early-access version 2799

This commit is contained in:
pineappleEA 2022-06-24 04:00:57 +02:00
parent b216437217
commit 10e9e7d9ae
39 changed files with 381 additions and 200 deletions

View file

@ -1,7 +1,7 @@
yuzu emulator early access yuzu emulator early access
============= =============
This is the source code for early-access 2798. This is the source code for early-access 2799.
## Legal Notice ## Legal Notice

View file

@ -1,5 +1,5 @@
cmake_minimum_required(VERSION 3.8) cmake_minimum_required(VERSION 3.8)
project(dynarmic LANGUAGES C CXX ASM VERSION 5) project(dynarmic LANGUAGES C CXX ASM VERSION 6.0.1)
# Determine if we're built as a subproject (using add_subdirectory) # Determine if we're built as a subproject (using add_subdirectory)
# or if this is the master project. # or if this is the master project.

View file

@ -97,13 +97,13 @@ constexpr u8 SNaN = 0b10000000;
// Opcodes for use with vfixupimm // Opcodes for use with vfixupimm
enum class FpFixup : u8 { enum class FpFixup : u8 {
A = 0b0000, // A Dest = 0b0000, // Preserve destination
B = 0b0001, // B Norm_Src = 0b0001, // Source operand (Denormal as positive-zero)
QNaN_B = 0b0010, // QNaN with sign of B QNaN_Src = 0b0010, // QNaN with sign of source (Denormal as positive-zero)
IndefNaN = 0b0011, // Indefinite QNaN (Negative QNaN with no payload on x86) IndefNaN = 0b0011, // Indefinite QNaN (Negative QNaN with no payload on x86)
NegInf = 0b0100, // -Infinity NegInf = 0b0100, // -Infinity
PosInf = 0b0101, // +Infinity PosInf = 0b0101, // +Infinity
Inf_B = 0b0110, // Infinity with sign of B Inf_Src = 0b0110, // Infinity with sign of source (Denormal as positive-zero)
NegZero = 0b0111, // -0.0 NegZero = 0b0111, // -0.0
PosZero = 0b1000, // +0.0 PosZero = 0b1000, // +0.0
NegOne = 0b1001, // -1.0 NegOne = 0b1001, // -1.0
@ -116,14 +116,14 @@ enum class FpFixup : u8 {
}; };
// Generates 32-bit LUT for vfixupimm instruction // Generates 32-bit LUT for vfixupimm instruction
constexpr u32 FixupLUT(FpFixup src_qnan = FpFixup::A, constexpr u32 FixupLUT(FpFixup src_qnan = FpFixup::Dest,
FpFixup src_snan = FpFixup::A, FpFixup src_snan = FpFixup::Dest,
FpFixup src_zero = FpFixup::A, FpFixup src_zero = FpFixup::Dest,
FpFixup src_posone = FpFixup::A, FpFixup src_posone = FpFixup::Dest,
FpFixup src_neginf = FpFixup::A, FpFixup src_neginf = FpFixup::Dest,
FpFixup src_posinf = FpFixup::A, FpFixup src_posinf = FpFixup::Dest,
FpFixup src_pos = FpFixup::A, FpFixup src_pos = FpFixup::Dest,
FpFixup src_neg = FpFixup::A) { FpFixup src_neg = FpFixup::Dest) {
u32 fixup_lut = 0; u32 fixup_lut = 0;
fixup_lut = mcl::bit::set_bits<0, 3, u32>(fixup_lut, static_cast<u32>(src_qnan)); fixup_lut = mcl::bit::set_bits<0, 3, u32>(fixup_lut, static_cast<u32>(src_qnan));
fixup_lut = mcl::bit::set_bits<4, 7, u32>(fixup_lut, static_cast<u32>(src_snan)); fixup_lut = mcl::bit::set_bits<4, 7, u32>(fixup_lut, static_cast<u32>(src_snan));

View file

@ -16,6 +16,7 @@
#include <mcl/mp/typelist/lower_to_tuple.hpp> #include <mcl/mp/typelist/lower_to_tuple.hpp>
#include <mcl/stdint.hpp> #include <mcl/stdint.hpp>
#include <mcl/type_traits/integer_of_size.hpp> #include <mcl/type_traits/integer_of_size.hpp>
#include <xbyak/xbyak.h>
#include "dynarmic/backend/x64/abi.h" #include "dynarmic/backend/x64/abi.h"
#include "dynarmic/backend/x64/block_of_code.h" #include "dynarmic/backend/x64/block_of_code.h"
@ -79,6 +80,27 @@ constexpr u64 f64_max_s64_lim = 0x43e0000000000000u; // 2^63 as a double (actua
template<size_t fsize> template<size_t fsize>
void DenormalsAreZero(BlockOfCode& code, EmitContext& ctx, std::initializer_list<Xbyak::Xmm> to_daz) { void DenormalsAreZero(BlockOfCode& code, EmitContext& ctx, std::initializer_list<Xbyak::Xmm> to_daz) {
if (ctx.FPCR().FZ()) { if (ctx.FPCR().FZ()) {
if (code.HasHostFeature(HostFeature::AVX512_OrthoFloat)) {
constexpr u32 denormal_to_zero = FixupLUT(
FpFixup::Norm_Src,
FpFixup::Norm_Src,
FpFixup::Norm_Src,
FpFixup::Norm_Src,
FpFixup::Norm_Src,
FpFixup::Norm_Src,
FpFixup::Norm_Src,
FpFixup::Norm_Src);
constexpr u64 denormal_to_zero64 = mcl::bit::replicate_element<fsize, u64>(denormal_to_zero);
const Xbyak::Xmm tmp = xmm16;
FCODE(vmovap)(tmp, code.MConst(xword, u64(denormal_to_zero64), u64(denormal_to_zero64)));
for (const Xbyak::Xmm& xmm : to_daz) {
FCODE(vfixupimms)(xmm, xmm, tmp, u8(0));
}
return;
}
for (const Xbyak::Xmm& xmm : to_daz) { for (const Xbyak::Xmm& xmm : to_daz) {
code.movaps(xmm0, code.MConst(xword, fsize == 32 ? f32_non_sign_mask : f64_non_sign_mask)); code.movaps(xmm0, code.MConst(xword, fsize == 32 ? f32_non_sign_mask : f64_non_sign_mask));
code.andps(xmm0, xmm); code.andps(xmm0, xmm);
@ -114,7 +136,11 @@ void ZeroIfNaN(BlockOfCode& code, Xbyak::Xmm xmm_value, Xbyak::Xmm xmm_scratch)
template<size_t fsize> template<size_t fsize>
void ForceToDefaultNaN(BlockOfCode& code, Xbyak::Xmm result) { void ForceToDefaultNaN(BlockOfCode& code, Xbyak::Xmm result) {
if (code.HasHostFeature(HostFeature::AVX)) { if (code.HasHostFeature(HostFeature::AVX512_OrthoFloat)) {
const Xbyak::Opmask nan_mask = k1;
FCODE(vfpclasss)(nan_mask, result, u8(FpClass::QNaN | FpClass::SNaN));
FCODE(vblendmp)(result | nan_mask, result, code.MConst(ptr_b, fsize == 32 ? f32_nan : f64_nan));
} else if (code.HasHostFeature(HostFeature::AVX)) {
FCODE(vcmpunords)(xmm0, result, result); FCODE(vcmpunords)(xmm0, result, result);
FCODE(blendvp)(result, code.MConst(xword, fsize == 32 ? f32_nan : f64_nan)); FCODE(blendvp)(result, code.MConst(xword, fsize == 32 ? f32_nan : f64_nan));
} else { } else {

View file

@ -18,6 +18,7 @@
#include <mcl/mp/typelist/lower_to_tuple.hpp> #include <mcl/mp/typelist/lower_to_tuple.hpp>
#include <mcl/type_traits/function_info.hpp> #include <mcl/type_traits/function_info.hpp>
#include <mcl/type_traits/integer_of_size.hpp> #include <mcl/type_traits/integer_of_size.hpp>
#include <xbyak/xbyak.h>
#include "dynarmic/backend/x64/abi.h" #include "dynarmic/backend/x64/abi.h"
#include "dynarmic/backend/x64/block_of_code.h" #include "dynarmic/backend/x64/block_of_code.h"
@ -189,11 +190,16 @@ Xbyak::Address GetVectorOf(BlockOfCode& code) {
template<size_t fsize> template<size_t fsize>
void ForceToDefaultNaN(BlockOfCode& code, FP::FPCR fpcr, Xbyak::Xmm result) { void ForceToDefaultNaN(BlockOfCode& code, FP::FPCR fpcr, Xbyak::Xmm result) {
if (fpcr.DN()) { if (fpcr.DN()) {
const Xbyak::Xmm nan_mask = xmm0; if (code.HasHostFeature(HostFeature::AVX512_OrthoFloat)) {
if (code.HasHostFeature(HostFeature::AVX)) { const Xbyak::Opmask nan_mask = k1;
FCODE(vfpclassp)(nan_mask, result, u8(FpClass::QNaN | FpClass::SNaN));
FCODE(vblendmp)(result | nan_mask, result, GetNaNVector<fsize>(code));
} else if (code.HasHostFeature(HostFeature::AVX)) {
const Xbyak::Xmm nan_mask = xmm0;
FCODE(vcmpunordp)(nan_mask, result, result); FCODE(vcmpunordp)(nan_mask, result, result);
FCODE(blendvp)(result, GetNaNVector<fsize>(code)); FCODE(blendvp)(result, GetNaNVector<fsize>(code));
} else { } else {
const Xbyak::Xmm nan_mask = xmm0;
code.movaps(nan_mask, result); code.movaps(nan_mask, result);
FCODE(cmpordp)(nan_mask, nan_mask); FCODE(cmpordp)(nan_mask, nan_mask);
code.andps(result, nan_mask); code.andps(result, nan_mask);
@ -223,6 +229,26 @@ void ZeroIfNaN(BlockOfCode& code, Xbyak::Xmm result) {
template<size_t fsize> template<size_t fsize>
void DenormalsAreZero(BlockOfCode& code, FP::FPCR fpcr, std::initializer_list<Xbyak::Xmm> to_daz, Xbyak::Xmm tmp) { void DenormalsAreZero(BlockOfCode& code, FP::FPCR fpcr, std::initializer_list<Xbyak::Xmm> to_daz, Xbyak::Xmm tmp) {
if (fpcr.FZ()) { if (fpcr.FZ()) {
if (code.HasHostFeature(HostFeature::AVX512_OrthoFloat)) {
constexpr u32 denormal_to_zero = FixupLUT(
FpFixup::Norm_Src,
FpFixup::Norm_Src,
FpFixup::Norm_Src,
FpFixup::Norm_Src,
FpFixup::Norm_Src,
FpFixup::Norm_Src,
FpFixup::Norm_Src,
FpFixup::Norm_Src);
constexpr u64 denormal_to_zero64 = mcl::bit::replicate_element<fsize, u64>(denormal_to_zero);
FCODE(vmovap)(tmp, code.MConst(xword, u64(denormal_to_zero64), u64(denormal_to_zero64)));
for (const Xbyak::Xmm& xmm : to_daz) {
FCODE(vfixupimmp)(xmm, xmm, tmp, u8(0));
}
return;
}
if (fpcr.RMode() != FP::RoundingMode::TowardsMinusInfinity) { if (fpcr.RMode() != FP::RoundingMode::TowardsMinusInfinity) {
code.movaps(tmp, GetNegativeZeroVector<fsize>(code)); code.movaps(tmp, GetNegativeZeroVector<fsize>(code));
} else { } else {

View file

@ -28,19 +28,22 @@ IR::Block TranslateArm(LocationDescriptor descriptor, TranslateCallbacks* tcb, c
bool should_continue = true; bool should_continue = true;
do { do {
const u32 arm_pc = visitor.ir.current_location.PC(); const u32 arm_pc = visitor.ir.current_location.PC();
const u32 arm_instruction = tcb->MemoryReadCode(arm_pc);
visitor.current_instruction_size = 4; visitor.current_instruction_size = 4;
tcb->PreCodeTranslationHook(false, arm_pc, visitor.ir); if (const auto arm_instruction = tcb->MemoryReadCode(arm_pc)) {
tcb->PreCodeTranslationHook(false, arm_pc, visitor.ir);
if (const auto vfp_decoder = DecodeVFP<TranslatorVisitor>(arm_instruction)) { if (const auto vfp_decoder = DecodeVFP<TranslatorVisitor>(*arm_instruction)) {
should_continue = vfp_decoder->get().call(visitor, arm_instruction); should_continue = vfp_decoder->get().call(visitor, *arm_instruction);
} else if (const auto asimd_decoder = DecodeASIMD<TranslatorVisitor>(arm_instruction)) { } else if (const auto asimd_decoder = DecodeASIMD<TranslatorVisitor>(*arm_instruction)) {
should_continue = asimd_decoder->get().call(visitor, arm_instruction); should_continue = asimd_decoder->get().call(visitor, *arm_instruction);
} else if (const auto decoder = DecodeArm<TranslatorVisitor>(arm_instruction)) { } else if (const auto decoder = DecodeArm<TranslatorVisitor>(*arm_instruction)) {
should_continue = decoder->get().call(visitor, arm_instruction); should_continue = decoder->get().call(visitor, *arm_instruction);
} else {
should_continue = visitor.arm_UDF();
}
} else { } else {
should_continue = visitor.arm_UDF(); should_continue = visitor.RaiseException(Exception::NoExecuteFault);
} }
if (visitor.cond_state == ConditionalState::Break) { if (visitor.cond_state == ConditionalState::Break) {

View file

@ -4,18 +4,19 @@
*/ */
#pragma once #pragma once
#include <mcl/stdint.hpp> #include <cstdint>
#include <optional>
namespace Dynarmic::A32 { namespace Dynarmic::A32 {
using VAddr = u32; using VAddr = std::uint32_t;
class IREmitter; class IREmitter;
struct TranslateCallbacks { struct TranslateCallbacks {
// All reads through this callback are 4-byte aligned. // All reads through this callback are 4-byte aligned.
// Memory must be interpreted as little endian. // Memory must be interpreted as little endian.
virtual std::uint32_t MemoryReadCode(VAddr vaddr) = 0; virtual std::optional<std::uint32_t> MemoryReadCode(VAddr vaddr) = 0;
// Thus function is called before the instruction at pc is interpreted. // Thus function is called before the instruction at pc is interpreted.
// IR code can be emitted by the callee prior to translation of the instruction. // IR code can be emitted by the callee prior to translation of the instruction.

View file

@ -44,28 +44,40 @@ bool IsUnconditionalInstruction(bool is_thumb_16, u32 instruction) {
return false; return false;
} }
std::tuple<u32, ThumbInstSize> ReadThumbInstruction(u32 arm_pc, TranslateCallbacks* tcb) { std::optional<std::tuple<u32, ThumbInstSize>> ReadThumbInstruction(u32 arm_pc, TranslateCallbacks* tcb) {
u32 first_part = tcb->MemoryReadCode(arm_pc & 0xFFFFFFFC); u32 instruction;
if ((arm_pc & 0x2) != 0) {
first_part >>= 16;
}
first_part &= 0xFFFF;
if (IsThumb16(static_cast<u16>(first_part))) { const std::optional<u32> first_part = tcb->MemoryReadCode(arm_pc & 0xFFFFFFFC);
if (!first_part)
return std::nullopt;
if ((arm_pc & 0x2) != 0) {
instruction = *first_part >> 16;
} else {
instruction = *first_part & 0xFFFF;
}
if (IsThumb16(static_cast<u16>(instruction))) {
// 16-bit thumb instruction // 16-bit thumb instruction
return std::make_tuple(first_part, ThumbInstSize::Thumb16); return std::make_tuple(instruction, ThumbInstSize::Thumb16);
} }
// 32-bit thumb instruction // 32-bit thumb instruction
// These always start with 0b11101, 0b11110 or 0b11111. // These always start with 0b11101, 0b11110 or 0b11111.
u32 second_part = tcb->MemoryReadCode((arm_pc + 2) & 0xFFFFFFFC); instruction <<= 16;
if (((arm_pc + 2) & 0x2) != 0) {
second_part >>= 16;
}
second_part &= 0xFFFF;
return std::make_tuple(static_cast<u32>((first_part << 16) | second_part), ThumbInstSize::Thumb32); const std::optional<u32> second_part = tcb->MemoryReadCode((arm_pc + 2) & 0xFFFFFFFC);
if (!second_part)
return std::nullopt;
if (((arm_pc + 2) & 0x2) != 0) {
instruction |= *second_part >> 16;
} else {
instruction |= *second_part & 0xFFFF;
}
return std::make_tuple(instruction, ThumbInstSize::Thumb32);
} }
// Convert from thumb ASIMD format to ARM ASIMD format. // Convert from thumb ASIMD format to ARM ASIMD format.
@ -97,43 +109,48 @@ IR::Block TranslateThumb(LocationDescriptor descriptor, TranslateCallbacks* tcb,
bool should_continue = true; bool should_continue = true;
do { do {
const u32 arm_pc = visitor.ir.current_location.PC(); const u32 arm_pc = visitor.ir.current_location.PC();
const auto [thumb_instruction, inst_size] = ReadThumbInstruction(arm_pc, tcb); if (const auto maybe_instruction = ReadThumbInstruction(arm_pc, tcb)) {
const bool is_thumb_16 = inst_size == ThumbInstSize::Thumb16; const auto [thumb_instruction, inst_size] = *maybe_instruction;
visitor.current_instruction_size = is_thumb_16 ? 2 : 4; const bool is_thumb_16 = inst_size == ThumbInstSize::Thumb16;
visitor.current_instruction_size = is_thumb_16 ? 2 : 4;
tcb->PreCodeTranslationHook(false, arm_pc, visitor.ir); tcb->PreCodeTranslationHook(false, arm_pc, visitor.ir);
if (IsUnconditionalInstruction(is_thumb_16, thumb_instruction) || visitor.ThumbConditionPassed()) { if (IsUnconditionalInstruction(is_thumb_16, thumb_instruction) || visitor.ThumbConditionPassed()) {
if (is_thumb_16) { if (is_thumb_16) {
if (const auto decoder = DecodeThumb16<TranslatorVisitor>(static_cast<u16>(thumb_instruction))) { if (const auto decoder = DecodeThumb16<TranslatorVisitor>(static_cast<u16>(thumb_instruction))) {
should_continue = decoder->get().call(visitor, static_cast<u16>(thumb_instruction)); should_continue = decoder->get().call(visitor, static_cast<u16>(thumb_instruction));
} else {
should_continue = visitor.thumb16_UDF();
}
} else { } else {
should_continue = visitor.thumb16_UDF(); if (MaybeVFPOrASIMDInstruction(thumb_instruction)) {
} if (const auto vfp_decoder = DecodeVFP<TranslatorVisitor>(thumb_instruction)) {
} else { should_continue = vfp_decoder->get().call(visitor, thumb_instruction);
if (MaybeVFPOrASIMDInstruction(thumb_instruction)) { } else if (const auto asimd_decoder = DecodeASIMD<TranslatorVisitor>(ConvertASIMDInstruction(thumb_instruction))) {
if (const auto vfp_decoder = DecodeVFP<TranslatorVisitor>(thumb_instruction)) { should_continue = asimd_decoder->get().call(visitor, ConvertASIMDInstruction(thumb_instruction));
should_continue = vfp_decoder->get().call(visitor, thumb_instruction); } else if (const auto decoder = DecodeThumb32<TranslatorVisitor>(thumb_instruction)) {
} else if (const auto asimd_decoder = DecodeASIMD<TranslatorVisitor>(ConvertASIMDInstruction(thumb_instruction))) { should_continue = decoder->get().call(visitor, thumb_instruction);
should_continue = asimd_decoder->get().call(visitor, ConvertASIMDInstruction(thumb_instruction)); } else {
should_continue = visitor.thumb32_UDF();
}
} else if (const auto decoder = DecodeThumb32<TranslatorVisitor>(thumb_instruction)) { } else if (const auto decoder = DecodeThumb32<TranslatorVisitor>(thumb_instruction)) {
should_continue = decoder->get().call(visitor, thumb_instruction); should_continue = decoder->get().call(visitor, thumb_instruction);
} else { } else {
should_continue = visitor.thumb32_UDF(); should_continue = visitor.thumb32_UDF();
} }
} else if (const auto decoder = DecodeThumb32<TranslatorVisitor>(thumb_instruction)) {
should_continue = decoder->get().call(visitor, thumb_instruction);
} else {
should_continue = visitor.thumb32_UDF();
} }
} }
} else {
visitor.current_instruction_size = 2;
should_continue = visitor.RaiseException(Exception::NoExecuteFault);
} }
if (visitor.cond_state == ConditionalState::Break) { if (visitor.cond_state == ConditionalState::Break) {
break; break;
} }
visitor.ir.current_location = visitor.ir.current_location.AdvancePC(is_thumb_16 ? 2 : 4).AdvanceIT(); visitor.ir.current_location = visitor.ir.current_location.AdvancePC(static_cast<int>(visitor.current_instruction_size)).AdvanceIT();
block.CycleCount()++; block.CycleCount()++;
} while (should_continue && CondCanContinue(visitor.cond_state, visitor.ir) && !single_step); } while (should_continue && CondCanContinue(visitor.cond_state, visitor.ir) && !single_step);

View file

@ -22,12 +22,15 @@ IR::Block Translate(LocationDescriptor descriptor, MemoryReadCodeFuncType memory
bool should_continue = true; bool should_continue = true;
do { do {
const u64 pc = visitor.ir.current_location->PC(); const u64 pc = visitor.ir.current_location->PC();
const u32 instruction = memory_read_code(pc);
if (auto decoder = Decode<TranslatorVisitor>(instruction)) { if (const auto instruction = memory_read_code(pc)) {
should_continue = decoder->get().call(visitor, instruction); if (auto decoder = Decode<TranslatorVisitor>(*instruction)) {
should_continue = decoder->get().call(visitor, *instruction);
} else {
should_continue = visitor.InterpretThisInstruction();
}
} else { } else {
should_continue = visitor.InterpretThisInstruction(); should_continue = visitor.RaiseException(Exception::NoExecuteFault);
} }
visitor.ir.current_location = visitor.ir.current_location->AdvancePC(4); visitor.ir.current_location = visitor.ir.current_location->AdvancePC(4);

View file

@ -5,6 +5,7 @@
#pragma once #pragma once
#include <functional> #include <functional>
#include <optional>
#include <mcl/stdint.hpp> #include <mcl/stdint.hpp>
@ -18,7 +19,7 @@ namespace A64 {
class LocationDescriptor; class LocationDescriptor;
using MemoryReadCodeFuncType = std::function<u32(u64 vaddr)>; using MemoryReadCodeFuncType = std::function<std::optional<u32>(u64 vaddr)>;
struct TranslationOptions { struct TranslationOptions {
/// This changes what IR we emit when we translate an unpredictable instruction. /// This changes what IR we emit when we translate an unpredictable instruction.

View file

@ -9,6 +9,7 @@
#include <cstddef> #include <cstddef>
#include <cstdint> #include <cstdint>
#include <memory> #include <memory>
#include <optional>
#include "dynarmic/frontend/A32/translate/translate_callbacks.h" #include "dynarmic/frontend/A32/translate/translate_callbacks.h"
#include "dynarmic/interface/A32/arch_version.h" #include "dynarmic/interface/A32/arch_version.h"
@ -51,6 +52,9 @@ enum class Exception {
PreloadDataWithIntentToWrite, PreloadDataWithIntentToWrite,
/// A PLI instruction was executed. (Hint instruction.) /// A PLI instruction was executed. (Hint instruction.)
PreloadInstruction, PreloadInstruction,
/// Attempted to execute a code block at an address for which MemoryReadCode returned std::nullopt.
/// (Intended to be used to emulate memory protection faults.)
NoExecuteFault,
}; };
/// These function pointers may be inserted into compiled code. /// These function pointers may be inserted into compiled code.
@ -59,7 +63,7 @@ struct UserCallbacks : public TranslateCallbacks {
// All reads through this callback are 4-byte aligned. // All reads through this callback are 4-byte aligned.
// Memory must be interpreted as little endian. // Memory must be interpreted as little endian.
std::uint32_t MemoryReadCode(VAddr vaddr) override { return MemoryRead32(vaddr); } std::optional<std::uint32_t> MemoryReadCode(VAddr vaddr) override { return MemoryRead32(vaddr); }
// Thus function is called before the instruction at pc is interpreted. // Thus function is called before the instruction at pc is interpreted.
// IR code can be emitted by the callee prior to translation of the instruction. // IR code can be emitted by the callee prior to translation of the instruction.

View file

@ -9,6 +9,7 @@
#include <cstddef> #include <cstddef>
#include <cstdint> #include <cstdint>
#include <memory> #include <memory>
#include <optional>
#include "dynarmic/interface/optimization_flags.h" #include "dynarmic/interface/optimization_flags.h"
@ -45,6 +46,9 @@ enum class Exception {
Yield, Yield,
/// A BRK instruction was executed. (Hint instruction.) /// A BRK instruction was executed. (Hint instruction.)
Breakpoint, Breakpoint,
/// Attempted to execute a code block at an address for which MemoryReadCode returned std::nullopt.
/// (Intended to be used to emulate memory protection faults.)
NoExecuteFault,
}; };
enum class DataCacheOperation { enum class DataCacheOperation {
@ -82,7 +86,7 @@ struct UserCallbacks {
// All reads through this callback are 4-byte aligned. // All reads through this callback are 4-byte aligned.
// Memory must be interpreted as little endian. // Memory must be interpreted as little endian.
virtual std::uint32_t MemoryReadCode(VAddr vaddr) { return MemoryRead32(vaddr); } virtual std::optional<std::uint32_t> MemoryReadCode(VAddr vaddr) { return MemoryRead32(vaddr); }
// Reads through these callbacks may not be aligned. // Reads through these callbacks may not be aligned.
virtual std::uint8_t MemoryRead8(VAddr vaddr) = 0; virtual std::uint8_t MemoryRead8(VAddr vaddr) = 0;

View file

@ -16,10 +16,12 @@ namespace Dynarmic::Optimization {
void A64MergeInterpretBlocksPass(IR::Block& block, A64::UserCallbacks* cb) { void A64MergeInterpretBlocksPass(IR::Block& block, A64::UserCallbacks* cb) {
const auto is_interpret_instruction = [cb](A64::LocationDescriptor location) { const auto is_interpret_instruction = [cb](A64::LocationDescriptor location) {
const u32 instruction = cb->MemoryReadCode(location.PC()); const auto instruction = cb->MemoryReadCode(location.PC());
if (!instruction)
return false;
IR::Block new_block{location}; IR::Block new_block{location};
A64::TranslateSingleInstruction(new_block, location, instruction); A64::TranslateSingleInstruction(new_block, location, *instruction);
if (!new_block.Instructions().empty()) if (!new_block.Instructions().empty())
return false; return false;

View file

@ -48,7 +48,7 @@ public:
return vaddr < sizeof(InstructionType) * code_mem.size(); return vaddr < sizeof(InstructionType) * code_mem.size();
} }
std::uint32_t MemoryReadCode(u32 vaddr) override { std::optional<std::uint32_t> MemoryReadCode(u32 vaddr) override {
if (IsInCodeMem(vaddr)) { if (IsInCodeMem(vaddr)) {
u32 value; u32 value;
std::memcpy(&value, &code_mem[vaddr / sizeof(InstructionType)], sizeof(u32)); std::memcpy(&value, &code_mem[vaddr / sizeof(InstructionType)], sizeof(u32));
@ -95,11 +95,11 @@ public:
MemoryWrite32(vaddr + 4, static_cast<u32>(value >> 32)); MemoryWrite32(vaddr + 4, static_cast<u32>(value >> 32));
} }
void InterpreterFallback(u32 pc, size_t num_instructions) override { ASSERT_MSG(false, "InterpreterFallback({:08x}, {}) code = {:08x}", pc, num_instructions, MemoryReadCode(pc)); } void InterpreterFallback(u32 pc, size_t num_instructions) override { ASSERT_MSG(false, "InterpreterFallback({:08x}, {}) code = {:08x}", pc, num_instructions, *MemoryReadCode(pc)); }
void CallSVC(std::uint32_t swi) override { ASSERT_MSG(false, "CallSVC({})", swi); } void CallSVC(std::uint32_t swi) override { ASSERT_MSG(false, "CallSVC({})", swi); }
void ExceptionRaised(u32 pc, Dynarmic::A32::Exception /*exception*/) override { ASSERT_MSG(false, "ExceptionRaised({:08x}) code = {:08x}", pc, MemoryReadCode(pc)); } void ExceptionRaised(u32 pc, Dynarmic::A32::Exception /*exception*/) override { ASSERT_MSG(false, "ExceptionRaised({:08x}) code = {:08x}", pc, *MemoryReadCode(pc)); }
void AddTicks(std::uint64_t ticks) override { void AddTicks(std::uint64_t ticks) override {
if (ticks > ticks_left) { if (ticks > ticks_left) {
@ -135,7 +135,7 @@ public:
memcpy(backing_memory + vaddr, &value, sizeof(T)); memcpy(backing_memory + vaddr, &value, sizeof(T));
} }
std::uint32_t MemoryReadCode(std::uint32_t vaddr) override { std::optional<std::uint32_t> MemoryReadCode(std::uint32_t vaddr) override {
return read<std::uint32_t>(vaddr); return read<std::uint32_t>(vaddr);
} }

View file

@ -30,7 +30,7 @@ public:
return vaddr >= code_mem_start_address && vaddr < code_mem_start_address + code_mem.size() * 4; return vaddr >= code_mem_start_address && vaddr < code_mem_start_address + code_mem.size() * 4;
} }
std::uint32_t MemoryReadCode(u64 vaddr) override { std::optional<std::uint32_t> MemoryReadCode(u64 vaddr) override {
if (!IsInCodeMem(vaddr)) { if (!IsInCodeMem(vaddr)) {
return 0x14000000; // B . return 0x14000000; // B .
} }
@ -145,7 +145,7 @@ public:
memcpy(backing_memory + vaddr, &value, sizeof(T)); memcpy(backing_memory + vaddr, &value, sizeof(T));
} }
std::uint32_t MemoryReadCode(u64 vaddr) override { std::optional<std::uint32_t> MemoryReadCode(u64 vaddr) override {
return read<std::uint32_t>(vaddr); return read<std::uint32_t>(vaddr);
} }

View file

@ -157,7 +157,7 @@ public:
} }
void InterpreterFallback(u32 pc, size_t num_instructions) override { void InterpreterFallback(u32 pc, size_t num_instructions) override {
fmt::print("> InterpreterFallback({:08x}, {}) code = {:08x}\n", pc, num_instructions, MemoryReadCode(pc)); fmt::print("> InterpreterFallback({:08x}, {}) code = {:08x}\n", pc, num_instructions, *MemoryReadCode(pc));
} }
void CallSVC(std::uint32_t swi) override { void CallSVC(std::uint32_t swi) override {
fmt::print("> CallSVC({})\n", swi); fmt::print("> CallSVC({})\n", swi);

View file

@ -52,7 +52,7 @@ void A32Unicorn<TestEnvironment>::Run() {
return; return;
} }
if (auto cerr_ = uc_emu_start(uc, pc, END_ADDRESS, 0, 1)) { if (auto cerr_ = uc_emu_start(uc, pc, END_ADDRESS, 0, 1)) {
fmt::print("uc_emu_start failed @ {:08x} (code = {:08x}) with error {} ({})", pc, testenv.MemoryReadCode(pc), cerr_, uc_strerror(cerr_)); fmt::print("uc_emu_start failed @ {:08x} (code = {:08x}) with error {} ({})", pc, *testenv.MemoryReadCode(pc), cerr_, uc_strerror(cerr_));
throw "A32Unicorn::Run() failure"; throw "A32Unicorn::Run() failure";
} }
testenv.ticks_left--; testenv.ticks_left--;

View file

@ -95,7 +95,7 @@ void ARM_Interface::Run() {
using Kernel::SuspendType; using Kernel::SuspendType;
while (true) { while (true) {
Kernel::KThread* current_thread{system.Kernel().CurrentScheduler()->GetCurrentThread()}; Kernel::KThread* current_thread{Kernel::GetCurrentThreadPointer(system.Kernel())};
Dynarmic::HaltReason hr{}; Dynarmic::HaltReason hr{};
// Notify the debugger and go to sleep if a step was performed // Notify the debugger and go to sleep if a step was performed
@ -119,16 +119,23 @@ void ARM_Interface::Run() {
} }
system.ExitDynarmicProfile(); system.ExitDynarmicProfile();
// Notify the debugger and go to sleep if a breakpoint was hit. // Notify the debugger and go to sleep if a breakpoint was hit,
if (Has(hr, breakpoint)) { // or if the thread is unable to continue for any reason.
if (Has(hr, breakpoint) || Has(hr, no_execute)) {
RewindBreakpointInstruction(); RewindBreakpointInstruction();
system.GetDebugger().NotifyThreadStopped(current_thread); if (system.DebuggerEnabled()) {
current_thread->RequestSuspend(SuspendType::Debug); system.GetDebugger().NotifyThreadStopped(current_thread);
}
current_thread->RequestSuspend(Kernel::SuspendType::Debug);
break; break;
} }
// Notify the debugger and go to sleep if a watchpoint was hit.
if (Has(hr, watchpoint)) { if (Has(hr, watchpoint)) {
RewindBreakpointInstruction(); RewindBreakpointInstruction();
system.GetDebugger().NotifyThreadWatchpoint(current_thread, *HaltedWatchpoint()); if (system.DebuggerEnabled()) {
system.GetDebugger().NotifyThreadWatchpoint(current_thread, *HaltedWatchpoint());
}
current_thread->RequestSuspend(SuspendType::Debug); current_thread->RequestSuspend(SuspendType::Debug);
break; break;
} }

View file

@ -204,6 +204,7 @@ public:
static constexpr Dynarmic::HaltReason svc_call = Dynarmic::HaltReason::UserDefined3; static constexpr Dynarmic::HaltReason svc_call = Dynarmic::HaltReason::UserDefined3;
static constexpr Dynarmic::HaltReason breakpoint = Dynarmic::HaltReason::UserDefined4; static constexpr Dynarmic::HaltReason breakpoint = Dynarmic::HaltReason::UserDefined4;
static constexpr Dynarmic::HaltReason watchpoint = Dynarmic::HaltReason::UserDefined5; static constexpr Dynarmic::HaltReason watchpoint = Dynarmic::HaltReason::UserDefined5;
static constexpr Dynarmic::HaltReason no_execute = Dynarmic::HaltReason::UserDefined6;
protected: protected:
/// System context that this ARM interface is running under. /// System context that this ARM interface is running under.

View file

@ -48,6 +48,12 @@ public:
CheckMemoryAccess(vaddr, 8, Kernel::DebugWatchpointType::Read); CheckMemoryAccess(vaddr, 8, Kernel::DebugWatchpointType::Read);
return memory.Read64(vaddr); return memory.Read64(vaddr);
} }
std::optional<u32> MemoryReadCode(u32 vaddr) override {
if (!memory.IsValidVirtualAddressRange(vaddr, sizeof(u32))) {
return std::nullopt;
}
return MemoryRead32(vaddr);
}
void MemoryWrite8(u32 vaddr, u8 value) override { void MemoryWrite8(u32 vaddr, u8 value) override {
if (CheckMemoryAccess(vaddr, 1, Kernel::DebugWatchpointType::Write)) { if (CheckMemoryAccess(vaddr, 1, Kernel::DebugWatchpointType::Write)) {
@ -89,21 +95,28 @@ public:
void InterpreterFallback(u32 pc, std::size_t num_instructions) override { void InterpreterFallback(u32 pc, std::size_t num_instructions) override {
parent.LogBacktrace(); parent.LogBacktrace();
UNIMPLEMENTED_MSG("This should never happen, pc = {:08X}, code = {:08X}", pc, LOG_ERROR(Core_ARM,
MemoryReadCode(pc)); "Unimplemented instruction @ 0x{:X} for {} instructions (instr = {:08X})", pc,
num_instructions, MemoryRead32(pc));
} }
void ExceptionRaised(u32 pc, Dynarmic::A32::Exception exception) override { void ExceptionRaised(u32 pc, Dynarmic::A32::Exception exception) override {
if (debugger_enabled) { switch (exception) {
parent.SaveContext(parent.breakpoint_context); case Dynarmic::A32::Exception::NoExecuteFault:
parent.jit.load()->HaltExecution(ARM_Interface::breakpoint); LOG_CRITICAL(Core_ARM, "Cannot execute instruction at unmapped address {:#08x}", pc);
ReturnException(pc, ARM_Interface::no_execute);
return; return;
} default:
if (debugger_enabled) {
ReturnException(pc, ARM_Interface::breakpoint);
return;
}
parent.LogBacktrace(); parent.LogBacktrace();
LOG_CRITICAL(Core_ARM, LOG_CRITICAL(Core_ARM,
"ExceptionRaised(exception = {}, pc = {:08X}, code = {:08X}, thumb = {})", "ExceptionRaised(exception = {}, pc = {:08X}, code = {:08X}, thumb = {})",
exception, pc, MemoryReadCode(pc), parent.IsInThumbMode()); exception, pc, MemoryRead32(pc), parent.IsInThumbMode());
}
} }
void CallSVC(u32 swi) override { void CallSVC(u32 swi) override {
@ -148,15 +161,20 @@ public:
const auto match{parent.MatchingWatchpoint(addr, size, type)}; const auto match{parent.MatchingWatchpoint(addr, size, type)};
if (match) { if (match) {
parent.SaveContext(parent.breakpoint_context);
parent.jit.load()->HaltExecution(ARM_Interface::watchpoint);
parent.halted_watchpoint = match; parent.halted_watchpoint = match;
ReturnException(parent.jit.load()->Regs()[15], ARM_Interface::watchpoint);
return false; return false;
} }
return true; return true;
} }
void ReturnException(u32 pc, Dynarmic::HaltReason hr) {
parent.SaveContext(parent.breakpoint_context);
parent.breakpoint_context.cpu_registers[15] = pc;
parent.jit.load()->HaltExecution(hr);
}
ARM_Dynarmic_32& parent; ARM_Dynarmic_32& parent;
Core::Memory::Memory& memory; Core::Memory::Memory& memory;
std::size_t num_interpreted_instructions{}; std::size_t num_interpreted_instructions{};

View file

@ -52,6 +52,12 @@ public:
CheckMemoryAccess(vaddr, 16, Kernel::DebugWatchpointType::Read); CheckMemoryAccess(vaddr, 16, Kernel::DebugWatchpointType::Read);
return {memory.Read64(vaddr), memory.Read64(vaddr + 8)}; return {memory.Read64(vaddr), memory.Read64(vaddr + 8)};
} }
std::optional<u32> MemoryReadCode(u64 vaddr) override {
if (!memory.IsValidVirtualAddressRange(vaddr, sizeof(u32))) {
return std::nullopt;
}
return MemoryRead32(vaddr);
}
void MemoryWrite8(u64 vaddr, u8 value) override { void MemoryWrite8(u64 vaddr, u8 value) override {
if (CheckMemoryAccess(vaddr, 1, Kernel::DebugWatchpointType::Write)) { if (CheckMemoryAccess(vaddr, 1, Kernel::DebugWatchpointType::Write)) {
@ -105,7 +111,7 @@ public:
parent.LogBacktrace(); parent.LogBacktrace();
LOG_ERROR(Core_ARM, LOG_ERROR(Core_ARM,
"Unimplemented instruction @ 0x{:X} for {} instructions (instr = {:08X})", pc, "Unimplemented instruction @ 0x{:X} for {} instructions (instr = {:08X})", pc,
num_instructions, MemoryReadCode(pc)); num_instructions, MemoryRead32(pc));
} }
void InstructionCacheOperationRaised(Dynarmic::A64::InstructionCacheOperation op, void InstructionCacheOperationRaised(Dynarmic::A64::InstructionCacheOperation op,
@ -138,16 +144,19 @@ public:
case Dynarmic::A64::Exception::SendEventLocal: case Dynarmic::A64::Exception::SendEventLocal:
case Dynarmic::A64::Exception::Yield: case Dynarmic::A64::Exception::Yield:
return; return;
case Dynarmic::A64::Exception::NoExecuteFault:
LOG_CRITICAL(Core_ARM, "Cannot execute instruction at unmapped address {:#016x}", pc);
ReturnException(pc, ARM_Interface::no_execute);
return;
default: default:
if (debugger_enabled) { if (debugger_enabled) {
parent.SaveContext(parent.breakpoint_context); ReturnException(pc, ARM_Interface::breakpoint);
parent.jit.load()->HaltExecution(ARM_Interface::breakpoint);
return; return;
} }
parent.LogBacktrace(); parent.LogBacktrace();
ASSERT_MSG(false, "ExceptionRaised(exception = {}, pc = {:08X}, code = {:08X})", LOG_CRITICAL(Core_ARM, "ExceptionRaised(exception = {}, pc = {:08X}, code = {:08X})",
static_cast<std::size_t>(exception), pc, MemoryReadCode(pc)); static_cast<std::size_t>(exception), pc, MemoryRead32(pc));
} }
} }
@ -195,15 +204,20 @@ public:
const auto match{parent.MatchingWatchpoint(addr, size, type)}; const auto match{parent.MatchingWatchpoint(addr, size, type)};
if (match) { if (match) {
parent.SaveContext(parent.breakpoint_context);
parent.jit.load()->HaltExecution(ARM_Interface::watchpoint);
parent.halted_watchpoint = match; parent.halted_watchpoint = match;
ReturnException(parent.jit.load()->GetPC(), ARM_Interface::watchpoint);
return false; return false;
} }
return true; return true;
} }
void ReturnException(u64 pc, Dynarmic::HaltReason hr) {
parent.SaveContext(parent.breakpoint_context);
parent.breakpoint_context.pc = pc;
parent.jit.load()->HaltExecution(hr);
}
ARM_Dynarmic_64& parent; ARM_Dynarmic_64& parent;
Core::Memory::Memory& memory; Core::Memory::Memory& memory;
u64 tpidrro_el0 = 0; u64 tpidrro_el0 = 0;

View file

@ -95,7 +95,7 @@ void* CpuManager::GetStartFuncParameter() {
void CpuManager::MultiCoreRunGuestThread() { void CpuManager::MultiCoreRunGuestThread() {
auto& kernel = system.Kernel(); auto& kernel = system.Kernel();
kernel.CurrentScheduler()->OnThreadStart(); kernel.CurrentScheduler()->OnThreadStart();
auto* thread = kernel.CurrentScheduler()->GetCurrentThread(); auto* thread = kernel.CurrentScheduler()->GetSchedulerCurrentThread();
auto& host_context = thread->GetHostContext(); auto& host_context = thread->GetHostContext();
host_context->SetRewindPoint(GuestRewindFunction, this); host_context->SetRewindPoint(GuestRewindFunction, this);
MultiCoreRunGuestLoop(); MultiCoreRunGuestLoop();
@ -132,7 +132,7 @@ void CpuManager::MultiCoreRunIdleThread() {
void CpuManager::SingleCoreRunGuestThread() { void CpuManager::SingleCoreRunGuestThread() {
auto& kernel = system.Kernel(); auto& kernel = system.Kernel();
kernel.CurrentScheduler()->OnThreadStart(); kernel.CurrentScheduler()->OnThreadStart();
auto* thread = kernel.CurrentScheduler()->GetCurrentThread(); auto* thread = kernel.CurrentScheduler()->GetSchedulerCurrentThread();
auto& host_context = thread->GetHostContext(); auto& host_context = thread->GetHostContext();
host_context->SetRewindPoint(GuestRewindFunction, this); host_context->SetRewindPoint(GuestRewindFunction, this);
SingleCoreRunGuestLoop(); SingleCoreRunGuestLoop();
@ -172,7 +172,7 @@ void CpuManager::PreemptSingleCore(bool from_running_enviroment) {
{ {
auto& kernel = system.Kernel(); auto& kernel = system.Kernel();
auto& scheduler = kernel.Scheduler(current_core); auto& scheduler = kernel.Scheduler(current_core);
Kernel::KThread* current_thread = scheduler.GetCurrentThread(); Kernel::KThread* current_thread = scheduler.GetSchedulerCurrentThread();
if (idle_count >= 4 || from_running_enviroment) { if (idle_count >= 4 || from_running_enviroment) {
if (!from_running_enviroment) { if (!from_running_enviroment) {
system.CoreTiming().Idle(); system.CoreTiming().Idle();
@ -184,7 +184,7 @@ void CpuManager::PreemptSingleCore(bool from_running_enviroment) {
} }
current_core.store((current_core + 1) % Core::Hardware::NUM_CPU_CORES); current_core.store((current_core + 1) % Core::Hardware::NUM_CPU_CORES);
system.CoreTiming().ResetTicks(); system.CoreTiming().ResetTicks();
scheduler.Unload(scheduler.GetCurrentThread()); scheduler.Unload(scheduler.GetSchedulerCurrentThread());
auto& next_scheduler = kernel.Scheduler(current_core); auto& next_scheduler = kernel.Scheduler(current_core);
Common::Fiber::YieldTo(current_thread->GetHostContext(), *next_scheduler.ControlContext()); Common::Fiber::YieldTo(current_thread->GetHostContext(), *next_scheduler.ControlContext());
@ -193,10 +193,8 @@ void CpuManager::PreemptSingleCore(bool from_running_enviroment) {
// May have changed scheduler // May have changed scheduler
{ {
auto& scheduler = system.Kernel().Scheduler(current_core); auto& scheduler = system.Kernel().Scheduler(current_core);
scheduler.Reload(scheduler.GetCurrentThread()); scheduler.Reload(scheduler.GetSchedulerCurrentThread());
if (!scheduler.IsIdle()) { idle_count = 0;
idle_count = 0;
}
} }
} }
@ -237,7 +235,8 @@ void CpuManager::RunThread(std::size_t core) {
system.GPU().ObtainContext(); system.GPU().ObtainContext();
} }
auto current_thread = system.Kernel().CurrentScheduler()->GetCurrentThread(); auto* current_thread = system.Kernel().CurrentScheduler()->GetIdleThread();
Kernel::SetCurrentThread(system.Kernel(), current_thread);
Common::Fiber::YieldTo(data.host_context, *current_thread->GetHostContext()); Common::Fiber::YieldTo(data.host_context, *current_thread->GetHostContext());
} }

View file

@ -272,6 +272,7 @@ enum class VibrationDeviceType : u32 {
Unknown = 0, Unknown = 0,
LinearResonantActuator = 1, LinearResonantActuator = 1,
GcErm = 2, GcErm = 2,
N64 = 3,
}; };
// This is nn::hid::VibrationGcErmCommand // This is nn::hid::VibrationGcErmCommand

View file

@ -234,7 +234,7 @@ ResultCode KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32
ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout) { ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout) {
// Prepare to wait. // Prepare to wait.
KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread(); KThread* cur_thread = GetCurrentThreadPointer(kernel);
ThreadQueueImplForKAddressArbiter wait_queue(kernel, std::addressof(thread_tree)); ThreadQueueImplForKAddressArbiter wait_queue(kernel, std::addressof(thread_tree));
{ {
@ -287,7 +287,7 @@ ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement
ResultCode KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) { ResultCode KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) {
// Prepare to wait. // Prepare to wait.
KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread(); KThread* cur_thread = GetCurrentThreadPointer(kernel);
ThreadQueueImplForKAddressArbiter wait_queue(kernel, std::addressof(thread_tree)); ThreadQueueImplForKAddressArbiter wait_queue(kernel, std::addressof(thread_tree));
{ {

View file

@ -106,7 +106,7 @@ KConditionVariable::KConditionVariable(Core::System& system_)
KConditionVariable::~KConditionVariable() = default; KConditionVariable::~KConditionVariable() = default;
ResultCode KConditionVariable::SignalToAddress(VAddr addr) { ResultCode KConditionVariable::SignalToAddress(VAddr addr) {
KThread* owner_thread = kernel.CurrentScheduler()->GetCurrentThread(); KThread* owner_thread = GetCurrentThreadPointer(kernel);
// Signal the address. // Signal the address.
{ {
@ -147,7 +147,7 @@ ResultCode KConditionVariable::SignalToAddress(VAddr addr) {
} }
ResultCode KConditionVariable::WaitForAddress(Handle handle, VAddr addr, u32 value) { ResultCode KConditionVariable::WaitForAddress(Handle handle, VAddr addr, u32 value) {
KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread(); KThread* cur_thread = GetCurrentThreadPointer(kernel);
ThreadQueueImplForKConditionVariableWaitForAddress wait_queue(kernel); ThreadQueueImplForKConditionVariableWaitForAddress wait_queue(kernel);
// Wait for the address. // Wait for the address.

View file

@ -15,8 +15,7 @@ void HandleInterrupt(KernelCore& kernel, s32 core_id) {
return; return;
} }
auto& scheduler = kernel.Scheduler(core_id); auto& current_thread = GetCurrentThread(kernel);
auto& current_thread = *scheduler.GetCurrentThread();
// If the user disable count is set, we may need to pin the current thread. // If the user disable count is set, we may need to pin the current thread.
if (current_thread.GetUserDisableCount() && !process->GetPinnedThread(core_id)) { if (current_thread.GetUserDisableCount() && !process->GetPinnedThread(core_id)) {
@ -26,7 +25,7 @@ void HandleInterrupt(KernelCore& kernel, s32 core_id) {
process->PinCurrentThread(core_id); process->PinCurrentThread(core_id);
// Set the interrupt flag for the thread. // Set the interrupt flag for the thread.
scheduler.GetCurrentThread()->SetInterruptFlag(); GetCurrentThread(kernel).SetInterruptFlag();
} }
} }

View file

@ -176,7 +176,8 @@ void KProcess::PinCurrentThread(s32 core_id) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked()); ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Get the current thread. // Get the current thread.
KThread* cur_thread = kernel.Scheduler(static_cast<std::size_t>(core_id)).GetCurrentThread(); KThread* cur_thread =
kernel.Scheduler(static_cast<std::size_t>(core_id)).GetSchedulerCurrentThread();
// If the thread isn't terminated, pin it. // If the thread isn't terminated, pin it.
if (!cur_thread->IsTerminationRequested()) { if (!cur_thread->IsTerminationRequested()) {
@ -193,7 +194,8 @@ void KProcess::UnpinCurrentThread(s32 core_id) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked()); ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Get the current thread. // Get the current thread.
KThread* cur_thread = kernel.Scheduler(static_cast<std::size_t>(core_id)).GetCurrentThread(); KThread* cur_thread =
kernel.Scheduler(static_cast<std::size_t>(core_id)).GetSchedulerCurrentThread();
// Unpin it. // Unpin it.
cur_thread->Unpin(); cur_thread->Unpin();
@ -420,11 +422,11 @@ void KProcess::PrepareForTermination() {
ChangeStatus(ProcessStatus::Exiting); ChangeStatus(ProcessStatus::Exiting);
const auto stop_threads = [this](const std::vector<KThread*>& in_thread_list) { const auto stop_threads = [this](const std::vector<KThread*>& in_thread_list) {
for (auto& thread : in_thread_list) { for (auto* thread : in_thread_list) {
if (thread->GetOwnerProcess() != this) if (thread->GetOwnerProcess() != this)
continue; continue;
if (thread == kernel.CurrentScheduler()->GetCurrentThread()) if (thread == GetCurrentThreadPointer(kernel))
continue; continue;
// TODO(Subv): When are the other running/ready threads terminated? // TODO(Subv): When are the other running/ready threads terminated?

View file

@ -317,7 +317,7 @@ void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) {
{ {
KThread* best_thread = priority_queue.GetScheduledFront(cpu_core_id); KThread* best_thread = priority_queue.GetScheduledFront(cpu_core_id);
if (best_thread == GetCurrentThread()) { if (best_thread == GetCurrentThreadPointer(kernel)) {
best_thread = priority_queue.GetScheduledNext(cpu_core_id, best_thread); best_thread = priority_queue.GetScheduledNext(cpu_core_id, best_thread);
} }
@ -424,7 +424,7 @@ void KScheduler::YieldWithoutCoreMigration(KernelCore& kernel) {
ASSERT(kernel.CurrentProcess() != nullptr); ASSERT(kernel.CurrentProcess() != nullptr);
// Get the current thread and process. // Get the current thread and process.
KThread& cur_thread = Kernel::GetCurrentThread(kernel); KThread& cur_thread = GetCurrentThread(kernel);
KProcess& cur_process = *kernel.CurrentProcess(); KProcess& cur_process = *kernel.CurrentProcess();
// If the thread's yield count matches, there's nothing for us to do. // If the thread's yield count matches, there's nothing for us to do.
@ -463,7 +463,7 @@ void KScheduler::YieldWithCoreMigration(KernelCore& kernel) {
ASSERT(kernel.CurrentProcess() != nullptr); ASSERT(kernel.CurrentProcess() != nullptr);
// Get the current thread and process. // Get the current thread and process.
KThread& cur_thread = Kernel::GetCurrentThread(kernel); KThread& cur_thread = GetCurrentThread(kernel);
KProcess& cur_process = *kernel.CurrentProcess(); KProcess& cur_process = *kernel.CurrentProcess();
// If the thread's yield count matches, there's nothing for us to do. // If the thread's yield count matches, there's nothing for us to do.
@ -551,7 +551,7 @@ void KScheduler::YieldToAnyThread(KernelCore& kernel) {
ASSERT(kernel.CurrentProcess() != nullptr); ASSERT(kernel.CurrentProcess() != nullptr);
// Get the current thread and process. // Get the current thread and process.
KThread& cur_thread = Kernel::GetCurrentThread(kernel); KThread& cur_thread = GetCurrentThread(kernel);
KProcess& cur_process = *kernel.CurrentProcess(); KProcess& cur_process = *kernel.CurrentProcess();
// If the thread's yield count matches, there's nothing for us to do. // If the thread's yield count matches, there's nothing for us to do.
@ -642,7 +642,7 @@ KScheduler::~KScheduler() {
ASSERT(!idle_thread); ASSERT(!idle_thread);
} }
KThread* KScheduler::GetCurrentThread() const { KThread* KScheduler::GetSchedulerCurrentThread() const {
if (auto result = current_thread.load(); result) { if (auto result = current_thread.load(); result) {
return result; return result;
} }
@ -654,7 +654,7 @@ u64 KScheduler::GetLastContextSwitchTicks() const {
} }
void KScheduler::RescheduleCurrentCore() { void KScheduler::RescheduleCurrentCore() {
ASSERT(GetCurrentThread()->GetDisableDispatchCount() == 1); ASSERT(GetCurrentThread(system.Kernel()).GetDisableDispatchCount() == 1);
auto& phys_core = system.Kernel().PhysicalCore(core_id); auto& phys_core = system.Kernel().PhysicalCore(core_id);
if (phys_core.IsInterrupted()) { if (phys_core.IsInterrupted()) {
@ -665,7 +665,7 @@ void KScheduler::RescheduleCurrentCore() {
if (state.needs_scheduling.load()) { if (state.needs_scheduling.load()) {
Schedule(); Schedule();
} else { } else {
GetCurrentThread()->EnableDispatch(); GetCurrentThread(system.Kernel()).EnableDispatch();
guard.Unlock(); guard.Unlock();
} }
} }
@ -718,13 +718,18 @@ void KScheduler::Reload(KThread* thread) {
void KScheduler::SwitchContextStep2() { void KScheduler::SwitchContextStep2() {
// Load context of new thread // Load context of new thread
Reload(GetCurrentThread()); Reload(GetCurrentThreadPointer(system.Kernel()));
RescheduleCurrentCore(); RescheduleCurrentCore();
} }
void KScheduler::Schedule() {
ASSERT(GetCurrentThread(system.Kernel()).GetDisableDispatchCount() == 1);
this->ScheduleImpl();
}
void KScheduler::ScheduleImpl() { void KScheduler::ScheduleImpl() {
KThread* previous_thread = GetCurrentThread(); KThread* previous_thread = GetCurrentThreadPointer(system.Kernel());
KThread* next_thread = state.highest_priority_thread; KThread* next_thread = state.highest_priority_thread;
state.needs_scheduling.store(false); state.needs_scheduling.store(false);
@ -762,6 +767,7 @@ void KScheduler::ScheduleImpl() {
old_context = &previous_thread->GetHostContext(); old_context = &previous_thread->GetHostContext();
// Set the new thread. // Set the new thread.
SetCurrentThread(system.Kernel(), next_thread);
current_thread.store(next_thread); current_thread.store(next_thread);
guard.Unlock(); guard.Unlock();
@ -805,6 +811,7 @@ void KScheduler::SwitchToCurrent() {
} }
} }
auto thread = next_thread ? next_thread : idle_thread; auto thread = next_thread ? next_thread : idle_thread;
SetCurrentThread(system.Kernel(), thread);
Common::Fiber::YieldTo(switch_fiber, *thread->GetHostContext()); Common::Fiber::YieldTo(switch_fiber, *thread->GetHostContext());
} while (!is_switch_pending()); } while (!is_switch_pending());
} }

View file

@ -48,18 +48,13 @@ public:
void Reload(KThread* thread); void Reload(KThread* thread);
/// Gets the current running thread /// Gets the current running thread
[[nodiscard]] KThread* GetCurrentThread() const; [[nodiscard]] KThread* GetSchedulerCurrentThread() const;
/// Gets the idle thread /// Gets the idle thread
[[nodiscard]] KThread* GetIdleThread() const { [[nodiscard]] KThread* GetIdleThread() const {
return idle_thread; return idle_thread;
} }
/// Returns true if the scheduler is idle
[[nodiscard]] bool IsIdle() const {
return GetCurrentThread() == idle_thread;
}
/// Gets the timestamp for the last context switch in ticks. /// Gets the timestamp for the last context switch in ticks.
[[nodiscard]] u64 GetLastContextSwitchTicks() const; [[nodiscard]] u64 GetLastContextSwitchTicks() const;
@ -149,10 +144,7 @@ private:
void RotateScheduledQueue(s32 cpu_core_id, s32 priority); void RotateScheduledQueue(s32 cpu_core_id, s32 priority);
void Schedule() { void Schedule();
ASSERT(GetCurrentThread()->GetDisableDispatchCount() == 1);
this->ScheduleImpl();
}
/// Switches the CPU's active thread context to that of the specified thread /// Switches the CPU's active thread context to that of the specified thread
void ScheduleImpl(); void ScheduleImpl();

View file

@ -382,7 +382,7 @@ void KThread::FinishTermination() {
for (std::size_t i = 0; i < static_cast<std::size_t>(Core::Hardware::NUM_CPU_CORES); ++i) { for (std::size_t i = 0; i < static_cast<std::size_t>(Core::Hardware::NUM_CPU_CORES); ++i) {
KThread* core_thread{}; KThread* core_thread{};
do { do {
core_thread = kernel.Scheduler(i).GetCurrentThread(); core_thread = kernel.Scheduler(i).GetSchedulerCurrentThread();
} while (core_thread == this); } while (core_thread == this);
} }
} }
@ -631,7 +631,7 @@ ResultCode KThread::SetCoreMask(s32 core_id_, u64 v_affinity_mask) {
s32 thread_core; s32 thread_core;
for (thread_core = 0; thread_core < static_cast<s32>(Core::Hardware::NUM_CPU_CORES); for (thread_core = 0; thread_core < static_cast<s32>(Core::Hardware::NUM_CPU_CORES);
++thread_core) { ++thread_core) {
if (kernel.Scheduler(thread_core).GetCurrentThread() == this) { if (kernel.Scheduler(thread_core).GetSchedulerCurrentThread() == this) {
thread_is_current = true; thread_is_current = true;
break; break;
} }
@ -756,7 +756,7 @@ void KThread::WaitUntilSuspended() {
for (std::size_t i = 0; i < static_cast<std::size_t>(Core::Hardware::NUM_CPU_CORES); ++i) { for (std::size_t i = 0; i < static_cast<std::size_t>(Core::Hardware::NUM_CPU_CORES); ++i) {
KThread* core_thread{}; KThread* core_thread{};
do { do {
core_thread = kernel.Scheduler(i).GetCurrentThread(); core_thread = kernel.Scheduler(i).GetSchedulerCurrentThread();
} while (core_thread == this); } while (core_thread == this);
} }
} }
@ -822,7 +822,7 @@ ResultCode KThread::SetActivity(Svc::ThreadActivity activity) {
// Check if the thread is currently running. // Check if the thread is currently running.
// If it is, we'll need to retry. // If it is, we'll need to retry.
for (auto i = 0; i < static_cast<s32>(Core::Hardware::NUM_CPU_CORES); ++i) { for (auto i = 0; i < static_cast<s32>(Core::Hardware::NUM_CPU_CORES); ++i) {
if (kernel.Scheduler(i).GetCurrentThread() == this) { if (kernel.Scheduler(i).GetSchedulerCurrentThread() == this) {
thread_is_current = true; thread_is_current = true;
break; break;
} }
@ -1175,6 +1175,10 @@ std::shared_ptr<Common::Fiber>& KThread::GetHostContext() {
return host_context; return host_context;
} }
void SetCurrentThread(KernelCore& kernel, KThread* thread) {
kernel.SetCurrentEmuThread(thread);
}
KThread* GetCurrentThreadPointer(KernelCore& kernel) { KThread* GetCurrentThreadPointer(KernelCore& kernel) {
return kernel.GetCurrentEmuThread(); return kernel.GetCurrentEmuThread();
} }

View file

@ -106,6 +106,7 @@ enum class StepState : u32 {
StepPerformed, ///< Thread has stepped, waiting to be scheduled again StepPerformed, ///< Thread has stepped, waiting to be scheduled again
}; };
void SetCurrentThread(KernelCore& kernel, KThread* thread);
[[nodiscard]] KThread* GetCurrentThreadPointer(KernelCore& kernel); [[nodiscard]] KThread* GetCurrentThreadPointer(KernelCore& kernel);
[[nodiscard]] KThread& GetCurrentThread(KernelCore& kernel); [[nodiscard]] KThread& GetCurrentThread(KernelCore& kernel);
[[nodiscard]] s32 GetCurrentCoreId(KernelCore& kernel); [[nodiscard]] s32 GetCurrentCoreId(KernelCore& kernel);

View file

@ -331,6 +331,8 @@ struct KernelCore::Impl {
return is_shutting_down.load(std::memory_order_relaxed); return is_shutting_down.load(std::memory_order_relaxed);
} }
static inline thread_local KThread* current_thread{nullptr};
KThread* GetCurrentEmuThread() { KThread* GetCurrentEmuThread() {
// If we are shutting down the kernel, none of this is relevant anymore. // If we are shutting down the kernel, none of this is relevant anymore.
if (IsShuttingDown()) { if (IsShuttingDown()) {
@ -341,7 +343,12 @@ struct KernelCore::Impl {
if (thread_id >= Core::Hardware::NUM_CPU_CORES) { if (thread_id >= Core::Hardware::NUM_CPU_CORES) {
return GetHostDummyThread(); return GetHostDummyThread();
} }
return schedulers[thread_id]->GetCurrentThread();
return current_thread;
}
void SetCurrentEmuThread(KThread* thread) {
current_thread = thread;
} }
void DeriveInitialMemoryLayout() { void DeriveInitialMemoryLayout() {
@ -1024,6 +1031,10 @@ KThread* KernelCore::GetCurrentEmuThread() const {
return impl->GetCurrentEmuThread(); return impl->GetCurrentEmuThread();
} }
void KernelCore::SetCurrentEmuThread(KThread* thread) {
impl->SetCurrentEmuThread(thread);
}
KMemoryManager& KernelCore::MemoryManager() { KMemoryManager& KernelCore::MemoryManager() {
return *impl->memory_manager; return *impl->memory_manager;
} }

View file

@ -226,6 +226,9 @@ public:
/// Gets the current host_thread/guest_thread pointer. /// Gets the current host_thread/guest_thread pointer.
KThread* GetCurrentEmuThread() const; KThread* GetCurrentEmuThread() const;
/// Sets the current guest_thread pointer.
void SetCurrentEmuThread(KThread* thread);
/// Gets the current host_thread handle. /// Gets the current host_thread handle.
u32 GetCurrentHostThreadID() const; u32 GetCurrentHostThreadID() const;

View file

@ -327,7 +327,6 @@ static ResultCode SendSyncRequest(Core::System& system, Handle handle) {
LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}({})", handle, session->GetName()); LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}({})", handle, session->GetName());
auto thread = kernel.CurrentScheduler()->GetCurrentThread();
{ {
KScopedSchedulerLock lock(kernel); KScopedSchedulerLock lock(kernel);
@ -337,7 +336,7 @@ static ResultCode SendSyncRequest(Core::System& system, Handle handle) {
session->SendSyncRequest(&GetCurrentThread(kernel), system.Memory(), system.CoreTiming()); session->SendSyncRequest(&GetCurrentThread(kernel), system.Memory(), system.CoreTiming());
} }
return thread->GetWaitResult(); return GetCurrentThread(kernel).GetWaitResult();
} }
static ResultCode SendSyncRequest32(Core::System& system, Handle handle) { static ResultCode SendSyncRequest32(Core::System& system, Handle handle) {
@ -624,7 +623,7 @@ static void Break(Core::System& system, u32 reason, u64 info1, u64 info2) {
handle_debug_buffer(info1, info2); handle_debug_buffer(info1, info2);
auto* const current_thread = system.Kernel().CurrentScheduler()->GetCurrentThread(); auto* const current_thread = GetCurrentThreadPointer(system.Kernel());
const auto thread_processor_id = current_thread->GetActiveCore(); const auto thread_processor_id = current_thread->GetActiveCore();
system.ArmInterface(static_cast<std::size_t>(thread_processor_id)).LogBacktrace(); system.ArmInterface(static_cast<std::size_t>(thread_processor_id)).LogBacktrace();
} }
@ -884,7 +883,7 @@ static ResultCode GetInfo(Core::System& system, u64* result, u64 info_id, Handle
const auto& core_timing = system.CoreTiming(); const auto& core_timing = system.CoreTiming();
const auto& scheduler = *system.Kernel().CurrentScheduler(); const auto& scheduler = *system.Kernel().CurrentScheduler();
const auto* const current_thread = scheduler.GetCurrentThread(); const auto* const current_thread = GetCurrentThreadPointer(system.Kernel());
const bool same_thread = current_thread == thread.GetPointerUnsafe(); const bool same_thread = current_thread == thread.GetPointerUnsafe();
const u64 prev_ctx_ticks = scheduler.GetLastContextSwitchTicks(); const u64 prev_ctx_ticks = scheduler.GetLastContextSwitchTicks();
@ -1103,7 +1102,7 @@ static ResultCode GetThreadContext(Core::System& system, VAddr out_context, Hand
if (thread->GetRawState() != ThreadState::Runnable) { if (thread->GetRawState() != ThreadState::Runnable) {
bool current = false; bool current = false;
for (auto i = 0; i < static_cast<s32>(Core::Hardware::NUM_CPU_CORES); ++i) { for (auto i = 0; i < static_cast<s32>(Core::Hardware::NUM_CPU_CORES); ++i) {
if (thread.GetPointerUnsafe() == kernel.Scheduler(i).GetCurrentThread()) { if (thread.GetPointerUnsafe() == kernel.Scheduler(i).GetSchedulerCurrentThread()) {
current = true; current = true;
break; break;
} }
@ -1851,7 +1850,7 @@ static ResultCode StartThread32(Core::System& system, Handle thread_handle) {
static void ExitThread(Core::System& system) { static void ExitThread(Core::System& system) {
LOG_DEBUG(Kernel_SVC, "called, pc=0x{:08X}", system.CurrentArmInterface().GetPC()); LOG_DEBUG(Kernel_SVC, "called, pc=0x{:08X}", system.CurrentArmInterface().GetPC());
auto* const current_thread = system.Kernel().CurrentScheduler()->GetCurrentThread(); auto* const current_thread = GetCurrentThreadPointer(system.Kernel());
system.GlobalSchedulerContext().RemoveThread(current_thread); system.GlobalSchedulerContext().RemoveThread(current_thread);
current_thread->Exit(); current_thread->Exit();
system.Kernel().UnregisterInUseObject(current_thread); system.Kernel().UnregisterInUseObject(current_thread);
@ -2993,7 +2992,7 @@ void Call(Core::System& system, u32 immediate) {
auto& kernel = system.Kernel(); auto& kernel = system.Kernel();
kernel.EnterSVCProfile(); kernel.EnterSVCProfile();
auto* thread = kernel.CurrentScheduler()->GetCurrentThread(); auto* thread = GetCurrentThreadPointer(kernel);
thread->SetIsCallingSvc(); thread->SetIsCallingSvc();
const FunctionDef* info = system.CurrentProcess()->Is64BitProcess() ? GetSVCInfo64(immediate) const FunctionDef* info = system.CurrentProcess()->Is64BitProcess() ? GetSVCInfo64(immediate)

View file

@ -49,28 +49,42 @@ bool Controller_NPad::IsNpadIdValid(Core::HID::NpadIdType npad_id) {
} }
} }
bool Controller_NPad::IsDeviceHandleValid(const Core::HID::VibrationDeviceHandle& device_handle) { ResultCode Controller_NPad::IsDeviceHandleValid(
const Core::HID::VibrationDeviceHandle& device_handle) {
const auto npad_id = IsNpadIdValid(static_cast<Core::HID::NpadIdType>(device_handle.npad_id)); const auto npad_id = IsNpadIdValid(static_cast<Core::HID::NpadIdType>(device_handle.npad_id));
const bool npad_type = device_handle.npad_type < Core::HID::NpadStyleIndex::MaxNpadType; const bool npad_type = device_handle.npad_type < Core::HID::NpadStyleIndex::MaxNpadType;
const bool device_index = device_handle.device_index < Core::HID::DeviceIndex::MaxDeviceIndex; const bool device_index = device_handle.device_index < Core::HID::DeviceIndex::MaxDeviceIndex;
return npad_id && npad_type && device_index;
if (npad_type) {
return VibrationInvalidStyleIndex;
}
if (npad_id) {
return VibrationInvalidNpadId;
}
if (device_index) {
return VibrationDeviceIndexOutOfRange;
}
return ResultSuccess;
} }
ResultCode Controller_NPad::VerifyValidSixAxisSensorHandle( ResultCode Controller_NPad::VerifyValidSixAxisSensorHandle(
const Core::HID::SixAxisSensorHandle& device_handle) { const Core::HID::SixAxisSensorHandle& device_handle) {
const auto npad_id = IsNpadIdValid(static_cast<Core::HID::NpadIdType>(device_handle.npad_id)); const auto npad_id = IsNpadIdValid(static_cast<Core::HID::NpadIdType>(device_handle.npad_id));
const bool device_index = device_handle.device_index < Core::HID::DeviceIndex::MaxDeviceIndex;
const bool npad_type = device_handle.npad_type < Core::HID::NpadStyleIndex::MaxNpadType;
if (!npad_id) { if (!npad_id) {
return InvalidNpadId; return InvalidNpadId;
} }
const bool device_index = device_handle.device_index < Core::HID::DeviceIndex::MaxDeviceIndex;
if (!device_index) { if (!device_index) {
return NpadDeviceIndexOutOfRange; return NpadDeviceIndexOutOfRange;
} }
// This doesn't get validated on nnsdk // This doesn't get validated on nnsdk
const bool npad_type = device_handle.npad_type < Core::HID::NpadStyleIndex::MaxNpadType;
if (!npad_type) { if (!npad_type) {
return NpadInvalidHandle; return NpadInvalidHandle;
} }
return ResultSuccess; return ResultSuccess;
} }
@ -705,6 +719,12 @@ Controller_NPad::NpadJoyHoldType Controller_NPad::GetHoldType() const {
} }
void Controller_NPad::SetNpadHandheldActivationMode(NpadHandheldActivationMode activation_mode) { void Controller_NPad::SetNpadHandheldActivationMode(NpadHandheldActivationMode activation_mode) {
if (activation_mode != NpadHandheldActivationMode::None &&
activation_mode != NpadHandheldActivationMode::Single) {
ASSERT_MSG(false, "Activation mode should be always None or Single");
return;
}
handheld_activation_mode = activation_mode; handheld_activation_mode = activation_mode;
} }
@ -840,7 +860,7 @@ bool Controller_NPad::VibrateControllerAtIndex(Core::HID::NpadIdType npad_id,
void Controller_NPad::VibrateController( void Controller_NPad::VibrateController(
const Core::HID::VibrationDeviceHandle& vibration_device_handle, const Core::HID::VibrationDeviceHandle& vibration_device_handle,
const Core::HID::VibrationValue& vibration_value) { const Core::HID::VibrationValue& vibration_value) {
if (!IsDeviceHandleValid(vibration_device_handle)) { if (IsDeviceHandleValid(vibration_device_handle).IsError()) {
return; return;
} }
@ -903,7 +923,7 @@ void Controller_NPad::VibrateControllers(
Core::HID::VibrationValue Controller_NPad::GetLastVibration( Core::HID::VibrationValue Controller_NPad::GetLastVibration(
const Core::HID::VibrationDeviceHandle& vibration_device_handle) const { const Core::HID::VibrationDeviceHandle& vibration_device_handle) const {
if (!IsDeviceHandleValid(vibration_device_handle)) { if (IsDeviceHandleValid(vibration_device_handle).IsError()) {
return {}; return {};
} }
@ -914,7 +934,7 @@ Core::HID::VibrationValue Controller_NPad::GetLastVibration(
void Controller_NPad::InitializeVibrationDevice( void Controller_NPad::InitializeVibrationDevice(
const Core::HID::VibrationDeviceHandle& vibration_device_handle) { const Core::HID::VibrationDeviceHandle& vibration_device_handle) {
if (!IsDeviceHandleValid(vibration_device_handle)) { if (IsDeviceHandleValid(vibration_device_handle).IsError()) {
return; return;
} }
@ -941,7 +961,7 @@ void Controller_NPad::SetPermitVibrationSession(bool permit_vibration_session) {
bool Controller_NPad::IsVibrationDeviceMounted( bool Controller_NPad::IsVibrationDeviceMounted(
const Core::HID::VibrationDeviceHandle& vibration_device_handle) const { const Core::HID::VibrationDeviceHandle& vibration_device_handle) const {
if (!IsDeviceHandleValid(vibration_device_handle)) { if (IsDeviceHandleValid(vibration_device_handle).IsError()) {
return false; return false;
} }

View file

@ -197,7 +197,7 @@ public:
Core::HID::NpadButton GetAndResetPressState(); Core::HID::NpadButton GetAndResetPressState();
static bool IsNpadIdValid(Core::HID::NpadIdType npad_id); static bool IsNpadIdValid(Core::HID::NpadIdType npad_id);
static bool IsDeviceHandleValid(const Core::HID::VibrationDeviceHandle& device_handle); static ResultCode IsDeviceHandleValid(const Core::HID::VibrationDeviceHandle& device_handle);
static ResultCode VerifyValidSixAxisSensorHandle( static ResultCode VerifyValidSixAxisSensorHandle(
const Core::HID::SixAxisSensorHandle& device_handle); const Core::HID::SixAxisSensorHandle& device_handle);

View file

@ -9,6 +9,9 @@ namespace Service::HID {
constexpr ResultCode NpadInvalidHandle{ErrorModule::HID, 100}; constexpr ResultCode NpadInvalidHandle{ErrorModule::HID, 100};
constexpr ResultCode NpadDeviceIndexOutOfRange{ErrorModule::HID, 107}; constexpr ResultCode NpadDeviceIndexOutOfRange{ErrorModule::HID, 107};
constexpr ResultCode VibrationInvalidStyleIndex{ErrorModule::HID, 122};
constexpr ResultCode VibrationInvalidNpadId{ErrorModule::HID, 123};
constexpr ResultCode VibrationDeviceIndexOutOfRange{ErrorModule::HID, 124};
constexpr ResultCode InvalidSixAxisFusionRange{ErrorModule::HID, 423}; constexpr ResultCode InvalidSixAxisFusionRange{ErrorModule::HID, 423};
constexpr ResultCode NpadIsDualJoycon{ErrorModule::HID, 601}; constexpr ResultCode NpadIsDualJoycon{ErrorModule::HID, 601};
constexpr ResultCode NpadIsSameType{ErrorModule::HID, 602}; constexpr ResultCode NpadIsSameType{ErrorModule::HID, 602};

View file

@ -778,7 +778,7 @@ void Hid::IsSixAxisSensorAtRest(Kernel::HLERequestContext& ctx) {
bool is_at_rest{}; bool is_at_rest{};
auto& controller = GetAppletResource()->GetController<Controller_NPad>(HidController::NPad); auto& controller = GetAppletResource()->GetController<Controller_NPad>(HidController::NPad);
const auto result = controller.IsSixAxisSensorAtRest(parameters.sixaxis_handle, is_at_rest); controller.IsSixAxisSensorAtRest(parameters.sixaxis_handle, is_at_rest);
LOG_DEBUG(Service_HID, LOG_DEBUG(Service_HID,
"called, npad_type={}, npad_id={}, device_index={}, applet_resource_user_id={}", "called, npad_type={}, npad_id={}, device_index={}, applet_resource_user_id={}",
@ -786,7 +786,7 @@ void Hid::IsSixAxisSensorAtRest(Kernel::HLERequestContext& ctx) {
parameters.sixaxis_handle.device_index, parameters.applet_resource_user_id); parameters.sixaxis_handle.device_index, parameters.applet_resource_user_id);
IPC::ResponseBuilder rb{ctx, 3}; IPC::ResponseBuilder rb{ctx, 3};
rb.Push(result); rb.Push(ResultSuccess);
rb.Push(is_at_rest); rb.Push(is_at_rest);
} }
@ -803,8 +803,8 @@ void Hid::IsFirmwareUpdateAvailableForSixAxisSensor(Kernel::HLERequestContext& c
bool is_firmware_available{}; bool is_firmware_available{};
auto& controller = GetAppletResource()->GetController<Controller_NPad>(HidController::NPad); auto& controller = GetAppletResource()->GetController<Controller_NPad>(HidController::NPad);
const auto result = controller.IsFirmwareUpdateAvailableForSixAxisSensor( controller.IsFirmwareUpdateAvailableForSixAxisSensor(parameters.sixaxis_handle,
parameters.sixaxis_handle, is_firmware_available); is_firmware_available);
LOG_WARNING( LOG_WARNING(
Service_HID, Service_HID,
@ -813,7 +813,7 @@ void Hid::IsFirmwareUpdateAvailableForSixAxisSensor(Kernel::HLERequestContext& c
parameters.sixaxis_handle.device_index, parameters.applet_resource_user_id); parameters.sixaxis_handle.device_index, parameters.applet_resource_user_id);
IPC::ResponseBuilder rb{ctx, 3}; IPC::ResponseBuilder rb{ctx, 3};
rb.Push(result); rb.Push(ResultSuccess);
rb.Push(is_firmware_available); rb.Push(is_firmware_available);
} }
@ -1083,13 +1083,13 @@ void Hid::DisconnectNpad(Kernel::HLERequestContext& ctx) {
const auto parameters{rp.PopRaw<Parameters>()}; const auto parameters{rp.PopRaw<Parameters>()};
auto& controller = GetAppletResource()->GetController<Controller_NPad>(HidController::NPad); auto& controller = GetAppletResource()->GetController<Controller_NPad>(HidController::NPad);
const auto result = controller.DisconnectNpad(parameters.npad_id); controller.DisconnectNpad(parameters.npad_id);
LOG_DEBUG(Service_HID, "called, npad_id={}, applet_resource_user_id={}", parameters.npad_id, LOG_DEBUG(Service_HID, "called, npad_id={}, applet_resource_user_id={}", parameters.npad_id,
parameters.applet_resource_user_id); parameters.applet_resource_user_id);
IPC::ResponseBuilder rb{ctx, 2}; IPC::ResponseBuilder rb{ctx, 2};
rb.Push(result); rb.Push(ResultSuccess);
} }
void Hid::GetPlayerLedPattern(Kernel::HLERequestContext& ctx) { void Hid::GetPlayerLedPattern(Kernel::HLERequestContext& ctx) {
@ -1165,15 +1165,14 @@ void Hid::SetNpadJoyAssignmentModeSingleByDefault(Kernel::HLERequestContext& ctx
const auto parameters{rp.PopRaw<Parameters>()}; const auto parameters{rp.PopRaw<Parameters>()};
auto& controller = GetAppletResource()->GetController<Controller_NPad>(HidController::NPad); auto& controller = GetAppletResource()->GetController<Controller_NPad>(HidController::NPad);
const auto result = controller.SetNpadMode(parameters.npad_id, Controller_NPad::NpadJoyDeviceType::Left,
controller.SetNpadMode(parameters.npad_id, Controller_NPad::NpadJoyDeviceType::Left, Controller_NPad::NpadJoyAssignmentMode::Single);
Controller_NPad::NpadJoyAssignmentMode::Single);
LOG_INFO(Service_HID, "called, npad_id={}, applet_resource_user_id={}", parameters.npad_id, LOG_INFO(Service_HID, "called, npad_id={}, applet_resource_user_id={}", parameters.npad_id,
parameters.applet_resource_user_id); parameters.applet_resource_user_id);
IPC::ResponseBuilder rb{ctx, 2}; IPC::ResponseBuilder rb{ctx, 2};
rb.Push(result); rb.Push(ResultSuccess);
} }
void Hid::SetNpadJoyAssignmentModeSingle(Kernel::HLERequestContext& ctx) { void Hid::SetNpadJoyAssignmentModeSingle(Kernel::HLERequestContext& ctx) {
@ -1189,15 +1188,15 @@ void Hid::SetNpadJoyAssignmentModeSingle(Kernel::HLERequestContext& ctx) {
const auto parameters{rp.PopRaw<Parameters>()}; const auto parameters{rp.PopRaw<Parameters>()};
auto& controller = GetAppletResource()->GetController<Controller_NPad>(HidController::NPad); auto& controller = GetAppletResource()->GetController<Controller_NPad>(HidController::NPad);
const auto result = controller.SetNpadMode(parameters.npad_id, parameters.npad_joy_device_type, controller.SetNpadMode(parameters.npad_id, parameters.npad_joy_device_type,
Controller_NPad::NpadJoyAssignmentMode::Single); Controller_NPad::NpadJoyAssignmentMode::Single);
LOG_INFO(Service_HID, "called, npad_id={}, applet_resource_user_id={}, npad_joy_device_type={}", LOG_INFO(Service_HID, "called, npad_id={}, applet_resource_user_id={}, npad_joy_device_type={}",
parameters.npad_id, parameters.applet_resource_user_id, parameters.npad_id, parameters.applet_resource_user_id,
parameters.npad_joy_device_type); parameters.npad_joy_device_type);
IPC::ResponseBuilder rb{ctx, 2}; IPC::ResponseBuilder rb{ctx, 2};
rb.Push(result); rb.Push(ResultSuccess);
} }
void Hid::SetNpadJoyAssignmentModeDual(Kernel::HLERequestContext& ctx) { void Hid::SetNpadJoyAssignmentModeDual(Kernel::HLERequestContext& ctx) {
@ -1212,14 +1211,13 @@ void Hid::SetNpadJoyAssignmentModeDual(Kernel::HLERequestContext& ctx) {
const auto parameters{rp.PopRaw<Parameters>()}; const auto parameters{rp.PopRaw<Parameters>()};
auto& controller = GetAppletResource()->GetController<Controller_NPad>(HidController::NPad); auto& controller = GetAppletResource()->GetController<Controller_NPad>(HidController::NPad);
const auto result = controller.SetNpadMode(parameters.npad_id, {}, controller.SetNpadMode(parameters.npad_id, {}, Controller_NPad::NpadJoyAssignmentMode::Dual);
Controller_NPad::NpadJoyAssignmentMode::Dual);
LOG_INFO(Service_HID, "called, npad_id={}, applet_resource_user_id={}", parameters.npad_id, LOG_INFO(Service_HID, "called, npad_id={}, applet_resource_user_id={}", parameters.npad_id,
parameters.applet_resource_user_id); parameters.applet_resource_user_id);
IPC::ResponseBuilder rb{ctx, 2}; IPC::ResponseBuilder rb{ctx, 2};
rb.Push(result); rb.Push(ResultSuccess);
} }
void Hid::MergeSingleJoyAsDualJoy(Kernel::HLERequestContext& ctx) { void Hid::MergeSingleJoyAsDualJoy(Kernel::HLERequestContext& ctx) {
@ -1412,8 +1410,11 @@ void Hid::ClearNpadCaptureButtonAssignment(Kernel::HLERequestContext& ctx) {
void Hid::GetVibrationDeviceInfo(Kernel::HLERequestContext& ctx) { void Hid::GetVibrationDeviceInfo(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp{ctx}; IPC::RequestParser rp{ctx};
const auto vibration_device_handle{rp.PopRaw<Core::HID::VibrationDeviceHandle>()}; const auto vibration_device_handle{rp.PopRaw<Core::HID::VibrationDeviceHandle>()};
const auto& controller =
GetAppletResource()->GetController<Controller_NPad>(HidController::NPad);
Core::HID::VibrationDeviceInfo vibration_device_info; Core::HID::VibrationDeviceInfo vibration_device_info;
bool check_device_index = false;
switch (vibration_device_handle.npad_type) { switch (vibration_device_handle.npad_type) {
case Core::HID::NpadStyleIndex::ProController: case Core::HID::NpadStyleIndex::ProController:
@ -1421,34 +1422,46 @@ void Hid::GetVibrationDeviceInfo(Kernel::HLERequestContext& ctx) {
case Core::HID::NpadStyleIndex::JoyconDual: case Core::HID::NpadStyleIndex::JoyconDual:
case Core::HID::NpadStyleIndex::JoyconLeft: case Core::HID::NpadStyleIndex::JoyconLeft:
case Core::HID::NpadStyleIndex::JoyconRight: case Core::HID::NpadStyleIndex::JoyconRight:
default:
vibration_device_info.type = Core::HID::VibrationDeviceType::LinearResonantActuator; vibration_device_info.type = Core::HID::VibrationDeviceType::LinearResonantActuator;
check_device_index = true;
break; break;
case Core::HID::NpadStyleIndex::GameCube: case Core::HID::NpadStyleIndex::GameCube:
vibration_device_info.type = Core::HID::VibrationDeviceType::GcErm; vibration_device_info.type = Core::HID::VibrationDeviceType::GcErm;
break; break;
case Core::HID::NpadStyleIndex::Pokeball: case Core::HID::NpadStyleIndex::N64:
vibration_device_info.type = Core::HID::VibrationDeviceType::N64;
break;
default:
vibration_device_info.type = Core::HID::VibrationDeviceType::Unknown; vibration_device_info.type = Core::HID::VibrationDeviceType::Unknown;
break; break;
} }
switch (vibration_device_handle.device_index) { vibration_device_info.position = Core::HID::VibrationDevicePosition::None;
case Core::HID::DeviceIndex::Left: if (check_device_index) {
vibration_device_info.position = Core::HID::VibrationDevicePosition::Left; switch (vibration_device_handle.device_index) {
break; case Core::HID::DeviceIndex::Left:
case Core::HID::DeviceIndex::Right: vibration_device_info.position = Core::HID::VibrationDevicePosition::Left;
vibration_device_info.position = Core::HID::VibrationDevicePosition::Right; break;
break; case Core::HID::DeviceIndex::Right:
case Core::HID::DeviceIndex::None: vibration_device_info.position = Core::HID::VibrationDevicePosition::Right;
default: break;
ASSERT_MSG(false, "DeviceIndex should never be None!"); case Core::HID::DeviceIndex::None:
vibration_device_info.position = Core::HID::VibrationDevicePosition::None; default:
break; ASSERT_MSG(false, "DeviceIndex should never be None!");
break;
}
} }
LOG_DEBUG(Service_HID, "called, vibration_device_type={}, vibration_device_position={}", LOG_DEBUG(Service_HID, "called, vibration_device_type={}, vibration_device_position={}",
vibration_device_info.type, vibration_device_info.position); vibration_device_info.type, vibration_device_info.position);
const auto result = controller.IsDeviceHandleValid(vibration_device_handle);
if (result.IsError()) {
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(result);
return;
}
IPC::ResponseBuilder rb{ctx, 4}; IPC::ResponseBuilder rb{ctx, 4};
rb.Push(ResultSuccess); rb.Push(ResultSuccess);
rb.PushRaw(vibration_device_info); rb.PushRaw(vibration_device_info);

View file

@ -52,8 +52,8 @@ QtNXWebEngineView::QtNXWebEngineView(QWidget* parent, Core::System& system,
: QWebEngineView(parent), input_subsystem{input_subsystem_}, : QWebEngineView(parent), input_subsystem{input_subsystem_},
url_interceptor(std::make_unique<UrlRequestInterceptor>()), url_interceptor(std::make_unique<UrlRequestInterceptor>()),
input_interpreter(std::make_unique<InputInterpreter>(system)), input_interpreter(std::make_unique<InputInterpreter>(system)),
default_profile{QWebEngineProfile::defaultProfile()}, default_profile{QWebEngineProfile::defaultProfile()}, global_settings{
global_settings{QWebEngineSettings::globalSettings()} { default_profile->settings()} {
default_profile->setPersistentStoragePath(QString::fromStdString(Common::FS::PathToUTF8String( default_profile->setPersistentStoragePath(QString::fromStdString(Common::FS::PathToUTF8String(
Common::FS::GetYuzuPath(Common::FS::YuzuPath::YuzuDir) / "qtwebengine"))); Common::FS::GetYuzuPath(Common::FS::YuzuPath::YuzuDir) / "qtwebengine")));
@ -78,7 +78,7 @@ QtNXWebEngineView::QtNXWebEngineView(QWidget* parent, Core::System& system,
default_profile->scripts()->insert(gamepad); default_profile->scripts()->insert(gamepad);
default_profile->scripts()->insert(window_nx); default_profile->scripts()->insert(window_nx);
default_profile->setRequestInterceptor(url_interceptor.get()); default_profile->setUrlRequestInterceptor(url_interceptor.get());
global_settings->setAttribute(QWebEngineSettings::LocalContentCanAccessRemoteUrls, true); global_settings->setAttribute(QWebEngineSettings::LocalContentCanAccessRemoteUrls, true);
global_settings->setAttribute(QWebEngineSettings::FullScreenSupportEnabled, true); global_settings->setAttribute(QWebEngineSettings::FullScreenSupportEnabled, true);