obs-StreamFX/source/obs/gs/gs-vertexbuffer.cpp
Michael Fabian 'Xaymar' Dirks b1d7814c64 gs-helper: Add managed obs graphics context
To further distance the code from having to do too much manually, the graphics context is now available as a managed class. All places that previously used obs_enter_graphics and obs_leave_graphics are now using the new gs::context class instead.
2019-04-03 00:16:13 +02:00

372 lines
10 KiB
C++

/*
* Modern effects for a modern Streamer
* Copyright (C) 2017 Michael Fabian Dirks
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "gs-vertexbuffer.hpp"
#include <stdexcept>
#include "util-memory.hpp"
#include "obs/gs/gs-helper.hpp"
// OBS
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4201)
#endif
#include <obs.h>
#ifdef _MSC_VER
#pragma warning(pop)
#endif
gs::vertex_buffer::~vertex_buffer()
{
if (m_positions) {
util::free_aligned(m_positions);
m_positions = nullptr;
}
if (m_normals) {
util::free_aligned(m_normals);
m_normals = nullptr;
}
if (m_tangents) {
util::free_aligned(m_tangents);
m_tangents = nullptr;
}
if (m_colors) {
util::free_aligned(m_colors);
m_colors = nullptr;
}
for (size_t n = 0; n < m_layers; n++) {
if (m_uvs[n]) {
util::free_aligned(m_uvs[n]);
m_uvs[n] = nullptr;
}
}
if (m_layerdata) {
util::free_aligned(m_layerdata);
m_layerdata = nullptr;
}
if (m_vertexbufferdata) {
memset(m_vertexbufferdata, 0, sizeof(gs_vb_data));
if (!m_vertexbuffer) {
gs_vbdata_destroy(m_vertexbufferdata);
m_vertexbufferdata = nullptr;
}
}
if (m_vertexbuffer) {
auto gctx = gs::context();
gs_vertexbuffer_destroy(m_vertexbuffer);
m_vertexbuffer = nullptr;
}
}
gs::vertex_buffer::vertex_buffer() : vertex_buffer(MAXIMUM_VERTICES, MAXIMUM_UVW_LAYERS) {}
gs::vertex_buffer::vertex_buffer(uint32_t vertices) : vertex_buffer(vertices, MAXIMUM_UVW_LAYERS) {}
gs::vertex_buffer::vertex_buffer(uint32_t vertices, uint8_t uvlayers)
: m_size(vertices), m_capacity(vertices), m_layers(uvlayers), m_positions(nullptr), m_normals(nullptr),
m_tangents(nullptr), m_colors(nullptr), m_vertexbufferdata(nullptr), m_vertexbuffer(nullptr), m_layerdata(nullptr)
{
if (vertices > MAXIMUM_VERTICES) {
throw std::out_of_range("vertices out of range");
}
if (uvlayers > MAXIMUM_UVW_LAYERS) {
throw std::out_of_range("uvlayers out of range");
}
// Allocate memory for data.
m_vertexbufferdata = gs_vbdata_create();
m_vertexbufferdata->num = m_capacity;
m_vertexbufferdata->points = m_positions = (vec3*)util::malloc_aligned(16, sizeof(vec3) * m_capacity);
m_vertexbufferdata->normals = m_normals = (vec3*)util::malloc_aligned(16, sizeof(vec3) * m_capacity);
m_vertexbufferdata->tangents = m_tangents = (vec3*)util::malloc_aligned(16, sizeof(vec3) * m_capacity);
m_vertexbufferdata->colors = m_colors = (uint32_t*)util::malloc_aligned(16, sizeof(uint32_t) * m_capacity);
// cppcheck-suppress memsetClassFloat
memset(m_positions, 0, sizeof(vec3) * m_capacity);
// cppcheck-suppress memsetClassFloat
memset(m_normals, 0, sizeof(vec3) * m_capacity);
// cppcheck-suppress memsetClassFloat
memset(m_tangents, 0, sizeof(vec3) * m_capacity);
memset(m_colors, 0, sizeof(uint32_t) * m_capacity);
m_vertexbufferdata->num_tex = m_layers;
if (m_layers > 0) {
m_vertexbufferdata->tvarray = m_layerdata =
(gs_tvertarray*)util::malloc_aligned(16, sizeof(gs_tvertarray) * m_layers);
for (size_t n = 0; n < m_layers; n++) {
m_layerdata[n].array = m_uvs[n] = (vec4*)util::malloc_aligned(16, sizeof(vec4) * m_capacity);
m_layerdata[n].width = 4;
memset(m_uvs[n], 0, sizeof(vec4) * m_capacity);
}
} else {
m_vertexbufferdata->tvarray = nullptr;
}
// Allocate GPU
auto gctx = gs::context();
m_vertexbuffer = gs_vertexbuffer_create(m_vertexbufferdata, GS_DYNAMIC);
memset(m_vertexbufferdata, 0, sizeof(gs_vb_data));
m_vertexbufferdata->num = m_capacity;
m_vertexbufferdata->num_tex = m_layers;
if (!m_vertexbuffer) {
throw std::runtime_error("Failed to create vertex buffer.");
}
}
// cppcheck-suppress uninitMemberVar
gs::vertex_buffer::vertex_buffer(gs_vertbuffer_t* vb)
{
auto gctx = gs::context();
gs_vb_data* vbd = gs_vertexbuffer_get_data(vb);
if (!vbd)
throw std::runtime_error("vertex buffer with no data");
vertex_buffer((uint32_t)vbd->num);
this->set_uv_layers((uint32_t)vbd->num_tex);
if (vbd->points != nullptr)
memcpy(m_positions, vbd->points, vbd->num * sizeof(vec3));
if (vbd->normals != nullptr)
memcpy(m_normals, vbd->normals, vbd->num * sizeof(vec3));
if (vbd->tangents != nullptr)
memcpy(m_tangents, vbd->tangents, vbd->num * sizeof(vec3));
if (vbd->colors != nullptr)
memcpy(m_colors, vbd->colors, vbd->num * sizeof(uint32_t));
if (vbd->tvarray != nullptr) {
for (size_t n = 0; n < vbd->num_tex; n++) {
if (vbd->tvarray[n].array != nullptr && vbd->tvarray[n].width <= 4 && vbd->tvarray[n].width > 0) {
if (vbd->tvarray[n].width == 4) {
memcpy(m_uvs[n], vbd->tvarray[n].array, vbd->num * sizeof(vec4));
} else {
for (size_t idx = 0; idx < m_capacity; idx++) {
float* mem = reinterpret_cast<float*>(vbd->tvarray[n].array) + (idx * vbd->tvarray[n].width);
// cppcheck-suppress memsetClassFloat
memset(&m_uvs[n][idx], 0, sizeof(vec4));
memcpy(&m_uvs[n][idx], mem, vbd->tvarray[n].width);
}
}
}
}
}
}
// cppcheck-suppress uninitMemberVar
gs::vertex_buffer::vertex_buffer(vertex_buffer const& other) : vertex_buffer(other.m_capacity)
{
// Copy Constructor
memcpy(m_positions, other.m_positions, m_capacity * sizeof(vec3));
memcpy(m_normals, other.m_normals, m_capacity * sizeof(vec3));
memcpy(m_tangents, other.m_tangents, m_capacity * sizeof(vec3));
memcpy(m_colors, other.m_colors, m_capacity * sizeof(vec3));
for (size_t n = 0; n < MAXIMUM_UVW_LAYERS; n++) {
memcpy(m_uvs[n], other.m_uvs[n], m_capacity * sizeof(vec3));
}
}
gs::vertex_buffer::vertex_buffer(vertex_buffer const&& other)
{
// Move Constructor
m_capacity = other.m_capacity;
m_size = other.m_size;
m_layers = other.m_layers;
m_positions = other.m_positions;
m_normals = other.m_normals;
m_tangents = other.m_tangents;
for (size_t n = 0; n < MAXIMUM_UVW_LAYERS; n++) {
m_uvs[n] = other.m_uvs[n];
}
m_vertexbufferdata = other.m_vertexbufferdata;
m_vertexbuffer = other.m_vertexbuffer;
m_layerdata = other.m_layerdata;
}
void gs::vertex_buffer::operator=(vertex_buffer const&& other)
{
// Move Assignment
/// First self-destruct (semi-destruct itself).
if (m_positions) {
util::free_aligned(m_positions);
m_positions = nullptr;
}
if (m_normals) {
util::free_aligned(m_normals);
m_normals = nullptr;
}
if (m_tangents) {
util::free_aligned(m_tangents);
m_tangents = nullptr;
}
if (m_colors) {
util::free_aligned(m_colors);
m_colors = nullptr;
}
for (size_t n = 0; n < MAXIMUM_UVW_LAYERS; n++) {
if (m_uvs[n]) {
util::free_aligned(m_uvs[n]);
m_uvs[n] = nullptr;
}
}
if (m_layerdata) {
util::free_aligned(m_layerdata);
m_layerdata = nullptr;
}
if (m_vertexbufferdata) {
memset(m_vertexbufferdata, 0, sizeof(gs_vb_data));
if (!m_vertexbuffer) {
gs_vbdata_destroy(m_vertexbufferdata);
m_vertexbufferdata = nullptr;
}
}
if (m_vertexbuffer) {
auto gctx = gs::context();
gs_vertexbuffer_destroy(m_vertexbuffer);
m_vertexbuffer = nullptr;
}
/// Then assign new values.
m_capacity = other.m_capacity;
m_size = other.m_size;
m_layers = other.m_layers;
m_positions = other.m_positions;
m_normals = other.m_normals;
m_tangents = other.m_tangents;
for (size_t n = 0; n < MAXIMUM_UVW_LAYERS; n++) {
m_uvs[n] = other.m_uvs[n];
}
m_vertexbufferdata = other.m_vertexbufferdata;
m_vertexbuffer = other.m_vertexbuffer;
m_layerdata = other.m_layerdata;
}
void gs::vertex_buffer::resize(uint32_t new_size)
{
if (new_size > m_capacity) {
throw std::out_of_range("new_size out of range");
}
m_size = new_size;
}
uint32_t gs::vertex_buffer::size()
{
return m_size;
}
bool gs::vertex_buffer::empty()
{
return m_size == 0;
}
const gs::vertex gs::vertex_buffer::at(uint32_t idx)
{
if ((idx < 0) || (idx >= m_size)) {
throw std::out_of_range("idx out of range");
}
gs::vertex vtx(&m_positions[idx], &m_normals[idx], &m_tangents[idx], &m_colors[idx], nullptr);
for (size_t n = 0; n < m_layers; n++) {
vtx.uv[n] = &m_uvs[n][idx];
}
return vtx;
}
const gs::vertex gs::vertex_buffer::operator[](uint32_t const pos)
{
return at(pos);
}
void gs::vertex_buffer::set_uv_layers(uint32_t layers)
{
m_layers = layers;
}
uint32_t gs::vertex_buffer::get_uv_layers()
{
return m_layers;
}
vec3* gs::vertex_buffer::get_positions()
{
return m_positions;
}
vec3* gs::vertex_buffer::get_normals()
{
return m_normals;
}
vec3* gs::vertex_buffer::get_tangents()
{
return m_tangents;
}
uint32_t* gs::vertex_buffer::get_colors()
{
return m_colors;
}
vec4* gs::vertex_buffer::get_uv_layer(size_t idx)
{
if ((idx < 0) || (idx >= m_layers)) {
throw std::out_of_range("idx out of range");
}
return m_uvs[idx];
}
gs_vertbuffer_t* gs::vertex_buffer::update(bool refreshGPU)
{
if (!refreshGPU)
return m_vertexbuffer;
if (m_size > m_capacity)
throw std::out_of_range("size is larger than capacity");
// Update VertexBuffer data.
auto gctx = gs::context();
m_vertexbufferdata = gs_vertexbuffer_get_data(m_vertexbuffer);
memset(m_vertexbufferdata, 0, sizeof(gs_vb_data));
m_vertexbufferdata->num = m_capacity;
m_vertexbufferdata->points = m_positions;
m_vertexbufferdata->normals = m_normals;
m_vertexbufferdata->tangents = m_tangents;
m_vertexbufferdata->colors = m_colors;
m_vertexbufferdata->num_tex = m_layers;
m_vertexbufferdata->tvarray = m_layerdata;
for (size_t n = 0; n < m_layers; n++) {
m_layerdata[n].array = m_uvs[n];
m_layerdata[n].width = 4;
}
// Update GPU
gs_vertexbuffer_flush(m_vertexbuffer);
// WORKAROUND: OBS Studio 20.x and below incorrectly deletes data that it doesn't own.
memset(m_vertexbufferdata, 0, sizeof(gs_vb_data));
m_vertexbufferdata->num = m_capacity;
m_vertexbufferdata->num_tex = m_layers;
for (uint32_t n = 0; n < m_layers; n++) {
m_layerdata[n].width = 4;
}
return m_vertexbuffer;
}
gs_vertbuffer_t* gs::vertex_buffer::update()
{
return update(true);
}