// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include #include #include #include #include "common/assert.h" #include "common/common_funcs.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/scratch_buffer.h" #include "core/guest_memory.h" #include "core/hle/kernel/k_auto_object.h" #include "core/hle/kernel/k_handle_table.h" #include "core/hle/kernel/k_process.h" #include "core/hle/kernel/k_server_port.h" #include "core/hle/kernel/k_server_session.h" #include "core/hle/kernel/k_thread.h" #include "core/hle/kernel/kernel.h" #include "core/hle/service/hle_ipc.h" #include "core/hle/service/ipc_helpers.h" #include "core/memory.h" namespace { static thread_local std::array read_buffer_data_a{ Common::ScratchBuffer(), Common::ScratchBuffer(), Common::ScratchBuffer(), }; static thread_local std::array read_buffer_data_x{ Common::ScratchBuffer(), Common::ScratchBuffer(), Common::ScratchBuffer(), }; } // Anonymous namespace namespace Service { SessionRequestHandler::SessionRequestHandler(Kernel::KernelCore& kernel_, const char* service_name_) : kernel{kernel_} {} SessionRequestHandler::~SessionRequestHandler() = default; SessionRequestManager::SessionRequestManager(Kernel::KernelCore& kernel_, ServerManager& server_manager_) : kernel{kernel_}, server_manager{server_manager_} {} SessionRequestManager::~SessionRequestManager() = default; bool SessionRequestManager::HasSessionRequestHandler(const HLERequestContext& context) const { if (IsDomain() && context.HasDomainMessageHeader()) { const auto& message_header = context.GetDomainMessageHeader(); const auto object_id = message_header.object_id; if (object_id > DomainHandlerCount()) { LOG_CRITICAL(IPC, "object_id {} is too big!", object_id); return false; } return !DomainHandler(object_id - 1).expired(); } else { return session_handler != nullptr; } } Result SessionRequestManager::CompleteSyncRequest(Kernel::KServerSession* server_session, HLERequestContext& context) { Result result = ResultSuccess; // If the session has been converted to a domain, handle the domain request if (this->HasSessionRequestHandler(context)) { if (IsDomain() && context.HasDomainMessageHeader()) { result = HandleDomainSyncRequest(server_session, context); // If there is no domain header, the regular session handler is used } else if (this->HasSessionHandler()) { // If this manager has an associated HLE handler, forward the request to it. result = this->SessionHandler().HandleSyncRequest(*server_session, context); } } else { ASSERT_MSG(false, "Session handler is invalid, stubbing response!"); IPC::ResponseBuilder rb(context, 2); rb.Push(ResultSuccess); } if (convert_to_domain) { ASSERT_MSG(!IsDomain(), "ServerSession is already a domain instance."); this->ConvertToDomain(); convert_to_domain = false; } return result; } Result SessionRequestManager::HandleDomainSyncRequest(Kernel::KServerSession* server_session, HLERequestContext& context) { if (!context.HasDomainMessageHeader()) { return ResultSuccess; } // Set domain handlers in HLE context, used for domain objects (IPC interfaces) as inputs ASSERT(context.GetManager().get() == this); // If there is a DomainMessageHeader, then this is CommandType "Request" const auto& domain_message_header = context.GetDomainMessageHeader(); const u32 object_id{domain_message_header.object_id}; switch (domain_message_header.command) { case IPC::DomainMessageHeader::CommandType::SendMessage: if (object_id > this->DomainHandlerCount()) { LOG_CRITICAL(IPC, "object_id {} is too big! This probably means a recent service call " "needed to return a new interface!", object_id); ASSERT(false); return ResultSuccess; // Ignore error if asserts are off } if (auto strong_ptr = this->DomainHandler(object_id - 1).lock()) { return strong_ptr->HandleSyncRequest(*server_session, context); } else { ASSERT(false); return ResultSuccess; } case IPC::DomainMessageHeader::CommandType::CloseVirtualHandle: { LOG_DEBUG(IPC, "CloseVirtualHandle, object_id=0x{:08X}", object_id); this->CloseDomainHandler(object_id - 1); IPC::ResponseBuilder rb{context, 2}; rb.Push(ResultSuccess); return ResultSuccess; } } LOG_CRITICAL(IPC, "Unknown domain command={}", domain_message_header.command.Value()); ASSERT(false); return ResultSuccess; } HLERequestContext::HLERequestContext(Kernel::KernelCore& kernel_, Core::Memory::Memory& memory_, Kernel::KServerSession* server_session_, Kernel::KThread* thread_) : server_session(server_session_), thread(thread_), kernel{kernel_}, memory{memory_} { cmd_buf[0] = 0; } HLERequestContext::~HLERequestContext() = default; void HLERequestContext::ParseCommandBuffer(u32_le* src_cmdbuf, bool incoming) { IPC::RequestParser rp(src_cmdbuf); command_header = rp.PopRaw(); if (command_header->IsCloseCommand()) { // Close does not populate the rest of the IPC header return; } // If handle descriptor is present, add size of it if (command_header->enable_handle_descriptor) { handle_descriptor_header = rp.PopRaw(); if (handle_descriptor_header->send_current_pid) { pid = thread->GetOwnerProcess()->GetProcessId(); rp.Skip(2, false); } if (incoming) { // Populate the object lists with the data in the IPC request. incoming_copy_handles.reserve(handle_descriptor_header->num_handles_to_copy); incoming_move_handles.reserve(handle_descriptor_header->num_handles_to_move); for (u32 handle = 0; handle < handle_descriptor_header->num_handles_to_copy; ++handle) { incoming_copy_handles.push_back(rp.Pop()); } for (u32 handle = 0; handle < handle_descriptor_header->num_handles_to_move; ++handle) { incoming_move_handles.push_back(rp.Pop()); } } else { // For responses we just ignore the handles, they're empty and will be populated when // translating the response. rp.Skip(handle_descriptor_header->num_handles_to_copy, false); rp.Skip(handle_descriptor_header->num_handles_to_move, false); } } buffer_x_descriptors.reserve(command_header->num_buf_x_descriptors); buffer_a_descriptors.reserve(command_header->num_buf_a_descriptors); buffer_b_descriptors.reserve(command_header->num_buf_b_descriptors); buffer_w_descriptors.reserve(command_header->num_buf_w_descriptors); for (u32 i = 0; i < command_header->num_buf_x_descriptors; ++i) { buffer_x_descriptors.push_back(rp.PopRaw()); } for (u32 i = 0; i < command_header->num_buf_a_descriptors; ++i) { buffer_a_descriptors.push_back(rp.PopRaw()); } for (u32 i = 0; i < command_header->num_buf_b_descriptors; ++i) { buffer_b_descriptors.push_back(rp.PopRaw()); } for (u32 i = 0; i < command_header->num_buf_w_descriptors; ++i) { buffer_w_descriptors.push_back(rp.PopRaw()); } const auto buffer_c_offset = rp.GetCurrentOffset() + command_header->data_size; if (!command_header->IsTipc()) { // Padding to align to 16 bytes rp.AlignWithPadding(); if (GetManager()->IsDomain() && ((command_header->type == IPC::CommandType::Request || command_header->type == IPC::CommandType::RequestWithContext) || !incoming)) { // If this is an incoming message, only CommandType "Request" has a domain header // All outgoing domain messages have the domain header, if only incoming has it if (incoming || domain_message_header) { domain_message_header = rp.PopRaw(); } else { if (GetManager()->IsDomain()) { LOG_WARNING(IPC, "Domain request has no DomainMessageHeader!"); } } } data_payload_header = rp.PopRaw(); data_payload_offset = rp.GetCurrentOffset(); if (domain_message_header && domain_message_header->command == IPC::DomainMessageHeader::CommandType::CloseVirtualHandle) { // CloseVirtualHandle command does not have SFC* or any data return; } if (incoming) { ASSERT(data_payload_header->magic == Common::MakeMagic('S', 'F', 'C', 'I')); } else { ASSERT(data_payload_header->magic == Common::MakeMagic('S', 'F', 'C', 'O')); } } rp.SetCurrentOffset(buffer_c_offset); // For Inline buffers, the response data is written directly to buffer_c_offset // and in this case we don't have any BufferDescriptorC on the request. if (command_header->buf_c_descriptor_flags > IPC::CommandHeader::BufferDescriptorCFlag::InlineDescriptor) { if (command_header->buf_c_descriptor_flags == IPC::CommandHeader::BufferDescriptorCFlag::OneDescriptor) { buffer_c_descriptors.push_back(rp.PopRaw()); } else { u32 num_buf_c_descriptors = static_cast(command_header->buf_c_descriptor_flags.Value()) - 2; // This is used to detect possible underflows, in case something is broken // with the two ifs above and the flags value is == 0 || == 1. ASSERT(num_buf_c_descriptors < 14); for (u32 i = 0; i < num_buf_c_descriptors; ++i) { buffer_c_descriptors.push_back(rp.PopRaw()); } } } rp.SetCurrentOffset(data_payload_offset); command = rp.Pop(); rp.Skip(1, false); // The command is actually an u64, but we don't use the high part. } Result HLERequestContext::PopulateFromIncomingCommandBuffer(u32_le* src_cmdbuf) { client_handle_table = &thread->GetOwnerProcess()->GetHandleTable(); ParseCommandBuffer(src_cmdbuf, true); if (command_header->IsCloseCommand()) { // Close does not populate the rest of the IPC header return ResultSuccess; } std::copy_n(src_cmdbuf, IPC::COMMAND_BUFFER_LENGTH, cmd_buf.begin()); return ResultSuccess; } Result HLERequestContext::WriteToOutgoingCommandBuffer() { auto current_offset = handles_offset; auto& owner_process = *thread->GetOwnerProcess(); auto& handle_table = owner_process.GetHandleTable(); for (auto& object : outgoing_copy_objects) { Handle handle{}; if (object) { R_TRY(handle_table.Add(&handle, object)); } cmd_buf[current_offset++] = handle; } for (auto& object : outgoing_move_objects) { Handle handle{}; if (object) { R_TRY(handle_table.Add(&handle, object)); // Close our reference to the object, as it is being moved to the caller. object->Close(); } cmd_buf[current_offset++] = handle; } // Write the domain objects to the command buffer, these go after the raw untranslated data. // TODO(Subv): This completely ignores C buffers. if (GetManager()->IsDomain()) { current_offset = domain_offset - static_cast(outgoing_domain_objects.size()); for (auto& object : outgoing_domain_objects) { GetManager()->AppendDomainHandler(std::move(object)); cmd_buf[current_offset++] = static_cast(GetManager()->DomainHandlerCount()); } } // Copy the translated command buffer back into the thread's command buffer area. memory.WriteBlock(thread->GetTlsAddress(), cmd_buf.data(), write_size * sizeof(u32)); return ResultSuccess; } std::vector HLERequestContext::ReadBufferCopy(std::size_t buffer_index) const { const bool is_buffer_a{BufferDescriptorA().size() > buffer_index && BufferDescriptorA()[buffer_index].Size()}; if (is_buffer_a) { ASSERT_OR_EXECUTE_MSG( BufferDescriptorA().size() > buffer_index, { return {}; }, "BufferDescriptorA invalid buffer_index {}", buffer_index); std::vector buffer(BufferDescriptorA()[buffer_index].Size()); memory.ReadBlock(BufferDescriptorA()[buffer_index].Address(), buffer.data(), buffer.size()); return buffer; } else { ASSERT_OR_EXECUTE_MSG( BufferDescriptorX().size() > buffer_index, { return {}; }, "BufferDescriptorX invalid buffer_index {}", buffer_index); std::vector buffer(BufferDescriptorX()[buffer_index].Size()); memory.ReadBlock(BufferDescriptorX()[buffer_index].Address(), buffer.data(), buffer.size()); return buffer; } } std::span HLERequestContext::ReadBufferA(std::size_t buffer_index) const { static thread_local std::array read_buffer_a{ Core::Memory::CpuGuestMemory(memory, 0, 0), Core::Memory::CpuGuestMemory(memory, 0, 0), Core::Memory::CpuGuestMemory(memory, 0, 0), }; ASSERT_OR_EXECUTE_MSG( BufferDescriptorA().size() > buffer_index, { return {}; }, "BufferDescriptorA invalid buffer_index {}", buffer_index); auto& read_buffer = read_buffer_a[buffer_index]; return read_buffer.Read(BufferDescriptorA()[buffer_index].Address(), BufferDescriptorA()[buffer_index].Size(), &read_buffer_data_a[buffer_index]); } std::span HLERequestContext::ReadBufferX(std::size_t buffer_index) const { static thread_local std::array read_buffer_x{ Core::Memory::CpuGuestMemory(memory, 0, 0), Core::Memory::CpuGuestMemory(memory, 0, 0), Core::Memory::CpuGuestMemory(memory, 0, 0), }; ASSERT_OR_EXECUTE_MSG( BufferDescriptorX().size() > buffer_index, { return {}; }, "BufferDescriptorX invalid buffer_index {}", buffer_index); auto& read_buffer = read_buffer_x[buffer_index]; return read_buffer.Read(BufferDescriptorX()[buffer_index].Address(), BufferDescriptorX()[buffer_index].Size(), &read_buffer_data_x[buffer_index]); } std::span HLERequestContext::ReadBuffer(std::size_t buffer_index) const { static thread_local std::array read_buffer_a{ Core::Memory::CpuGuestMemory(memory, 0, 0), Core::Memory::CpuGuestMemory(memory, 0, 0), Core::Memory::CpuGuestMemory(memory, 0, 0), }; static thread_local std::array read_buffer_x{ Core::Memory::CpuGuestMemory(memory, 0, 0), Core::Memory::CpuGuestMemory(memory, 0, 0), Core::Memory::CpuGuestMemory(memory, 0, 0), }; const bool is_buffer_a{BufferDescriptorA().size() > buffer_index && BufferDescriptorA()[buffer_index].Size()}; const bool is_buffer_x{BufferDescriptorX().size() > buffer_index && BufferDescriptorX()[buffer_index].Size()}; if (is_buffer_a && is_buffer_x) { LOG_WARNING(Input, "Both buffer descriptors are available a.size={}, x.size={}", BufferDescriptorA()[buffer_index].Size(), BufferDescriptorX()[buffer_index].Size()); } if (is_buffer_a) { ASSERT_OR_EXECUTE_MSG( BufferDescriptorA().size() > buffer_index, { return {}; }, "BufferDescriptorA invalid buffer_index {}", buffer_index); auto& read_buffer = read_buffer_a[buffer_index]; return read_buffer.Read(BufferDescriptorA()[buffer_index].Address(), BufferDescriptorA()[buffer_index].Size(), &read_buffer_data_a[buffer_index]); } else { ASSERT_OR_EXECUTE_MSG( BufferDescriptorX().size() > buffer_index, { return {}; }, "BufferDescriptorX invalid buffer_index {}", buffer_index); auto& read_buffer = read_buffer_x[buffer_index]; return read_buffer.Read(BufferDescriptorX()[buffer_index].Address(), BufferDescriptorX()[buffer_index].Size(), &read_buffer_data_x[buffer_index]); } } std::size_t HLERequestContext::WriteBuffer(const void* buffer, std::size_t size, std::size_t buffer_index) const { if (size == 0) { LOG_WARNING(Core, "skip empty buffer write"); return 0; } const bool is_buffer_b{BufferDescriptorB().size() > buffer_index && BufferDescriptorB()[buffer_index].Size()}; const std::size_t buffer_size{GetWriteBufferSize(buffer_index)}; if (size > buffer_size) { LOG_CRITICAL(Core, "size ({:016X}) is greater than buffer_size ({:016X})", size, buffer_size); size = buffer_size; // TODO(bunnei): This needs to be HW tested } if (is_buffer_b) { ASSERT_OR_EXECUTE_MSG( BufferDescriptorB().size() > buffer_index && BufferDescriptorB()[buffer_index].Size() >= size, { return 0; }, "BufferDescriptorB is invalid, index={}, size={}", buffer_index, size); WriteBufferB(buffer, size, buffer_index); } else { ASSERT_OR_EXECUTE_MSG( BufferDescriptorC().size() > buffer_index && BufferDescriptorC()[buffer_index].Size() >= size, { return 0; }, "BufferDescriptorC is invalid, index={}, size={}", buffer_index, size); WriteBufferC(buffer, size, buffer_index); } return size; } std::size_t HLERequestContext::WriteBufferB(const void* buffer, std::size_t size, std::size_t buffer_index) const { if (buffer_index >= BufferDescriptorB().size() || size == 0) { return 0; } const auto buffer_size{BufferDescriptorB()[buffer_index].Size()}; if (size > buffer_size) { LOG_CRITICAL(Core, "size ({:016X}) is greater than buffer_size ({:016X})", size, buffer_size); size = buffer_size; // TODO(bunnei): This needs to be HW tested } memory.WriteBlock(BufferDescriptorB()[buffer_index].Address(), buffer, size); return size; } std::size_t HLERequestContext::WriteBufferC(const void* buffer, std::size_t size, std::size_t buffer_index) const { if (buffer_index >= BufferDescriptorC().size() || size == 0) { return 0; } const auto buffer_size{BufferDescriptorC()[buffer_index].Size()}; if (size > buffer_size) { LOG_CRITICAL(Core, "size ({:016X}) is greater than buffer_size ({:016X})", size, buffer_size); size = buffer_size; // TODO(bunnei): This needs to be HW tested } memory.WriteBlock(BufferDescriptorC()[buffer_index].Address(), buffer, size); return size; } std::size_t HLERequestContext::GetReadBufferSize(std::size_t buffer_index) const { const bool is_buffer_a{BufferDescriptorA().size() > buffer_index && BufferDescriptorA()[buffer_index].Size()}; if (is_buffer_a) { ASSERT_OR_EXECUTE_MSG( BufferDescriptorA().size() > buffer_index, { return 0; }, "BufferDescriptorA invalid buffer_index {}", buffer_index); return BufferDescriptorA()[buffer_index].Size(); } else { ASSERT_OR_EXECUTE_MSG( BufferDescriptorX().size() > buffer_index, { return 0; }, "BufferDescriptorX invalid buffer_index {}", buffer_index); return BufferDescriptorX()[buffer_index].Size(); } } std::size_t HLERequestContext::GetWriteBufferSize(std::size_t buffer_index) const { const bool is_buffer_b{BufferDescriptorB().size() > buffer_index && BufferDescriptorB()[buffer_index].Size()}; if (is_buffer_b) { ASSERT_OR_EXECUTE_MSG( BufferDescriptorB().size() > buffer_index, { return 0; }, "BufferDescriptorB invalid buffer_index {}", buffer_index); return BufferDescriptorB()[buffer_index].Size(); } else { ASSERT_OR_EXECUTE_MSG( BufferDescriptorC().size() > buffer_index, { return 0; }, "BufferDescriptorC invalid buffer_index {}", buffer_index); return BufferDescriptorC()[buffer_index].Size(); } return 0; } bool HLERequestContext::CanReadBuffer(std::size_t buffer_index) const { const bool is_buffer_a{BufferDescriptorA().size() > buffer_index && BufferDescriptorA()[buffer_index].Size()}; if (is_buffer_a) { return BufferDescriptorA().size() > buffer_index; } else { return BufferDescriptorX().size() > buffer_index; } } bool HLERequestContext::CanWriteBuffer(std::size_t buffer_index) const { const bool is_buffer_b{BufferDescriptorB().size() > buffer_index && BufferDescriptorB()[buffer_index].Size()}; if (is_buffer_b) { return BufferDescriptorB().size() > buffer_index; } else { return BufferDescriptorC().size() > buffer_index; } } std::string HLERequestContext::Description() const { if (!command_header) { return "No command header available"; } std::ostringstream s; s << "IPC::CommandHeader: Type:" << static_cast(command_header->type.Value()); s << ", X(Pointer):" << command_header->num_buf_x_descriptors; if (command_header->num_buf_x_descriptors) { s << '['; for (u64 i = 0; i < command_header->num_buf_x_descriptors; ++i) { s << "0x" << std::hex << BufferDescriptorX()[i].Size(); if (i < command_header->num_buf_x_descriptors - 1) s << ", "; } s << ']'; } s << ", A(Send):" << command_header->num_buf_a_descriptors; if (command_header->num_buf_a_descriptors) { s << '['; for (u64 i = 0; i < command_header->num_buf_a_descriptors; ++i) { s << "0x" << std::hex << BufferDescriptorA()[i].Size(); if (i < command_header->num_buf_a_descriptors - 1) s << ", "; } s << ']'; } s << ", B(Receive):" << command_header->num_buf_b_descriptors; if (command_header->num_buf_b_descriptors) { s << '['; for (u64 i = 0; i < command_header->num_buf_b_descriptors; ++i) { s << "0x" << std::hex << BufferDescriptorB()[i].Size(); if (i < command_header->num_buf_b_descriptors - 1) s << ", "; } s << ']'; } s << ", C(ReceiveList):" << BufferDescriptorC().size(); if (!BufferDescriptorC().empty()) { s << '['; for (u64 i = 0; i < BufferDescriptorC().size(); ++i) { s << "0x" << std::hex << BufferDescriptorC()[i].Size(); if (i < BufferDescriptorC().size() - 1) s << ", "; } s << ']'; } s << ", data_size:" << command_header->data_size.Value(); return s.str(); } } // namespace Service