early-access version 1843

This commit is contained in:
pineappleEA 2021-07-04 23:34:44 +02:00
parent 9e85972340
commit f97ec12f78
24 changed files with 739 additions and 166 deletions

View file

@ -1,7 +1,7 @@
yuzu emulator early access
=============
This is the source code for early-access 1842.
This is the source code for early-access 1843.
## Legal Notice

View file

@ -41,7 +41,6 @@ void InstallInterfaces(SM::ServiceManager& service_manager, NVFlinger::NVFlinger
Module::Module(Core::System& system)
: syncpoint_manager{system.GPU()}, service_context{system, "nvdrv"} {
auto& kernel = system.Kernel();
for (u32 i = 0; i < MaxNvEvents; i++) {
events_interface.events[i].event =
service_context.CreateEvent(fmt::format("NVDRV::NvEvent_{}", i));

View file

@ -536,7 +536,7 @@ TEST_CASE("BufferBase: Cached write downloads") {
REQUIRE(rasterizer.Count() == 63);
buffer.MarkRegionAsGpuModified(c + PAGE, PAGE);
int num = 0;
buffer.ForEachDownloadRange(c, WORD, [&](u64 offset, u64 size) { ++num; });
buffer.ForEachDownloadRange(c, WORD, true, [&](u64 offset, u64 size) { ++num; });
buffer.ForEachUploadRange(c, WORD, [&](u64 offset, u64 size) { ++num; });
REQUIRE(num == 0);
REQUIRE(!buffer.IsRegionCpuModified(c + PAGE, PAGE));

View file

@ -226,19 +226,19 @@ public:
/// Call 'func' for each CPU modified range and unmark those pages as CPU modified
template <typename Func>
void ForEachUploadRange(VAddr query_cpu_range, u64 size, Func&& func) {
ForEachModifiedRange<Type::CPU>(query_cpu_range, size, func);
ForEachModifiedRange<Type::CPU>(query_cpu_range, size, true, func);
}
/// Call 'func' for each GPU modified range and unmark those pages as GPU modified
template <typename Func>
void ForEachDownloadRange(VAddr query_cpu_range, u64 size, Func&& func) {
ForEachModifiedRange<Type::GPU>(query_cpu_range, size, func);
void ForEachDownloadRange(VAddr query_cpu_range, u64 size, bool clear, Func&& func) {
ForEachModifiedRange<Type::GPU>(query_cpu_range, size, clear, func);
}
/// Call 'func' for each GPU modified range and unmark those pages as GPU modified
template <typename Func>
void ForEachDownloadRange(Func&& func) {
ForEachModifiedRange<Type::GPU>(cpu_addr, SizeBytes(), func);
ForEachModifiedRange<Type::GPU>(cpu_addr, SizeBytes(), true, func);
}
/// Mark buffer as picked
@ -415,7 +415,7 @@ private:
* @param func Function to call for each turned off region
*/
template <Type type, typename Func>
void ForEachModifiedRange(VAddr query_cpu_range, s64 size, Func&& func) {
void ForEachModifiedRange(VAddr query_cpu_range, s64 size, bool clear, Func&& func) {
static_assert(type != Type::Untracked);
const s64 difference = query_cpu_range - cpu_addr;
@ -467,7 +467,9 @@ private:
bits = (bits << left_offset) >> left_offset;
const u64 current_word = state_words[word_index] & bits;
if (clear) {
state_words[word_index] &= ~bits;
}
if constexpr (type == Type::CPU) {
const u64 current_bits = untracked_words[word_index] & bits;

View file

@ -15,6 +15,7 @@
#include <vector>
#include <boost/container/small_vector.hpp>
#include <boost/icl/interval_set.hpp>
#include "common/common_types.h"
#include "common/div_ceil.h"
@ -77,6 +78,9 @@ class BufferCache {
using Runtime = typename P::Runtime;
using Buffer = typename P::Buffer;
using IntervalSet = boost::icl::interval_set<VAddr>;
using IntervalType = typename IntervalSet::interval_type;
struct Empty {};
struct OverlapResult {
@ -153,6 +157,7 @@ public:
/// Commit asynchronous downloads
void CommitAsyncFlushes();
void CommitAsyncFlushesHigh();
/// Pop asynchronous downloads
void PopAsyncFlushes();
@ -160,6 +165,9 @@ public:
/// Return true when a CPU region is modified from the GPU
[[nodiscard]] bool IsRegionGpuModified(VAddr addr, size_t size);
/// Return true when a CPU region is modified from the GPU
[[nodiscard]] bool IsRegionCpuModified(VAddr addr, size_t size);
std::mutex mutex;
private:
@ -272,8 +280,6 @@ private:
void DeleteBuffer(BufferId buffer_id);
void ReplaceBufferDownloads(BufferId old_buffer_id, BufferId new_buffer_id);
void NotifyBufferDeletion();
[[nodiscard]] Binding StorageBufferBinding(GPUVAddr ssbo_addr) const;
@ -327,9 +333,7 @@ private:
std::vector<BufferId> cached_write_buffer_ids;
// TODO: This data structure is not optimal and it should be reworked
std::vector<BufferId> uncommitted_downloads;
std::deque<std::vector<BufferId>> committed_downloads;
IntervalSet uncommitted_ranges;
size_t immediate_buffer_capacity = 0;
std::unique_ptr<u8[]> immediate_buffer_alloc;
@ -547,29 +551,18 @@ void BufferCache<P>::FlushCachedWrites() {
template <class P>
bool BufferCache<P>::HasUncommittedFlushes() const noexcept {
return !uncommitted_downloads.empty();
return !uncommitted_ranges.empty();
}
template <class P>
bool BufferCache<P>::ShouldWaitAsyncFlushes() const noexcept {
return !committed_downloads.empty() && !committed_downloads.front().empty();
return false;
}
template <class P>
void BufferCache<P>::CommitAsyncFlushes() {
// This is intentionally passing the value by copy
committed_downloads.push_front(uncommitted_downloads);
uncommitted_downloads.clear();
}
template <class P>
void BufferCache<P>::PopAsyncFlushes() {
if (committed_downloads.empty()) {
return;
}
auto scope_exit_pop_download = detail::ScopeExit([this] { committed_downloads.pop_back(); });
const std::span<const BufferId> download_ids = committed_downloads.back();
if (download_ids.empty()) {
void BufferCache<P>::CommitAsyncFlushesHigh() {
const IntervalSet& intervals = uncommitted_ranges;
if (intervals.empty()) {
return;
}
MICROPROFILE_SCOPE(GPU_DownloadMemory);
@ -577,18 +570,35 @@ void BufferCache<P>::PopAsyncFlushes() {
boost::container::small_vector<std::pair<BufferCopy, BufferId>, 1> downloads;
u64 total_size_bytes = 0;
u64 largest_copy = 0;
for (const BufferId buffer_id : download_ids) {
slot_buffers[buffer_id].ForEachDownloadRange([&](u64 range_offset, u64 range_size) {
for (auto& interval : intervals) {
const std::size_t size = interval.upper() - interval.lower();
const VAddr cpu_addr = interval.lower();
const VAddr cpu_addr_end = interval.upper();
ForEachBufferInRange(cpu_addr, size, [&](BufferId buffer_id, Buffer& buffer) {
boost::container::small_vector<BufferCopy, 1> copies;
buffer.ForEachDownloadRange(
cpu_addr, size, false, [&](u64 range_offset, u64 range_size) {
VAddr cpu_addr_base = buffer.CpuAddr() + range_offset;
VAddr cpu_addr_end2 = cpu_addr_base + range_size;
const s64 difference = s64(cpu_addr_end2 - cpu_addr_end);
cpu_addr_end2 -= u64(std::max<s64>(difference, 0));
const s64 difference2 = s64(cpu_addr - cpu_addr_base);
cpu_addr_base += u64(std::max<s64>(difference2, 0));
const u64 new_size = cpu_addr_end2 - cpu_addr_base;
const u64 new_offset = cpu_addr_base - buffer.CpuAddr();
ASSERT(!IsRegionCpuModified(cpu_addr_base, new_size));
downloads.push_back({
BufferCopy{
.src_offset = range_offset,
.src_offset = new_offset,
.dst_offset = total_size_bytes,
.size = range_size,
.size = new_size,
},
buffer_id,
});
total_size_bytes += range_size;
largest_copy = std::max(largest_copy, range_size);
total_size_bytes += new_size;
buffer.UnmarkRegionAsGpuModified(cpu_addr_base, new_size);
largest_copy = std::max(largest_copy, new_size);
});
});
}
if (downloads.empty()) {
@ -622,6 +632,18 @@ void BufferCache<P>::PopAsyncFlushes() {
}
}
template <class P>
void BufferCache<P>::CommitAsyncFlushes() {
if (Settings::values.gpu_accuracy.GetValue() == Settings::GPUAccuracy::High) {
CommitAsyncFlushesHigh();
} else {
uncommitted_ranges.clear();
}
}
template <class P>
void BufferCache<P>::PopAsyncFlushes() {}
template <class P>
bool BufferCache<P>::IsRegionGpuModified(VAddr addr, size_t size) {
const u64 page_end = Common::DivCeil(addr + size, PAGE_SIZE);
@ -641,6 +663,25 @@ bool BufferCache<P>::IsRegionGpuModified(VAddr addr, size_t size) {
return false;
}
template <class P>
bool BufferCache<P>::IsRegionCpuModified(VAddr addr, size_t size) {
const u64 page_end = Common::DivCeil(addr + size, PAGE_SIZE);
for (u64 page = addr >> PAGE_BITS; page < page_end;) {
const BufferId image_id = page_table[page];
if (!image_id) {
++page;
continue;
}
Buffer& buffer = slot_buffers[image_id];
if (buffer.IsRegionCpuModified(addr, size)) {
return true;
}
const VAddr end_addr = buffer.CpuAddr() + buffer.SizeBytes();
page = Common::DivCeil(end_addr, PAGE_SIZE);
}
return false;
}
template <class P>
void BufferCache<P>::BindHostIndexBuffer() {
Buffer& buffer = slot_buffers[index_buffer.buffer_id];
@ -1010,16 +1051,14 @@ void BufferCache<P>::MarkWrittenBuffer(BufferId buffer_id, VAddr cpu_addr, u32 s
Buffer& buffer = slot_buffers[buffer_id];
buffer.MarkRegionAsGpuModified(cpu_addr, size);
const bool is_accuracy_high = Settings::IsGPULevelHigh();
const bool is_accuracy_high =
Settings::values.gpu_accuracy.GetValue() == Settings::GPUAccuracy::High;
const bool is_async = Settings::values.use_asynchronous_gpu_emulation.GetValue();
if (!is_accuracy_high || !is_async) {
if (!is_async && !is_accuracy_high) {
return;
}
if (std::ranges::find(uncommitted_downloads, buffer_id) != uncommitted_downloads.end()) {
// Already inserted
return;
}
uncommitted_downloads.push_back(buffer_id);
const IntervalType base_interval{cpu_addr, cpu_addr + size};
uncommitted_ranges.add(base_interval);
}
template <class P>
@ -1103,7 +1142,6 @@ void BufferCache<P>::JoinOverlap(BufferId new_buffer_id, BufferId overlap_id,
if (!copies.empty()) {
runtime.CopyBuffer(slot_buffers[new_buffer_id], overlap, copies);
}
ReplaceBufferDownloads(overlap_id, new_buffer_id);
DeleteBuffer(overlap_id);
}
@ -1244,7 +1282,7 @@ void BufferCache<P>::DownloadBufferMemory(Buffer& buffer, VAddr cpu_addr, u64 si
boost::container::small_vector<BufferCopy, 1> copies;
u64 total_size_bytes = 0;
u64 largest_copy = 0;
buffer.ForEachDownloadRange(cpu_addr, size, [&](u64 range_offset, u64 range_size) {
buffer.ForEachDownloadRange(cpu_addr, size, true, [&](u64 range_offset, u64 range_size) {
copies.push_back(BufferCopy{
.src_offset = range_offset,
.dst_offset = total_size_bytes,
@ -1315,18 +1353,6 @@ void BufferCache<P>::DeleteBuffer(BufferId buffer_id) {
NotifyBufferDeletion();
}
template <class P>
void BufferCache<P>::ReplaceBufferDownloads(BufferId old_buffer_id, BufferId new_buffer_id) {
const auto replace = [old_buffer_id, new_buffer_id](std::vector<BufferId>& buffers) {
std::ranges::replace(buffers, old_buffer_id, new_buffer_id);
if (auto it = std::ranges::find(buffers, new_buffer_id); it != buffers.end()) {
buffers.erase(std::remove(it + 1, buffers.end(), new_buffer_id), buffers.end());
}
};
replace(uncommitted_downloads);
std::ranges::for_each(committed_downloads, replace);
}
template <class P>
void BufferCache<P>::NotifyBufferDeletion() {
if constexpr (HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS) {

View file

@ -65,19 +65,20 @@ void Fermi2D::Blit() {
.src_x1 = static_cast<s32>((args.du_dx * args.dst_width + args.src_x0) >> 32),
.src_y1 = static_cast<s32>((args.dv_dy * args.dst_height + args.src_y0) >> 32),
};
Surface src = regs.src;
s32 src_address_offset = 0;
const auto bytes_per_pixel = BytesPerBlock(PixelFormatFromRenderTargetFormat(src.format));
if (src.linear == Tegra::Engines::Fermi2D::MemoryLayout::Pitch && src.width == config.src_x1 &&
config.src_x1 > static_cast<s32>(src.pitch / bytes_per_pixel) && config.src_x0 > 0) {
src_address_offset = config.src_x0 * bytes_per_pixel;
const auto is_copy_out_of_bound =
src.linear == Tegra::Engines::Fermi2D::MemoryLayout::Pitch && src.width == config.src_x1 &&
config.src_x1 > static_cast<s32>(src.pitch / bytes_per_pixel) && config.src_x0 > 0;
if (is_copy_out_of_bound) {
auto address = src.Address() + config.src_x0 * bytes_per_pixel;
src.addr_upper = static_cast<u32>(address >> 32);
src.addr_lower = static_cast<u32>(address);
src.width -= config.src_x0;
config.src_x1 -= config.src_x0;
config.src_x0 = 0;
}
if (!rasterizer->AccelerateSurfaceCopy(src, src_address_offset, regs.dst, config)) {
if (!rasterizer->AccelerateSurfaceCopy(src, regs.dst, config)) {
UNIMPLEMENTED();
}
}

View file

@ -96,6 +96,23 @@ public:
}
}
void TryReleasePendingFences() {
while (!fences.empty()) {
TFence& current_fence = fences.front();
if (ShouldWait() && !IsFenceSignaled(current_fence)) {
return;
}
PopAsyncFlushes();
if (current_fence->IsSemaphore()) {
gpu_memory.template Write<u32>(current_fence->GetAddress(),
current_fence->GetPayload());
} else {
gpu.IncrementSyncPoint(current_fence->GetPayload());
}
PopFence();
}
}
protected:
explicit FenceManager(VideoCore::RasterizerInterface& rasterizer_, Tegra::GPU& gpu_,
TTextureCache& texture_cache_, TTBufferCache& buffer_cache_,
@ -125,23 +142,6 @@ protected:
TQueryCache& query_cache;
private:
void TryReleasePendingFences() {
while (!fences.empty()) {
TFence& current_fence = fences.front();
if (ShouldWait() && !IsFenceSignaled(current_fence)) {
return;
}
PopAsyncFlushes();
if (current_fence->IsSemaphore()) {
gpu_memory.template Write<u32>(current_fence->GetAddress(),
current_fence->GetPayload());
} else {
gpu.IncrementSyncPoint(current_fence->GetPayload());
}
PopFence();
}
}
bool ShouldWait() const {
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
return texture_cache.ShouldWaitAsyncFlushes() || buffer_cache.ShouldWaitAsyncFlushes() ||

View file

@ -8,6 +8,7 @@
#include "common/settings.h"
#include "common/thread.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/frontend/emu_window.h"
#include "video_core/dma_pusher.h"
#include "video_core/gpu.h"
@ -83,6 +84,17 @@ void ThreadManager::StartThread(VideoCore::RendererBase& renderer,
rasterizer = renderer.ReadRasterizer();
thread = std::thread(RunThread, std::ref(system), std::ref(renderer), std::ref(context),
std::ref(dma_pusher), std::ref(state));
gpu_sync_event = Core::Timing::CreateEvent(
"GPUHostSyncCallback", [this](std::uintptr_t, std::chrono::nanoseconds) {
if (!state.is_running) {
return;
}
OnCommandListEnd();
const auto time_interval = std::chrono::nanoseconds{500 * 1000};
system.CoreTiming().ScheduleEvent(time_interval, gpu_sync_event);
});
system.CoreTiming().ScheduleEvent(std::chrono::nanoseconds{500 * 1000}, gpu_sync_event);
}
void ThreadManager::SubmitList(Tegra::CommandList&& entries) {
@ -128,6 +140,9 @@ void ThreadManager::ShutDown() {
state.cv.notify_all();
}
system.CoreTiming().UnscheduleEvent(gpu_sync_event, 0);
system.CoreTiming().RemoveEvent(gpu_sync_event);
if (!thread.joinable()) {
return;
}

View file

@ -20,6 +20,10 @@ class DmaPusher;
} // namespace Tegra
namespace Core {
namespace Timing {
class CoreTiming;
struct EventType;
} // namespace Timing
namespace Frontend {
class GraphicsContext;
}
@ -150,6 +154,7 @@ private:
SynchState state;
std::thread thread;
std::shared_ptr<Core::Timing::EventType> gpu_sync_event;
};
} // namespace VideoCommon::GPUThread

View file

@ -69,11 +69,16 @@ void MemoryManager::Unmap(GPUVAddr gpu_addr, std::size_t size) {
} else {
UNREACHABLE_MSG("Unmapping non-existent GPU address=0x{:x}", gpu_addr);
}
const auto submapped_ranges = GetSubmappedRange(gpu_addr, size);
for (const auto& map : submapped_ranges) {
// Flush and invalidate through the GPU interface, to be asynchronous if possible.
const std::optional<VAddr> cpu_addr = GpuToCpuAddress(gpu_addr);
const std::optional<VAddr> cpu_addr = GpuToCpuAddress(map.first);
ASSERT(cpu_addr);
rasterizer->UnmapMemory(*cpu_addr, size);
rasterizer->UnmapMemory(*cpu_addr, map.second);
}
UpdateRange(gpu_addr, PageEntry::State::Unmapped, size);
}
@ -146,8 +151,14 @@ void MemoryManager::SetPageEntry(GPUVAddr gpu_addr, PageEntry page_entry, std::s
//// Lock the new page
// TryLockPage(page_entry, size);
auto& current_page = page_table[PageEntryIndex(gpu_addr)];
page_table[PageEntryIndex(gpu_addr)] = page_entry;
if ((!current_page.IsValid() && page_entry.IsValid()) ||
current_page.ToAddress() != page_entry.ToAddress()) {
rasterizer->ModifyGPUMemory(gpu_addr, size);
}
current_page = page_entry;
}
std::optional<GPUVAddr> MemoryManager::FindFreeRange(std::size_t size, std::size_t align,
@ -193,6 +204,19 @@ std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) const {
return page_entry.ToAddress() + (gpu_addr & page_mask);
}
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr addr, std::size_t size) const {
size_t page_index{addr >> page_bits};
const size_t page_last{(addr + size + page_size - 1) >> page_bits};
while (page_index < page_last) {
const auto page_addr{GpuToCpuAddress(page_index << page_bits)};
if (page_addr && *page_addr != 0) {
return page_addr;
}
++page_index;
}
return std::nullopt;
}
template <typename T>
T MemoryManager::Read(GPUVAddr addr) const {
if (auto page_pointer{GetPointer(addr)}; page_pointer) {
@ -389,4 +413,79 @@ bool MemoryManager::IsGranularRange(GPUVAddr gpu_addr, std::size_t size) const {
return page <= Core::Memory::PAGE_SIZE;
}
bool MemoryManager::IsContinousRange(GPUVAddr gpu_addr, std::size_t size) const {
size_t page_index{gpu_addr >> page_bits};
const size_t page_last{(gpu_addr + size + page_size - 1) >> page_bits};
std::optional<VAddr> old_page_addr{};
while (page_index != page_last) {
const auto page_addr{GpuToCpuAddress(page_index << page_bits)};
if (!page_addr || *page_addr == 0) {
return false;
}
if (old_page_addr) {
if (*old_page_addr + page_size != *page_addr) {
return false;
}
}
old_page_addr = page_addr;
++page_index;
}
return true;
}
bool MemoryManager::IsFullyMappedRange(GPUVAddr gpu_addr, std::size_t size) const {
size_t page_index{gpu_addr >> page_bits};
const size_t page_last{(gpu_addr + size + page_size - 1) >> page_bits};
while (page_index < page_last) {
if (!page_table[page_index].IsValid() || page_table[page_index].ToAddress() == 0) {
return false;
}
++page_index;
}
return true;
}
std::vector<std::pair<GPUVAddr, std::size_t>> MemoryManager::GetSubmappedRange(
GPUVAddr gpu_addr, std::size_t size) const {
std::vector<std::pair<GPUVAddr, std::size_t>> result{};
size_t page_index{gpu_addr >> page_bits};
size_t remaining_size{size};
size_t page_offset{gpu_addr & page_mask};
std::optional<std::pair<GPUVAddr, std::size_t>> last_segment{};
std::optional<VAddr> old_page_addr{};
const auto extend_size = [this, &last_segment, &page_index](std::size_t bytes) {
if (!last_segment) {
GPUVAddr new_base_addr = page_index << page_bits;
last_segment = {new_base_addr, bytes};
} else {
last_segment->second += bytes;
}
};
const auto split = [this, &last_segment, &result] {
if (last_segment) {
result.push_back(*last_segment);
last_segment = std::nullopt;
}
};
while (remaining_size > 0) {
const size_t num_bytes{std::min(page_size - page_offset, remaining_size)};
const auto page_addr{GpuToCpuAddress(page_index << page_bits)};
if (!page_addr) {
split();
} else if (old_page_addr) {
if (*old_page_addr + page_size != *page_addr) {
split();
}
extend_size(num_bytes);
} else {
extend_size(num_bytes);
}
++page_index;
page_offset = 0;
remaining_size -= num_bytes;
}
split();
return result;
}
} // namespace Tegra

View file

@ -76,6 +76,8 @@ public:
[[nodiscard]] std::optional<VAddr> GpuToCpuAddress(GPUVAddr addr) const;
[[nodiscard]] std::optional<VAddr> GpuToCpuAddress(GPUVAddr addr, std::size_t size) const;
template <typename T>
[[nodiscard]] T Read(GPUVAddr addr) const;
@ -112,10 +114,28 @@ public:
void WriteBlockUnsafe(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size);
/**
* IsGranularRange checks if a gpu region can be simply read with a pointer.
* Checks if a gpu region can be simply read with a pointer.
*/
[[nodiscard]] bool IsGranularRange(GPUVAddr gpu_addr, std::size_t size) const;
/**
* Checks if a gpu region is mapped by a single range of cpu addresses.
*/
[[nodiscard]] bool IsContinousRange(GPUVAddr gpu_addr, std::size_t size) const;
/**
* Checks if a gpu region is mapped entirely.
*/
[[nodiscard]] bool IsFullyMappedRange(GPUVAddr gpu_addr, std::size_t size) const;
/**
* Returns a vector with all the subranges of cpu addresses mapped beneath.
* if the region is continous, a single pair will be returned. If it's unmapped, an empty vector
* will be returned;
*/
std::vector<std::pair<GPUVAddr, std::size_t>> GetSubmappedRange(GPUVAddr gpu_addr,
std::size_t size) const;
[[nodiscard]] GPUVAddr Map(VAddr cpu_addr, GPUVAddr gpu_addr, std::size_t size);
[[nodiscard]] GPUVAddr MapAllocate(VAddr cpu_addr, std::size_t size, std::size_t align);
[[nodiscard]] GPUVAddr MapAllocate32(VAddr cpu_addr, std::size_t size);

View file

@ -93,6 +93,9 @@ public:
/// Unmap memory range
virtual void UnmapMemory(VAddr addr, u64 size) = 0;
/// Remap GPU memory range. This means underneath backing memory changed
virtual void ModifyGPUMemory(GPUVAddr addr, u64 size) = 0;
/// Notify rasterizer that any caches of the specified region should be flushed to Switch memory
/// and invalidated
virtual void FlushAndInvalidateRegion(VAddr addr, u64 size) = 0;
@ -114,8 +117,7 @@ public:
/// Attempt to use a faster method to perform a surface copy
[[nodiscard]] virtual bool AccelerateSurfaceCopy(
const Tegra::Engines::Fermi2D::Surface& src, s32 src_address_offset,
const Tegra::Engines::Fermi2D::Surface& dst,
const Tegra::Engines::Fermi2D::Surface& src, const Tegra::Engines::Fermi2D::Surface& dst,
const Tegra::Engines::Fermi2D::Config& copy_config) {
return false;
}

View file

@ -631,6 +631,13 @@ void RasterizerOpenGL::UnmapMemory(VAddr addr, u64 size) {
shader_cache.OnCPUWrite(addr, size);
}
void RasterizerOpenGL::ModifyGPUMemory(GPUVAddr addr, u64 size) {
{
std::scoped_lock lock{texture_cache.mutex};
texture_cache.UnmapGPUMemory(addr, size);
}
}
void RasterizerOpenGL::SignalSemaphore(GPUVAddr addr, u32 value) {
if (!gpu.IsAsync()) {
gpu_memory.Write<u32>(addr, value);
@ -698,12 +705,11 @@ void RasterizerOpenGL::TickFrame() {
}
bool RasterizerOpenGL::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Surface& src,
s32 src_address_offset,
const Tegra::Engines::Fermi2D::Surface& dst,
const Tegra::Engines::Fermi2D::Config& copy_config) {
MICROPROFILE_SCOPE(OpenGL_Blits);
std::scoped_lock lock{texture_cache.mutex};
texture_cache.BlitImage(dst, src, src_address_offset, copy_config);
texture_cache.BlitImage(dst, src, copy_config);
return true;
}

View file

@ -82,6 +82,7 @@ public:
void OnCPUWrite(VAddr addr, u64 size) override;
void SyncGuestHost() override;
void UnmapMemory(VAddr addr, u64 size) override;
void ModifyGPUMemory(GPUVAddr addr, u64 size) override;
void SignalSemaphore(GPUVAddr addr, u32 value) override;
void SignalSyncPoint(u32 value) override;
void ReleaseFences() override;
@ -91,7 +92,7 @@ public:
void TiledCacheBarrier() override;
void FlushCommands() override;
void TickFrame() override;
bool AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Surface& src, s32 src_address_offset,
bool AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Surface& src,
const Tegra::Engines::Fermi2D::Surface& dst,
const Tegra::Engines::Fermi2D::Config& copy_config) override;
bool AccelerateDisplay(const Tegra::FramebufferConfig& config, VAddr framebuffer_addr,

View file

@ -34,6 +34,10 @@ bool InnerFence::IsSignaled() const {
if (is_stubbed) {
return true;
}
if (scheduler.IsFree(wait_tick)) {
return true;
}
scheduler.Refresh();
return scheduler.IsFree(wait_tick);
}

View file

@ -577,6 +577,13 @@ void RasterizerVulkan::UnmapMemory(VAddr addr, u64 size) {
pipeline_cache.OnCPUWrite(addr, size);
}
void RasterizerVulkan::ModifyGPUMemory(GPUVAddr addr, u64 size) {
{
std::scoped_lock lock{texture_cache.mutex};
texture_cache.UnmapGPUMemory(addr, size);
}
}
void RasterizerVulkan::SignalSemaphore(GPUVAddr addr, u32 value) {
if (!gpu.IsAsync()) {
gpu_memory.Write<u32>(addr, value);
@ -597,7 +604,7 @@ void RasterizerVulkan::ReleaseFences() {
if (!gpu.IsAsync()) {
return;
}
fence_manager.WaitPendingFences();
fence_manager.TryReleasePendingFences();
}
void RasterizerVulkan::FlushAndInvalidateRegion(VAddr addr, u64 size) {
@ -658,11 +665,10 @@ void RasterizerVulkan::TickFrame() {
}
bool RasterizerVulkan::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Surface& src,
s32 src_address_offset,
const Tegra::Engines::Fermi2D::Surface& dst,
const Tegra::Engines::Fermi2D::Config& copy_config) {
std::scoped_lock lock{texture_cache.mutex};
texture_cache.BlitImage(dst, src, src_address_offset, copy_config);
texture_cache.BlitImage(dst, src, copy_config);
return true;
}

View file

@ -74,6 +74,7 @@ public:
void OnCPUWrite(VAddr addr, u64 size) override;
void SyncGuestHost() override;
void UnmapMemory(VAddr addr, u64 size) override;
void ModifyGPUMemory(GPUVAddr addr, u64 size) override;
void SignalSemaphore(GPUVAddr addr, u32 value) override;
void SignalSyncPoint(u32 value) override;
void ReleaseFences() override;
@ -83,7 +84,7 @@ public:
void TiledCacheBarrier() override;
void FlushCommands() override;
void TickFrame() override;
bool AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Surface& src, s32 src_address_offset,
bool AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Surface& src,
const Tegra::Engines::Fermi2D::Surface& dst,
const Tegra::Engines::Fermi2D::Config& copy_config) override;
bool AccelerateDisplay(const Tegra::FramebufferConfig& config, VAddr framebuffer_addr,

View file

@ -83,6 +83,10 @@ public:
return master_semaphore->IsFree(tick);
}
void Refresh() const noexcept {
return master_semaphore->Refresh();
}
/// Waits for the given tick to trigger on the GPU.
void Wait(u64 tick) {
master_semaphore->Wait(tick);

View file

@ -69,6 +69,9 @@ ImageBase::ImageBase(const ImageInfo& info_, GPUVAddr gpu_addr_, VAddr cpu_addr_
}
}
ImageMapView::ImageMapView(GPUVAddr gpu_addr_, VAddr cpu_addr_, size_t size_, ImageId image_id_)
: gpu_addr{gpu_addr_}, cpu_addr{cpu_addr_}, size{size_}, image_id{image_id_} {}
std::optional<SubresourceBase> ImageBase::TryFindBase(GPUVAddr other_addr) const noexcept {
if (other_addr < gpu_addr) {
// Subresource address can't be lower than the base

View file

@ -25,11 +25,13 @@ enum class ImageFlagBits : u32 {
Strong = 1 << 5, ///< Exists in the image table, the dimensions are can be trusted
Registered = 1 << 6, ///< True when the image is registered
Picked = 1 << 7, ///< Temporary flag to mark the image as picked
Remapped = 1 << 8, ///< Image has been remapped.
Sparse = 1 << 9, ///< Image has non continous submemory.
// Garbage Collection Flags
BadOverlap = 1 << 8, ///< This image overlaps other but doesn't fit, has higher
BadOverlap = 1 << 10, ///< This image overlaps other but doesn't fit, has higher
///< garbage collection priority
Alias = 1 << 9, ///< This image has aliases and has priority on garbage
Alias = 1 << 11, ///< This image has aliases and has priority on garbage
///< collection
};
DECLARE_ENUM_FLAG_OPERATORS(ImageFlagBits)
@ -57,6 +59,12 @@ struct ImageBase {
return cpu_addr < overlap_end && overlap_cpu_addr < cpu_addr_end;
}
[[nodiscard]] bool OverlapsGPU(GPUVAddr overlap_gpu_addr, size_t overlap_size) const noexcept {
const VAddr overlap_end = overlap_gpu_addr + overlap_size;
const GPUVAddr gpu_addr_end = gpu_addr + guest_size_bytes;
return gpu_addr < overlap_end && overlap_gpu_addr < gpu_addr_end;
}
void CheckBadOverlapState();
void CheckAliasState();
@ -84,6 +92,29 @@ struct ImageBase {
std::vector<AliasedImage> aliased_images;
std::vector<ImageId> overlapping_images;
ImageMapId map_view_id{};
};
struct ImageMapView {
explicit ImageMapView(GPUVAddr gpu_addr, VAddr cpu_addr, size_t size, ImageId image_id);
[[nodiscard]] bool Overlaps(VAddr overlap_cpu_addr, size_t overlap_size) const noexcept {
const VAddr overlap_end = overlap_cpu_addr + overlap_size;
const VAddr cpu_addr_end = cpu_addr + size;
return cpu_addr < overlap_end && overlap_cpu_addr < cpu_addr_end;
}
[[nodiscard]] bool OverlapsGPU(GPUVAddr overlap_gpu_addr, size_t overlap_size) const noexcept {
const GPUVAddr overlap_end = overlap_gpu_addr + overlap_size;
const GPUVAddr gpu_addr_end = gpu_addr + size;
return gpu_addr < overlap_end && overlap_gpu_addr < gpu_addr_end;
}
GPUVAddr gpu_addr;
VAddr cpu_addr;
size_t size;
ImageId image_id;
bool picked{};
};
struct ImageAllocBase {

View file

@ -13,6 +13,7 @@
#include <span>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
@ -152,9 +153,12 @@ public:
/// Remove images in a region
void UnmapMemory(VAddr cpu_addr, size_t size);
/// Remove images in a region
void UnmapGPUMemory(GPUVAddr gpu_addr, size_t size);
/// Blit an image with the given parameters
void BlitImage(const Tegra::Engines::Fermi2D::Surface& dst,
const Tegra::Engines::Fermi2D::Surface& src, s32 src_address_offset,
const Tegra::Engines::Fermi2D::Surface& src,
const Tegra::Engines::Fermi2D::Config& copy);
/// Invalidate the contents of the color buffer index
@ -188,7 +192,22 @@ public:
private:
/// Iterate over all page indices in a range
template <typename Func>
static void ForEachPage(VAddr addr, size_t size, Func&& func) {
static void ForEachCPUPage(VAddr addr, size_t size, Func&& func) {
static constexpr bool RETURNS_BOOL = std::is_same_v<std::invoke_result<Func, u64>, bool>;
const u64 page_end = (addr + size - 1) >> PAGE_BITS;
for (u64 page = addr >> PAGE_BITS; page <= page_end; ++page) {
if constexpr (RETURNS_BOOL) {
if (func(page)) {
break;
}
} else {
func(page);
}
}
}
template <typename Func>
static void ForEachGPUPage(GPUVAddr addr, size_t size, Func&& func) {
static constexpr bool RETURNS_BOOL = std::is_same_v<std::invoke_result<Func, u64>, bool>;
const u64 page_end = (addr + size - 1) >> PAGE_BITS;
for (u64 page = addr >> PAGE_BITS; page <= page_end; ++page) {
@ -218,7 +237,7 @@ private:
FramebufferId GetFramebufferId(const RenderTargets& key);
/// Refresh the contents (pixel data) of an image
void RefreshContents(Image& image);
void RefreshContents(Image& image, ImageId image_id);
/// Upload data from guest to an image
template <typename StagingBuffer>
@ -248,8 +267,7 @@ private:
/// Return a blit image pair from the given guest blit parameters
[[nodiscard]] BlitImages GetBlitImages(const Tegra::Engines::Fermi2D::Surface& dst,
const Tegra::Engines::Fermi2D::Surface& src,
s32 src_address_offset);
const Tegra::Engines::Fermi2D::Surface& src);
/// Find or create a sampler from a guest descriptor sampler
[[nodiscard]] SamplerId FindSampler(const TSCEntry& config);
@ -268,6 +286,16 @@ private:
template <typename Func>
void ForEachImageInRegion(VAddr cpu_addr, size_t size, Func&& func);
template <typename Func>
void ForEachImageInRegionGPU(GPUVAddr gpu_addr, size_t size, Func&& func);
template <typename Func>
void ForEachSparseImageInRegion(GPUVAddr gpu_addr, size_t size, Func&& func);
/// Iterates over all the images in a region calling func
template <typename Func>
void ForEachSparseSegment(ImageBase& image, Func&& func);
/// Find or create an image view in the given image with the passed parameters
[[nodiscard]] ImageViewId FindOrEmplaceImageView(ImageId image_id, const ImageViewInfo& info);
@ -278,10 +306,10 @@ private:
void UnregisterImage(ImageId image);
/// Track CPU reads and writes for image
void TrackImage(ImageBase& image);
void TrackImage(ImageBase& image, ImageId image_id);
/// Stop tracking CPU reads and writes for image
void UntrackImage(ImageBase& image);
void UntrackImage(ImageBase& image, ImageId image_id);
/// Delete image from the cache
void DeleteImage(ImageId image);
@ -339,7 +367,13 @@ private:
std::unordered_map<TSCEntry, SamplerId> samplers;
std::unordered_map<RenderTargets, FramebufferId> framebuffers;
std::unordered_map<u64, std::vector<ImageId>, IdentityHash<u64>> page_table;
std::unordered_map<u64, std::vector<ImageMapId>, IdentityHash<u64>> page_table;
std::unordered_map<u64, std::vector<ImageId>, IdentityHash<u64>> gpu_page_table;
std::unordered_map<u64, std::vector<ImageId>, IdentityHash<u64>> sparse_page_table;
std::unordered_map<ImageId, std::vector<ImageViewId>> sparse_views;
VAddr virtual_invalid_space{};
bool has_deleted_images = false;
u64 total_used_memory = 0;
@ -348,6 +382,7 @@ private:
u64 critical_memory;
SlotVector<Image> slot_images;
SlotVector<ImageMapView> slot_map_views;
SlotVector<ImageView> slot_image_views;
SlotVector<ImageAlloc> slot_image_allocs;
SlotVector<Sampler> slot_samplers;
@ -458,7 +493,7 @@ void TextureCache<P>::RunGarbageCollector() {
}
}
if (True(image->flags & ImageFlagBits::Tracked)) {
UntrackImage(*image);
UntrackImage(*image, image_id);
}
UnregisterImage(image_id);
DeleteImage(image_id);
@ -657,7 +692,9 @@ void TextureCache<P>::WriteMemory(VAddr cpu_addr, size_t size) {
return;
}
image.flags |= ImageFlagBits::CpuModified;
UntrackImage(image);
if (True(image.flags & ImageFlagBits::Tracked)) {
UntrackImage(image, image_id);
}
});
}
@ -694,18 +731,35 @@ void TextureCache<P>::UnmapMemory(VAddr cpu_addr, size_t size) {
for (const ImageId id : deleted_images) {
Image& image = slot_images[id];
if (True(image.flags & ImageFlagBits::Tracked)) {
UntrackImage(image);
UntrackImage(image, id);
}
UnregisterImage(id);
DeleteImage(id);
}
}
template <class P>
void TextureCache<P>::UnmapGPUMemory(GPUVAddr gpu_addr, size_t size) {
std::vector<ImageId> deleted_images;
ForEachImageInRegionGPU(gpu_addr, size,
[&](ImageId id, Image&) { deleted_images.push_back(id); });
for (const ImageId id : deleted_images) {
Image& image = slot_images[id];
if (True(image.flags & ImageFlagBits::Remapped)) {
continue;
}
image.flags |= ImageFlagBits::Remapped;
if (True(image.flags & ImageFlagBits::Tracked)) {
UntrackImage(image, id);
}
}
}
template <class P>
void TextureCache<P>::BlitImage(const Tegra::Engines::Fermi2D::Surface& dst,
const Tegra::Engines::Fermi2D::Surface& src, s32 src_address_offset,
const Tegra::Engines::Fermi2D::Surface& src,
const Tegra::Engines::Fermi2D::Config& copy) {
const BlitImages images = GetBlitImages(dst, src, src_address_offset);
const BlitImages images = GetBlitImages(dst, src);
const ImageId dst_id = images.dst_id;
const ImageId src_id = images.src_id;
PrepareImage(src_id, false, false);
@ -725,7 +779,7 @@ void TextureCache<P>::BlitImage(const Tegra::Engines::Fermi2D::Surface& dst,
Offset2D{.x = copy.src_x1 >> src_samples_x, .y = copy.src_y1 >> src_samples_y},
};
const std::optional src_base = src_image.TryFindBase(src.Address() + src_address_offset);
const std::optional src_base = src_image.TryFindBase(src.Address());
const SubresourceRange src_range{.base = src_base.value(), .extent = {1, 1}};
const ImageViewInfo src_view_info(ImageViewType::e2D, images.src_format, src_range);
const auto [src_framebuffer_id, src_view_id] = RenderTargetFromImage(src_id, src_view_info);
@ -793,9 +847,10 @@ typename P::ImageView* TextureCache<P>::TryFindFramebufferImageView(VAddr cpu_ad
if (it == page_table.end()) {
return nullptr;
}
const auto& image_ids = it->second;
for (const ImageId image_id : image_ids) {
const ImageBase& image = slot_images[image_id];
const auto& image_map_ids = it->second;
for (const ImageMapId map_id : image_map_ids) {
const ImageMapView& map = slot_map_views[map_id];
const ImageBase& image = slot_images[map.image_id];
if (image.cpu_addr != cpu_addr) {
continue;
}
@ -875,13 +930,13 @@ bool TextureCache<P>::IsRegionGpuModified(VAddr addr, size_t size) {
}
template <class P>
void TextureCache<P>::RefreshContents(Image& image) {
void TextureCache<P>::RefreshContents(Image& image, ImageId image_id) {
if (False(image.flags & ImageFlagBits::CpuModified)) {
// Only upload modified images
return;
}
image.flags &= ~ImageFlagBits::CpuModified;
TrackImage(image);
TrackImage(image, image_id);
if (image.info.num_samples > 1) {
LOG_WARNING(HW_GPU, "MSAA image uploads are not implemented");
@ -918,7 +973,7 @@ void TextureCache<P>::UploadImageContents(Image& image, StagingBuffer& staging)
template <class P>
ImageViewId TextureCache<P>::FindImageView(const TICEntry& config) {
if (!IsValidAddress(gpu_memory, config)) {
if (!IsValidEntry(gpu_memory, config)) {
return NULL_IMAGE_VIEW_ID;
}
const auto [pair, is_new] = image_views.try_emplace(config);
@ -960,14 +1015,20 @@ ImageId TextureCache<P>::FindOrInsertImage(const ImageInfo& info, GPUVAddr gpu_a
template <class P>
ImageId TextureCache<P>::FindImage(const ImageInfo& info, GPUVAddr gpu_addr,
RelaxedOptions options) {
const std::optional<VAddr> cpu_addr = gpu_memory.GpuToCpuAddress(gpu_addr);
std::optional<VAddr> cpu_addr = gpu_memory.GpuToCpuAddress(gpu_addr);
if (!cpu_addr) {
cpu_addr = gpu_memory.GpuToCpuAddress(gpu_addr, CalculateGuestSizeInBytes(info));
if (!cpu_addr) {
return ImageId{};
}
}
const bool broken_views = runtime.HasBrokenTextureViewFormats();
const bool native_bgr = runtime.HasNativeBgr();
ImageId image_id;
const auto lambda = [&](ImageId existing_image_id, ImageBase& existing_image) {
if (True(existing_image.flags & ImageFlagBits::Remapped)) {
return false;
}
if (info.type == ImageType::Linear || existing_image.info.type == ImageType::Linear) {
const bool strict_size = False(options & RelaxedOptions::Size) &&
True(existing_image.flags & ImageFlagBits::Strong);
@ -993,7 +1054,16 @@ ImageId TextureCache<P>::FindImage(const ImageInfo& info, GPUVAddr gpu_addr,
template <class P>
ImageId TextureCache<P>::InsertImage(const ImageInfo& info, GPUVAddr gpu_addr,
RelaxedOptions options) {
const std::optional<VAddr> cpu_addr = gpu_memory.GpuToCpuAddress(gpu_addr);
std::optional<VAddr> cpu_addr = gpu_memory.GpuToCpuAddress(gpu_addr);
if (!cpu_addr) {
const auto size = CalculateGuestSizeInBytes(info);
cpu_addr = gpu_memory.GpuToCpuAddress(gpu_addr, size);
if (!cpu_addr) {
const VAddr fake_addr = ~(1ULL << 40ULL) + virtual_invalid_space;
virtual_invalid_space += Common::AlignUp(size, 32);
cpu_addr = std::optional<VAddr>(fake_addr);
}
}
ASSERT_MSG(cpu_addr, "Tried to insert an image to an invalid gpu_addr=0x{:x}", gpu_addr);
const ImageId image_id = JoinImages(info, gpu_addr, *cpu_addr);
const Image& image = slot_images[image_id];
@ -1013,10 +1083,16 @@ ImageId TextureCache<P>::JoinImages(const ImageInfo& info, GPUVAddr gpu_addr, VA
const bool broken_views = runtime.HasBrokenTextureViewFormats();
const bool native_bgr = runtime.HasNativeBgr();
std::vector<ImageId> overlap_ids;
std::unordered_set<ImageId> overlaps_found;
std::vector<ImageId> left_aliased_ids;
std::vector<ImageId> right_aliased_ids;
std::unordered_set<ImageId> ignore_textures;
std::vector<ImageId> bad_overlap_ids;
ForEachImageInRegion(cpu_addr, size_bytes, [&](ImageId overlap_id, ImageBase& overlap) {
const auto region_check = [&](ImageId overlap_id, ImageBase& overlap) {
if (True(overlap.flags & ImageFlagBits::Remapped)) {
ignore_textures.insert(overlap_id);
return;
}
if (info.type == ImageType::Linear) {
if (info.pitch == overlap.info.pitch && gpu_addr == overlap.gpu_addr) {
// Alias linear images with the same pitch
@ -1024,6 +1100,7 @@ ImageId TextureCache<P>::JoinImages(const ImageInfo& info, GPUVAddr gpu_addr, VA
}
return;
}
overlaps_found.insert(overlap_id);
static constexpr bool strict_size = true;
const std::optional<OverlapResult> solution = ResolveOverlap(
new_info, gpu_addr, cpu_addr, overlap, strict_size, broken_views, native_bgr);
@ -1047,12 +1124,40 @@ ImageId TextureCache<P>::JoinImages(const ImageInfo& info, GPUVAddr gpu_addr, VA
bad_overlap_ids.push_back(overlap_id);
overlap.flags |= ImageFlagBits::BadOverlap;
}
});
};
ForEachImageInRegion(cpu_addr, size_bytes, region_check);
const auto region_check_gpu = [&](ImageId overlap_id, ImageBase& overlap) {
if (!overlaps_found.contains(overlap_id)) {
if (True(overlap.flags & ImageFlagBits::Remapped)) {
ignore_textures.insert(overlap_id);
}
if (overlap.gpu_addr == gpu_addr && overlap.guest_size_bytes == size_bytes) {
ignore_textures.insert(overlap_id);
}
}
};
ForEachSparseImageInRegion(gpu_addr, size_bytes, region_check_gpu);
const ImageId new_image_id = slot_images.insert(runtime, new_info, gpu_addr, cpu_addr);
Image& new_image = slot_images[new_image_id];
if (!gpu_memory.IsContinousRange(new_image.gpu_addr, new_image.guest_size_bytes)) {
new_image.flags |= ImageFlagBits::Sparse;
}
for (const ImageId overlap_id : ignore_textures) {
Image& overlap = slot_images[overlap_id];
if (True(overlap.flags & ImageFlagBits::GpuModified)) {
UNIMPLEMENTED();
}
if (True(overlap.flags & ImageFlagBits::Tracked)) {
UntrackImage(overlap, overlap_id);
}
UnregisterImage(overlap_id);
DeleteImage(overlap_id);
}
// TODO: Only upload what we need
RefreshContents(new_image);
RefreshContents(new_image, new_image_id);
for (const ImageId overlap_id : overlap_ids) {
Image& overlap = slot_images[overlap_id];
@ -1064,7 +1169,7 @@ ImageId TextureCache<P>::JoinImages(const ImageInfo& info, GPUVAddr gpu_addr, VA
runtime.CopyImage(new_image, overlap, copies);
}
if (True(overlap.flags & ImageFlagBits::Tracked)) {
UntrackImage(overlap);
UntrackImage(overlap, overlap_id);
}
UnregisterImage(overlap_id);
DeleteImage(overlap_id);
@ -1092,11 +1197,10 @@ ImageId TextureCache<P>::JoinImages(const ImageInfo& info, GPUVAddr gpu_addr, VA
template <class P>
typename TextureCache<P>::BlitImages TextureCache<P>::GetBlitImages(
const Tegra::Engines::Fermi2D::Surface& dst, const Tegra::Engines::Fermi2D::Surface& src,
s32 src_address_offset) {
const Tegra::Engines::Fermi2D::Surface& dst, const Tegra::Engines::Fermi2D::Surface& src) {
static constexpr auto FIND_OPTIONS = RelaxedOptions::Format | RelaxedOptions::Samples;
const GPUVAddr dst_addr = dst.Address();
const GPUVAddr src_addr = src.Address() + src_address_offset;
const GPUVAddr src_addr = src.Address();
ImageInfo dst_info(dst);
ImageInfo src_info(src);
ImageId dst_id;
@ -1200,7 +1304,8 @@ void TextureCache<P>::ForEachImageInRegion(VAddr cpu_addr, size_t size, Func&& f
using FuncReturn = typename std::invoke_result<Func, ImageId, Image&>::type;
static constexpr bool BOOL_BREAK = std::is_same_v<FuncReturn, bool>;
boost::container::small_vector<ImageId, 32> images;
ForEachPage(cpu_addr, size, [this, &images, cpu_addr, size, func](u64 page) {
boost::container::small_vector<ImageMapId, 32> maps;
ForEachCPUPage(cpu_addr, size, [this, &images, &maps, cpu_addr, size, func](u64 page) {
const auto it = page_table.find(page);
if (it == page_table.end()) {
if constexpr (BOOL_BREAK) {
@ -1209,12 +1314,63 @@ void TextureCache<P>::ForEachImageInRegion(VAddr cpu_addr, size_t size, Func&& f
return;
}
}
for (const ImageMapId map_id : it->second) {
ImageMapView& map = slot_map_views[map_id];
if (map.picked) {
continue;
}
if (!map.Overlaps(cpu_addr, size)) {
continue;
}
map.picked = true;
maps.push_back(map_id);
Image& image = slot_images[map.image_id];
if (True(image.flags & ImageFlagBits::Picked)) {
continue;
}
image.flags |= ImageFlagBits::Picked;
images.push_back(map.image_id);
if constexpr (BOOL_BREAK) {
if (func(map.image_id, image)) {
return true;
}
} else {
func(map.image_id, image);
}
}
if constexpr (BOOL_BREAK) {
return false;
}
});
for (const ImageId image_id : images) {
slot_images[image_id].flags &= ~ImageFlagBits::Picked;
}
for (const ImageMapId map_id : maps) {
slot_map_views[map_id].picked = false;
}
}
template <class P>
template <typename Func>
void TextureCache<P>::ForEachImageInRegionGPU(GPUVAddr gpu_addr, size_t size, Func&& func) {
using FuncReturn = typename std::invoke_result<Func, ImageId, Image&>::type;
static constexpr bool BOOL_BREAK = std::is_same_v<FuncReturn, bool>;
boost::container::small_vector<ImageId, 8> images;
ForEachGPUPage(gpu_addr, size, [this, &images, gpu_addr, size, func](u64 page) {
const auto it = gpu_page_table.find(page);
if (it == gpu_page_table.end()) {
if constexpr (BOOL_BREAK) {
return false;
} else {
return;
}
}
for (const ImageId image_id : it->second) {
Image& image = slot_images[image_id];
if (True(image.flags & ImageFlagBits::Picked)) {
continue;
}
if (!image.Overlaps(cpu_addr, size)) {
if (!image.OverlapsGPU(gpu_addr, size)) {
continue;
}
image.flags |= ImageFlagBits::Picked;
@ -1236,6 +1392,69 @@ void TextureCache<P>::ForEachImageInRegion(VAddr cpu_addr, size_t size, Func&& f
}
}
template <class P>
template <typename Func>
void TextureCache<P>::ForEachSparseImageInRegion(GPUVAddr gpu_addr, size_t size, Func&& func) {
using FuncReturn = typename std::invoke_result<Func, ImageId, Image&>::type;
static constexpr bool BOOL_BREAK = std::is_same_v<FuncReturn, bool>;
boost::container::small_vector<ImageId, 8> images;
ForEachGPUPage(gpu_addr, size, [this, &images, gpu_addr, size, func](u64 page) {
const auto it = sparse_page_table.find(page);
if (it == sparse_page_table.end()) {
if constexpr (BOOL_BREAK) {
return false;
} else {
return;
}
}
for (const ImageId image_id : it->second) {
Image& image = slot_images[image_id];
if (True(image.flags & ImageFlagBits::Picked)) {
continue;
}
if (!image.OverlapsGPU(gpu_addr, size)) {
continue;
}
image.flags |= ImageFlagBits::Picked;
images.push_back(image_id);
if constexpr (BOOL_BREAK) {
if (func(image_id, image)) {
return true;
}
} else {
func(image_id, image);
}
}
if constexpr (BOOL_BREAK) {
return false;
}
});
for (const ImageId image_id : images) {
slot_images[image_id].flags &= ~ImageFlagBits::Picked;
}
}
template <class P>
template <typename Func>
void TextureCache<P>::ForEachSparseSegment(ImageBase& image, Func&& func) {
using FuncReturn = typename std::invoke_result<Func, GPUVAddr, VAddr, size_t>::type;
static constexpr bool RETURNS_BOOL = std::is_same_v<FuncReturn, bool>;
const auto segments = gpu_memory.GetSubmappedRange(image.gpu_addr, image.guest_size_bytes);
for (auto& segment : segments) {
const auto gpu_addr = segment.first;
const auto size = segment.second;
std::optional<VAddr> cpu_addr = gpu_memory.GpuToCpuAddress(gpu_addr);
ASSERT(cpu_addr);
if constexpr (RETURNS_BOOL) {
if (func(gpu_addr, *cpu_addr, size)) {
break;
}
} else {
func(gpu_addr, *cpu_addr, size);
}
}
}
template <class P>
ImageViewId TextureCache<P>::FindOrEmplaceImageView(ImageId image_id, const ImageViewInfo& info) {
Image& image = slot_images[image_id];
@ -1253,8 +1472,6 @@ void TextureCache<P>::RegisterImage(ImageId image_id) {
ASSERT_MSG(False(image.flags & ImageFlagBits::Registered),
"Trying to register an already registered image");
image.flags |= ImageFlagBits::Registered;
ForEachPage(image.cpu_addr, image.guest_size_bytes,
[this, image_id](u64 page) { page_table[page].push_back(image_id); });
u64 tentative_size = std::max(image.guest_size_bytes, image.unswizzled_size_bytes);
if ((IsPixelFormatASTC(image.info.format) &&
True(image.flags & ImageFlagBits::AcceleratedUpload)) ||
@ -1262,6 +1479,27 @@ void TextureCache<P>::RegisterImage(ImageId image_id) {
tentative_size = EstimatedDecompressedSize(tentative_size, image.info.format);
}
total_used_memory += Common::AlignUp(tentative_size, 1024);
ForEachGPUPage(image.gpu_addr, image.guest_size_bytes,
[this, image_id](u64 page) { gpu_page_table[page].push_back(image_id); });
if (False(image.flags & ImageFlagBits::Sparse)) {
auto map_id =
slot_map_views.insert(image.gpu_addr, image.cpu_addr, image.guest_size_bytes, image_id);
ForEachCPUPage(image.cpu_addr, image.guest_size_bytes,
[this, map_id](u64 page) { page_table[page].push_back(map_id); });
image.map_view_id = map_id;
return;
}
std::vector<ImageViewId> sparse_maps{};
ForEachSparseSegment(
image, [this, image_id, &sparse_maps](GPUVAddr gpu_addr, VAddr cpu_addr, size_t size) {
auto map_id = slot_map_views.insert(gpu_addr, cpu_addr, size, image_id);
ForEachCPUPage(cpu_addr, size,
[this, map_id](u64 page) { page_table[page].push_back(map_id); });
sparse_maps.push_back(map_id);
});
sparse_views.emplace(image_id, std::move(sparse_maps));
ForEachGPUPage(image.gpu_addr, image.guest_size_bytes,
[this, image_id](u64 page) { sparse_page_table[page].push_back(image_id); });
}
template <class P>
@ -1278,34 +1516,125 @@ void TextureCache<P>::UnregisterImage(ImageId image_id) {
tentative_size = EstimatedDecompressedSize(tentative_size, image.info.format);
}
total_used_memory -= Common::AlignUp(tentative_size, 1024);
ForEachPage(image.cpu_addr, image.guest_size_bytes, [this, image_id](u64 page) {
const auto page_it = page_table.find(page);
if (page_it == page_table.end()) {
const auto& clear_page_table =
[this, image_id](
u64 page,
std::unordered_map<u64, std::vector<ImageId>, IdentityHash<u64>>& selected_page_table) {
const auto page_it = selected_page_table.find(page);
if (page_it == selected_page_table.end()) {
UNREACHABLE_MSG("Unregistering unregistered page=0x{:x}", page << PAGE_BITS);
return;
}
std::vector<ImageId>& image_ids = page_it->second;
const auto vector_it = std::ranges::find(image_ids, image_id);
if (vector_it == image_ids.end()) {
UNREACHABLE_MSG("Unregistering unregistered image in page=0x{:x}", page << PAGE_BITS);
UNREACHABLE_MSG("Unregistering unregistered image in page=0x{:x}",
page << PAGE_BITS);
return;
}
image_ids.erase(vector_it);
};
ForEachGPUPage(image.gpu_addr, image.guest_size_bytes,
[this, &clear_page_table](u64 page) { clear_page_table(page, gpu_page_table); });
if (False(image.flags & ImageFlagBits::Sparse)) {
const auto map_id = image.map_view_id;
ForEachCPUPage(image.cpu_addr, image.guest_size_bytes, [this, map_id](u64 page) {
const auto page_it = page_table.find(page);
if (page_it == page_table.end()) {
UNREACHABLE_MSG("Unregistering unregistered page=0x{:x}", page << PAGE_BITS);
return;
}
std::vector<ImageMapId>& image_map_ids = page_it->second;
const auto vector_it = std::ranges::find(image_map_ids, map_id);
if (vector_it == image_map_ids.end()) {
UNREACHABLE_MSG("Unregistering unregistered image in page=0x{:x}",
page << PAGE_BITS);
return;
}
image_map_ids.erase(vector_it);
});
slot_map_views.erase(map_id);
return;
}
ForEachGPUPage(image.gpu_addr, image.guest_size_bytes, [this, &clear_page_table](u64 page) {
clear_page_table(page, sparse_page_table);
});
auto it = sparse_views.find(image_id);
ASSERT(it != sparse_views.end());
auto& sparse_maps = it->second;
for (auto& map_view_id : sparse_maps) {
const auto& map_range = slot_map_views[map_view_id];
const VAddr cpu_addr = map_range.cpu_addr;
const std::size_t size = map_range.size;
ForEachCPUPage(cpu_addr, size, [this, image_id](u64 page) {
const auto page_it = page_table.find(page);
if (page_it == page_table.end()) {
UNREACHABLE_MSG("Unregistering unregistered page=0x{:x}", page << PAGE_BITS);
return;
}
std::vector<ImageMapId>& image_map_ids = page_it->second;
auto vector_it = image_map_ids.begin();
while (vector_it != image_map_ids.end()) {
ImageMapView& map = slot_map_views[*vector_it];
if (map.image_id != image_id) {
vector_it++;
continue;
}
if (!map.picked) {
map.picked = true;
}
vector_it = image_map_ids.erase(vector_it);
}
});
slot_map_views.erase(map_view_id);
}
sparse_views.erase(it);
}
template <class P>
void TextureCache<P>::TrackImage(ImageBase& image, ImageId image_id) {
ASSERT(False(image.flags & ImageFlagBits::Tracked));
image.flags |= ImageFlagBits::Tracked;
if (False(image.flags & ImageFlagBits::Sparse)) {
rasterizer.UpdatePagesCachedCount(image.cpu_addr, image.guest_size_bytes, 1);
return;
}
if (True(image.flags & ImageFlagBits::Registered)) {
auto it = sparse_views.find(image_id);
ASSERT(it != sparse_views.end());
auto& sparse_maps = it->second;
for (auto& map_view_id : sparse_maps) {
const auto& map = slot_map_views[map_view_id];
const VAddr cpu_addr = map.cpu_addr;
const std::size_t size = map.size;
rasterizer.UpdatePagesCachedCount(cpu_addr, size, 1);
}
return;
}
ForEachSparseSegment(image,
[this]([[maybe_unused]] GPUVAddr gpu_addr, VAddr cpu_addr, size_t size) {
rasterizer.UpdatePagesCachedCount(cpu_addr, size, 1);
});
}
template <class P>
void TextureCache<P>::TrackImage(ImageBase& image) {
ASSERT(False(image.flags & ImageFlagBits::Tracked));
image.flags |= ImageFlagBits::Tracked;
rasterizer.UpdatePagesCachedCount(image.cpu_addr, image.guest_size_bytes, 1);
}
template <class P>
void TextureCache<P>::UntrackImage(ImageBase& image) {
void TextureCache<P>::UntrackImage(ImageBase& image, ImageId image_id) {
ASSERT(True(image.flags & ImageFlagBits::Tracked));
image.flags &= ~ImageFlagBits::Tracked;
if (False(image.flags & ImageFlagBits::Sparse)) {
rasterizer.UpdatePagesCachedCount(image.cpu_addr, image.guest_size_bytes, -1);
return;
}
ASSERT(True(image.flags & ImageFlagBits::Registered));
auto it = sparse_views.find(image_id);
ASSERT(it != sparse_views.end());
auto& sparse_maps = it->second;
for (auto& map_view_id : sparse_maps) {
const auto& map = slot_map_views[map_view_id];
const VAddr cpu_addr = map.cpu_addr;
const std::size_t size = map.size;
rasterizer.UpdatePagesCachedCount(cpu_addr, size, -1);
}
}
template <class P>
@ -1447,10 +1776,10 @@ void TextureCache<P>::PrepareImage(ImageId image_id, bool is_modification, bool
if (invalidate) {
image.flags &= ~(ImageFlagBits::CpuModified | ImageFlagBits::GpuModified);
if (False(image.flags & ImageFlagBits::Tracked)) {
TrackImage(image);
TrackImage(image, image_id);
}
} else {
RefreshContents(image);
RefreshContents(image, image_id);
SynchronizeAliases(image_id);
}
if (is_modification) {

View file

@ -16,6 +16,7 @@ constexpr size_t MAX_MIP_LEVELS = 14;
constexpr SlotId CORRUPT_ID{0xfffffffe};
using ImageId = SlotId;
using ImageMapId = SlotId;
using ImageViewId = SlotId;
using ImageAllocId = SlotId;
using SamplerId = SlotId;
@ -132,8 +133,8 @@ struct BufferImageCopy {
};
struct BufferCopy {
size_t src_offset;
size_t dst_offset;
u64 src_offset;
u64 dst_offset;
size_t size;
};

View file

@ -664,6 +664,16 @@ LevelArray CalculateMipLevelOffsets(const ImageInfo& info) noexcept {
return offsets;
}
LevelArray CalculateMipLevelSizes(const ImageInfo& info) noexcept {
const u32 num_levels = info.resources.levels;
const LevelInfo level_info = MakeLevelInfo(info);
LevelArray sizes{};
for (u32 level = 0; level < num_levels; ++level) {
sizes[level] = CalculateLevelSize(level_info, level);
}
return sizes;
}
std::vector<u32> CalculateSliceOffsets(const ImageInfo& info) {
ASSERT(info.type == ImageType::e3D);
std::vector<u32> offsets;
@ -776,14 +786,20 @@ std::vector<ImageCopy> MakeShrinkImageCopies(const ImageInfo& dst, const ImageIn
return copies;
}
bool IsValidAddress(const Tegra::MemoryManager& gpu_memory, const TICEntry& config) {
if (config.Address() == 0) {
bool IsValidEntry(const Tegra::MemoryManager& gpu_memory, const TICEntry& config) {
const GPUVAddr address = config.Address();
if (address == 0) {
return false;
}
if (config.Address() > (u64(1) << 48)) {
if (address > (1ULL << 48)) {
return false;
}
return gpu_memory.GpuToCpuAddress(config.Address()).has_value();
if (gpu_memory.GpuToCpuAddress(address).has_value()) {
return true;
}
const ImageInfo info{config};
const size_t guest_size_bytes = CalculateGuestSizeInBytes(info);
return gpu_memory.GpuToCpuAddress(address, guest_size_bytes).has_value();
}
std::vector<BufferImageCopy> UnswizzleImage(Tegra::MemoryManager& gpu_memory, GPUVAddr gpu_addr,

View file

@ -40,6 +40,8 @@ struct OverlapResult {
[[nodiscard]] LevelArray CalculateMipLevelOffsets(const ImageInfo& info) noexcept;
[[nodiscard]] LevelArray CalculateMipLevelSizes(const ImageInfo& info) noexcept;
[[nodiscard]] std::vector<u32> CalculateSliceOffsets(const ImageInfo& info);
[[nodiscard]] std::vector<SubresourceBase> CalculateSliceSubresources(const ImageInfo& info);
@ -55,7 +57,7 @@ struct OverlapResult {
const ImageInfo& src,
SubresourceBase base);
[[nodiscard]] bool IsValidAddress(const Tegra::MemoryManager& gpu_memory, const TICEntry& config);
[[nodiscard]] bool IsValidEntry(const Tegra::MemoryManager& gpu_memory, const TICEntry& config);
[[nodiscard]] std::vector<BufferImageCopy> UnswizzleImage(Tegra::MemoryManager& gpu_memory,
GPUVAddr gpu_addr, const ImageInfo& info,