obs-StreamFX/source/util-profiler.cpp
2020-04-24 05:13:58 +02:00

171 lines
4.7 KiB
C++

/*
* Modern effects for a modern Streamer
* Copyright (C) 2020 Michael Fabian Dirks
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "util-profiler.hpp"
#include <iterator>
util::profiler::profiler() {}
util::profiler::~profiler() {}
std::shared_ptr<util::profiler::instance> util::profiler::track()
{
return std::make_shared<util::profiler::instance>(shared_from_this());
}
void util::profiler::track(std::chrono::nanoseconds duration)
{
std::unique_lock<std::mutex> ul(_timings_lock);
auto itr = _timings.find(duration);
if (itr == _timings.end()) {
_timings.insert({duration, 1});
} else {
itr->second++;
}
}
uint64_t util::profiler::count()
{
uint64_t count = 0;
std::map<std::chrono::nanoseconds, size_t> copy_timings;
{
std::unique_lock<std::mutex> ul(_timings_lock);
copy(_timings.begin(), _timings.end(), std::inserter(copy_timings, copy_timings.end()));
}
for (auto kv : copy_timings) {
count += kv.second;
}
return count;
}
std::chrono::nanoseconds util::profiler::total_duration()
{
std::chrono::nanoseconds duration{0};
std::map<std::chrono::nanoseconds, size_t> copy_timings;
{
std::unique_lock<std::mutex> ul(_timings_lock);
copy(_timings.begin(), _timings.end(), std::inserter(copy_timings, copy_timings.end()));
}
for (auto kv : copy_timings) {
duration += kv.first * kv.second;
}
return duration;
}
double_t util::profiler::average_duration()
{
std::chrono::nanoseconds duration{0};
uint64_t count = 0;
std::map<std::chrono::nanoseconds, size_t> copy_timings;
{
std::unique_lock<std::mutex> ul(_timings_lock);
copy(_timings.begin(), _timings.end(), std::inserter(copy_timings, copy_timings.end()));
}
for (auto kv : copy_timings) {
duration += kv.first * kv.second;
count += kv.second;
}
return double_t(duration.count()) / double_t(count);
}
template<typename T>
inline bool is_equal(T a, T b, T c)
{
return (a == b) || ((a >= (b - c)) && (a <= (b + c)));
}
std::chrono::nanoseconds util::profiler::percentile(double_t percentile, bool by_time)
{
constexpr double_t edge = 0.00005;
uint64_t calls = count();
std::map<std::chrono::nanoseconds, size_t> copy_timings;
{
std::unique_lock<std::mutex> ul(_timings_lock);
copy(_timings.begin(), _timings.end(), inserter(copy_timings, copy_timings.end()));
}
if (by_time) { // Return by time percentile.
// Find largest and smallest time.
std::chrono::nanoseconds smallest = copy_timings.begin()->first;
std::chrono::nanoseconds largest = copy_timings.rbegin()->first;
std::chrono::nanoseconds variance = largest - smallest;
std::chrono::nanoseconds threshold =
std::chrono::nanoseconds(smallest.count() + int64_t(variance.count() * percentile));
for (auto kv : copy_timings) {
double_t kv_pct = double_t((kv.first - smallest).count()) / double_t(variance.count());
if (is_equal<double_t>(kv_pct, percentile, edge) || (kv_pct > percentile)) {
return std::chrono::nanoseconds(kv.first);
}
}
} else { // Return by call percentile.
if (percentile == 0.0) {
return copy_timings.begin()->first;
}
uint64_t accu_calls_now = 0;
for (auto kv : copy_timings) {
uint64_t accu_calls_last = accu_calls_now;
accu_calls_now += kv.second;
double_t percentile_last = double_t(accu_calls_last) / double_t(calls);
double_t percentile_now = double_t(accu_calls_now) / double_t(calls);
if (is_equal<double_t>(percentile, percentile_now, edge)
|| ((percentile_last < percentile) && (percentile_now > percentile))) {
return std::chrono::nanoseconds(kv.first);
}
}
}
return std::chrono::nanoseconds(-1);
}
util::profiler::instance::instance(std::shared_ptr<util::profiler> parent)
: _parent(parent), _start(std::chrono::high_resolution_clock::now())
{}
util::profiler::instance::~instance()
{
auto end = std::chrono::high_resolution_clock::now();
auto dur = end - _start;
if (_parent) {
_parent->track(dur);
}
}
void util::profiler::instance::cancel()
{
_parent.reset();
}
void util::profiler::instance::reparent(std::shared_ptr<util::profiler> parent)
{
_parent = parent;
}