {}); constexpr size_t sys_core = Core::Hardware::NUM_CPU_CORES - 1; const size_t core = std::min(system.GetCurrentHostThreadID(), sys_core); // any other calls threads go to syscore. if (!gpu_device_memory) [[unlikely]] { gpu_device_memory = &system.Host1x().MemoryManager(); } // Guard on sys_core; if (core == sys_core) [[unlikely]] { sys_core_guard.lock(); } SCOPE_EXIT { if (core == sys_core) [[unlikely]] { sys_core_guard.unlock(); } }; gpu_device_memory->ApplyOpOnPointer(p, scratch_buffers[core], [&](DAddr address) { auto& current_area = rasterizer_write_areas[core]; PAddr subaddress = address >> YUZU_PAGEBITS; bool do_collection = current_area.last_address == subaddress; if (!do_collection) [[unlikely]] { do_collection = system.GPU().OnCPUWrite(address, size); if (!do_collection) { return; } current_area.last_address = subaddress; } gpu_dirty_managers[core].Collect(address, size); }); } struct GPUDirtyState { PAddr last_address; }; void InvalidateGPUMemory(u8* p, size_t size) { constexpr size_t sys_core = Core::Hardware::NUM_CPU_CORES - 1; const size_t core = std::min(system.GetCurrentHostThreadID(), sys_core); // any other calls threads go to syscore. if (!gpu_device_memory) [[unlikely]] { gpu_device_memory = &system.Host1x().MemoryManager(); } // Guard on sys_core; if (core == sys_core) [[unlikely]] { sys_core_guard.lock(); } SCOPE_EXIT { if (core == sys_core) [[unlikely]] { sys_core_guard.unlock(); } }; auto& gpu = system.GPU(); gpu_device_memory->ApplyOpOnPointer( p, scratch_buffers[core], [&](DAddr address) { gpu.InvalidateRegion(address, size); }); } Core::System& system; Tegra::MaxwellDeviceMemoryManager* gpu_device_memory{}; Common::PageTable* current_page_table = nullptr; std::array rasterizer_read_areas{}; std::array rasterizer_write_areas{}; std::array, Core::Hardware::NUM_CPU_CORES> scratch_buffers{}; std::span gpu_dirty_managers; std::mutex sys_core_guard; std::optional heap_tracker; #ifdef __linux__ Common::HeapTracker* buffer{}; #else Common::HostMemory* buffer{}; #endif }; Memory::Memory(Core::System& system_) : system{system_} { Reset(); } Memory::~Memory() = default; void Memory::Reset() { impl = std::make_unique(system); } void Memory::SetCurrentPageTable(Kernel::KProcess& process) { impl->SetCurrentPageTable(process); } void Memory::MapMemoryRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size, Common::PhysicalAddress target, Common::MemoryPermission perms, bool separate_heap) { impl->MapMemoryRegion(page_table, base, size, target, perms, separate_heap); } void Memory::UnmapRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size, bool separate_heap) { impl->UnmapRegion(page_table, base, size, separate_heap); } void Memory::ProtectRegion(Common::PageTable& page_table, Common::ProcessAddress vaddr, u64 size, Common::MemoryPermission perms) { impl->ProtectRegion(page_table, GetInteger(vaddr), size, perms); } bool Memory::IsValidVirtualAddress(const Common::ProcessAddress vaddr) const { const auto& page_table = *impl->current_page_table; const size_t page = vaddr >> YUZU_PAGEBITS; if (page >= page_table.pointers.size()) { return false; } const auto [pointer, type] = page_table.pointers[page].PointerType(); return pointer != 0 || type == Common::PageType::RasterizerCachedMemory || type == Common::PageType::DebugMemory; } bool Memory::IsValidVirtualAddressRange(Common::ProcessAddress base, u64 size) const { Common::ProcessAddress end = base + size; Common::ProcessAddress page = Common::AlignDown(GetInteger(base), YUZU_PAGESIZE); for (; page < end; page += YUZU_PAGESIZE) { if (!IsValidVirtualAddress(page)) { return false; } } return true; } u8* Memory::GetPointer(Common::ProcessAddress vaddr) { return impl->GetPointer(vaddr); } u8* Memory::GetPointerSilent(Common::ProcessAddress vaddr) { return impl->GetPointerSilent(vaddr); } const u8* Memory::GetPointer(Common::ProcessAddress vaddr) const { return impl->GetPointer(vaddr); } u8 Memory::Read8(const Common::ProcessAddress addr) { return impl->Read8(addr); } u16 Memory::Read16(const Common::ProcessAddress addr) { return impl->Read16(addr); } u32 Memory::Read32(const Common::ProcessAddress addr) { return impl->Read32(addr); } u64 Memory::Read64(const Common::ProcessAddress addr) { return impl->Read64(addr); } void Memory::Write8(Common::ProcessAddress addr, u8 data) { impl->Write8(addr, data); } void Memory::Write16(Common::ProcessAddress addr, u16 data) { impl->Write16(addr, data); } void Memory::Write32(Common::ProcessAddress addr, u32 data) { impl->Write32(addr, data); } void Memory::Write64(Common::ProcessAddress addr, u64 data) { impl->Write64(addr, data); } bool Memory::WriteExclusive8(Common::ProcessAddress addr, u8 data, u8 expected) { return impl->WriteExclusive8(addr, data, expected); } bool Memory::WriteExclusive16(Common::ProcessAddress addr, u16 data, u16 expected) { return impl->WriteExclusive16(addr, data, expected); } bool Memory::WriteExclusive32(Common::ProcessAddress addr, u32 data, u32 expected) { return impl->WriteExclusive32(addr, data, expected); } bool Memory::WriteExclusive64(Common::ProcessAddress addr, u64 data, u64 expected) { return impl->WriteExclusive64(addr, data, expected); } bool Memory::WriteExclusive128(Common::ProcessAddress addr, u128 data, u128 expected) { return impl->WriteExclusive128(addr, data, expected); } std::string Memory::ReadCString(Common::ProcessAddress vaddr, std::size_t max_length) { return impl->ReadCString(vaddr, max_length); } bool Memory::ReadBlock(const Common::ProcessAddress src_addr, void* dest_buffer, const std::size_t size) { return impl->ReadBlock(src_addr, dest_buffer, size); } bool Memory::ReadBlockUnsafe(const Common::ProcessAddress src_addr, void* dest_buffer, const std::size_t size) { return impl->ReadBlockUnsafe(src_addr, dest_buffer, size); } const u8* Memory::GetSpan(const VAddr src_addr, const std::size_t size) const { return impl->GetSpan(src_addr, size); } u8* Memory::GetSpan(const VAddr src_addr, const std::size_t size) { return impl->GetSpan(src_addr, size); } bool Memory::WriteBlock(const Common::ProcessAddress dest_addr, const void* src_buffer, const std::size_t size) { return impl->WriteBlock(dest_addr, src_buffer, size); } bool Memory::WriteBlockUnsafe(const Common::ProcessAddress dest_addr, const void* src_buffer, const std::size_t size) { return impl->WriteBlockUnsafe(dest_addr, src_buffer, size); } bool Memory::CopyBlock(Common::ProcessAddress dest_addr, Common::ProcessAddress src_addr, const std::size_t size) { return impl->CopyBlock(dest_addr, src_addr, size); } bool Memory::ZeroBlock(Common::ProcessAddress dest_addr, const std::size_t size) { return impl->ZeroBlock(dest_addr, size); } void Memory::SetGPUDirtyManagers(std::span managers) { impl->gpu_dirty_managers = managers; } Result Memory::InvalidateDataCache(Common::ProcessAddress dest_addr, const std::size_t size) { return impl->InvalidateDataCache(dest_addr, size); } Result Memory::StoreDataCache(Common::ProcessAddress dest_addr, const std::size_t size) { return impl->StoreDataCache(dest_addr, size); } Result Memory::FlushDataCache(Common::ProcessAddress dest_addr, const std::size_t size) { return impl->FlushDataCache(dest_addr, size); } void Memory::RasterizerMarkRegionCached(Common::ProcessAddress vaddr, u64 size, bool cached) { impl->RasterizerMarkRegionCached(GetInteger(vaddr), size, cached); } void Memory::MarkRegionDebug(Common::ProcessAddress vaddr, u64 size, bool debug) { impl->MarkRegionDebug(GetInteger(vaddr), size, debug); } bool Memory::InvalidateNCE(Common::ProcessAddress vaddr, size_t size) { [[maybe_unused]] bool mapped = true; [[maybe_unused]] bool rasterizer = false; u8* const ptr = impl->GetPointerImpl( GetInteger(vaddr), [&] { LOG_ERROR(HW_Memory, "Unmapped InvalidateNCE for {} bytes @ {:#x}", size, GetInteger(vaddr)); mapped = false; }, [&] { rasterizer = true; }); if (rasterizer) { impl->InvalidateGPUMemory(ptr, size); } #ifdef __linux__ if (!rasterizer && mapped) { impl->buffer->DeferredMapSeparateHeap(GetInteger(vaddr)); } #endif return mapped && ptr != nullptr; } bool Memory::InvalidateSeparateHeap(void* fault_address) { #ifdef __linux__ return impl->buffer->DeferredMapSeparateHeap(static_cast(fault_address)); #else return false; #endif } } // namespace Core::Memory