obs-StreamFX/source/filters/filter-nv-face-tracking.cpp
Michael Fabian 'Xaymar' Dirks 04ac0a640f filter-nv-face-tracking: Improve performance with asynchronous tracking
Through converting the code to a threaded asynchronous approach, the libOBS video renderer no longer has to wait on our tracking code to run, and we can enjoy a little bit of extra calculation time before we actually have to do anything.

However due to the remaining synchronization with the Direct3D11/OpenGL context, it is not entirely safe to spend a full frame tracking as libOBS will then start skipped/dropping frames. Even though the priority of the stream is now increased, this still means that we can't just sit around and have to quickly finish all work.

Related #150
2020-04-17 11:44:37 +02:00

665 lines
24 KiB
C++

/*
* Modern effects for a modern Streamer
* Copyright (C) 2017 Michael Fabian Dirks
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "filter-nv-face-tracking.hpp"
#include <algorithm>
#include <filesystem>
#include <util/platform.h>
#include "nvidia/cuda/nvidia-cuda-context-stack.hpp"
#include "obs/gs/gs-helper.hpp"
#include "obs/obs-tools.hpp"
#include "utility.hpp"
#define ST "Filter.Nvidia.FaceTracking"
#define ST_ROI "Filter.Nvidia.FaceTracking.ROI"
#define ST_ROI_ZOOM "Filter.Nvidia.FaceTracking.ROI.Zoom"
#define SK_ROI_ZOOM "ROI.Zoom"
#define ST_ROI_OFFSET "Filter.Nvidia.FaceTracking.ROI.Offset"
#define ST_ROI_OFFSET_X "Filter.Nvidia.FaceTracking.ROI.Offset.X"
#define SK_ROI_OFFSET_X "ROI.Offset.X"
#define ST_ROI_OFFSET_Y "Filter.Nvidia.FaceTracking.ROI.Offset.Y"
#define SK_ROI_OFFSET_Y "ROI.Offset.Y"
#define ST_ROI_STABILITY "Filter.Nvidia.FaceTracking.ROI.Stability"
#define SK_ROI_STABILITY "ROI.Stability"
void ar_feature_deleter(NvAR_FeatureHandle v)
{
filter::nvidia::face_tracking_factory::get()->get_ar()->destroy(v);
}
filter::nvidia::face_tracking_instance::face_tracking_instance(obs_data_t* settings, obs_source_t* self)
: obs::source_instance(settings, self),
_rt_is_fresh(false), _rt(),
_cfg_roi_zoom(1.0), _cfg_roi_offset({0., 0.}), _cfg_roi_stability(1.0),
_roi_center(), _roi_size(), _roi_geom(),
_cuda(face_tracking_factory::get()->get_cuda()), _cuda_ctx(face_tracking_factory::get()->get_cuda_context()),
_cuda_stream(),
_ar_library(face_tracking_factory::get()->get_ar()), _ar_loaded(false), _ar_feature(), _ar_tracked(true),
_ar_bboxes_data(), _ar_bboxes(), _ar_bboxes_confidence(),
_ar_texture(), _ar_texture_cuda_fresh(false), _ar_texture_cuda(), _ar_texture_cuda_mem(), _ar_image(),
_ar_image_bgr(), _ar_image_temp()
{
// Create Graphics resources for everything.
{
auto gctx = gs::context{};
_rt = std::make_shared<gs::rendertarget>(GS_RGBA, GS_ZS_NONE);
_roi_geom = std::make_shared<gs::vertex_buffer>(4, 1);
}
// Initialize everything.
{
auto cctx = std::make_shared<::nvidia::cuda::context_stack>(_cuda, _cuda_ctx);
std::int32_t minPrio, maxPrio;
_cuda->cuCtxGetStreamPriorityRange(&minPrio, &maxPrio);
_cuda_stream = std::make_shared<::nvidia::cuda::stream>(_cuda, ::nvidia::cuda::cu_stream_flags::NON_BLOCKING,
minPrio + ((maxPrio - minPrio) / 2));
}
#ifdef _DEBUG
// Profiling
_profile_capture = util::profiler::create();
_profile_capture_realloc = util::profiler::create();
_profile_capture_copy = util::profiler::create();
_profile_ar_realloc = util::profiler::create();
_profile_ar_copy = util::profiler::create();
_profile_ar_transfer = util::profiler::create();
_profile_ar_run = util::profiler::create();
_profile_ar_calc = util::profiler::create();
#endif
// Asynchronously load Face Tracking.
async_initialize(nullptr);
}
filter::nvidia::face_tracking_instance::~face_tracking_instance()
{
_ar_library->image_dealloc(&_ar_image_temp);
_ar_library->image_dealloc(&_ar_image_bgr);
}
void filter::nvidia::face_tracking_instance::async_initialize(std::shared_ptr<void> ptr)
{
struct async_data {
std::shared_ptr<obs_weak_source_t> source;
std::string models_path;
};
if (!ptr) {
// Spawn the work for the threadpool.
std::shared_ptr<async_data> data = std::make_shared<async_data>();
data->source =
std::shared_ptr<obs_weak_source_t>(obs_source_get_weak_source(_self), obs::obs_weak_source_deleter);
std::filesystem::path models_path = _ar_library->get_ar_sdk_path();
models_path = models_path.append("models");
models_path = std::filesystem::absolute(models_path);
models_path.concat("\\");
data->models_path = models_path.string();
get_global_threadpool()->push(
std::bind(&filter::nvidia::face_tracking_instance::async_initialize, this, std::placeholders::_1), data);
} else {
std::shared_ptr<async_data> data = std::static_pointer_cast<async_data>(ptr);
// Try and acquire a strong source reference.
std::shared_ptr<obs_source_t> ref =
std::shared_ptr<obs_source_t>(obs_weak_source_get_source(data->source.get()), obs::obs_source_deleter);
if (!ref) { // If that failed, the source we are working for was deleted - abort now.
return;
}
// Update the current CUDA context for working.
gs::context gctx;
auto cctx = std::make_shared<::nvidia::cuda::context_stack>(_cuda, _cuda_ctx);
// Create Face Detection feature.
{
NvAR_FeatureHandle fd_inst;
if (NvCV_Status res = _ar_library->create(NvAR_Feature_FaceDetection, &fd_inst); res != NVCV_SUCCESS) {
throw std::runtime_error("Failed to create Face Detection feature.");
}
_ar_feature = std::shared_ptr<nvAR_Feature>{fd_inst, ar_feature_deleter};
}
// Set the correct CUDA stream for processing.
if (NvCV_Status res = _ar_library->set_cuda_stream(_ar_feature.get(), NvAR_Parameter_Config(CUDAStream),
reinterpret_cast<CUstream>(_cuda_stream->get()));
res != NVCV_SUCCESS) {
throw std::runtime_error("Failed to set CUDA stream.");
}
// Set the correct models path.
if (NvCV_Status res =
_ar_library->set_string(_ar_feature.get(), NvAR_Parameter_Config(ModelDir), data->models_path.c_str());
res != NVCV_SUCCESS) {
throw std::runtime_error("Unable to set model path.");
}
// Finally enable Temporal tracking if possible.
if (NvCV_Status res = _ar_library->set_uint32(_ar_feature.get(), NvAR_Parameter_Config(Temporal), 1);
res != NVCV_SUCCESS) {
LOG_WARNING("<%s> Unable to enable Temporal tracking mode.", obs_source_get_name(ref.get()));
}
// Create Bounding Boxes Data
_ar_bboxes_data.assign(1, {0., 0., 0., 0.});
_ar_bboxes.boxes = _ar_bboxes_data.data();
_ar_bboxes.max_boxes = std::clamp<std::uint8_t>(static_cast<std::uint8_t>(_ar_bboxes_data.size()), 0, 255);
_ar_bboxes.num_boxes = 0;
_ar_bboxes_confidence.resize(_ar_bboxes_data.size());
if (NvCV_Status res = _ar_library->set_object(_ar_feature.get(), NvAR_Parameter_Output(BoundingBoxes),
&_ar_bboxes, sizeof(NvAR_BBoxes));
res != NVCV_SUCCESS) {
throw std::runtime_error("Failed to set BoundingBoxes for Face Tracking feature.");
}
if (NvCV_Status res = _ar_library->set_float32_array(
_ar_feature.get(), NvAR_Parameter_Output(BoundingBoxesConfidence), _ar_bboxes_confidence.data(),
static_cast<int>(_ar_bboxes_confidence.size()));
res != NVCV_SUCCESS) {
throw std::runtime_error("Failed to set BoundingBoxesConfidence for Face Tracking feature.");
}
// And finally, load the feature (takes long).
if (NvCV_Status res = _ar_library->load(_ar_feature.get()); res != NVCV_SUCCESS) {
LOG_ERROR("<%s> Failed to load Face Tracking feature.", obs_source_get_name(_self));
_ar_loaded = false;
return;
} else {
_ar_loaded = true;
}
}
}
void filter::nvidia::face_tracking_instance::refresh_geometry()
{ // Update Region of Interest Geometry.
std::unique_lock<std::mutex> lock(_roi_lock);
auto v0 = _roi_geom->at(0);
auto v1 = _roi_geom->at(1);
auto v2 = _roi_geom->at(2);
auto v3 = _roi_geom->at(3);
*v0.color = 0xFFFFFFFF;
*v1.color = 0xFFFFFFFF;
*v2.color = 0xFFFFFFFF;
*v3.color = 0xFFFFFFFF;
vec3_set(v3.position, static_cast<float_t>(_size.first), static_cast<float_t>(_size.second), 0.);
vec3_set(v2.position, v3.position->x, 0., 0.);
vec3_set(v1.position, 0., v3.position->y, 0.);
vec3_set(v0.position, 0., 0., 0.);
vec4_set(v0.uv[0],
static_cast<float_t>((_roi_center.first - _roi_size.first / 2.) / static_cast<double_t>(_size.first)),
static_cast<float_t>((_roi_center.second - _roi_size.second / 2.) / static_cast<double_t>(_size.second)),
0., 0.);
vec4_set(v1.uv[0],
static_cast<float_t>((_roi_center.first - _roi_size.first / 2.) / static_cast<double_t>(_size.first)),
static_cast<float_t>((_roi_center.second + _roi_size.second / 2.) / static_cast<double_t>(_size.second)),
0., 0.);
vec4_set(v2.uv[0],
static_cast<float_t>((_roi_center.first + _roi_size.first / 2.) / static_cast<double_t>(_size.first)),
static_cast<float_t>((_roi_center.second - _roi_size.second / 2.) / static_cast<double_t>(_size.second)),
0., 0.);
vec4_set(v3.uv[0],
static_cast<float_t>((_roi_center.first + _roi_size.first / 2.) / static_cast<double_t>(_size.first)),
static_cast<float_t>((_roi_center.second + _roi_size.second / 2.) / static_cast<double_t>(_size.second)),
0., 0.);
_roi_geom->update();
}
void filter::nvidia::face_tracking_instance::async_track(std::shared_ptr<void> ptr)
{
struct async_data {
std::shared_ptr<obs_weak_source_t> source;
};
if (!ptr) {
// Spawn the work for the threadpool.
std::shared_ptr<async_data> data = std::make_shared<async_data>();
data->source =
std::shared_ptr<obs_weak_source_t>(obs_source_get_weak_source(_self), obs::obs_weak_source_deleter);
// Check if things exist as planned.
if (!_ar_texture || (_ar_texture->get_width() != _size.first) || (_ar_texture->get_height() != _size.second)) {
#ifdef _DEBUG
auto prof = _profile_capture_realloc->track();
#endif
gs::debug_marker marker{gs::debug_color_allocate, "Reallocate GPU Buffer"};
_ar_texture =
std::make_shared<gs::texture>(_size.first, _size.second, GS_RGBA, 1, nullptr, gs::texture::flags::None);
_ar_texture_cuda_fresh = false;
}
{ // Copy texture
#ifdef _DEBUG
auto prof = _profile_capture_copy->track();
#endif
gs::debug_marker marker{gs::debug_color_copy, "Copy Capture", obs_source_get_name(_self)};
gs_copy_texture(_ar_texture->get_object(), _rt->get_texture()->get_object());
}
// Push work
get_global_threadpool()->push(
std::bind(&filter::nvidia::face_tracking_instance::async_track, this, std::placeholders::_1), data);
} else {
std::shared_ptr<async_data> data = std::static_pointer_cast<async_data>(ptr);
// Try and acquire a strong source reference.
std::shared_ptr<obs_source_t> ref =
std::shared_ptr<obs_source_t>(obs_weak_source_get_source(data->source.get()), obs::obs_source_deleter);
if (!ref) { // If that failed, the source we are working for was deleted - abort now.
return;
}
// Update the current CUDA context for working.
auto cctx = std::make_shared<::nvidia::cuda::context_stack>(_cuda, _cuda_ctx);
// Refresh any now broken buffers.
if (!_ar_texture_cuda_fresh) {
#ifdef _DEBUG
auto prof = _profile_ar_realloc->track();
#endif
gs::context gctx;
gs::debug_marker marker{gs::debug_color_allocate, "%s: Reallocate CUDA Buffers",
obs_source_get_name(_self)};
// Assign new texture and allocate new memory.
std::size_t pitch = _size.first * 4ul;
_ar_texture_cuda = std::make_shared<::nvidia::cuda::gstexture>(_cuda, _ar_texture);
_ar_texture_cuda_mem = std::make_shared<::nvidia::cuda::memory>(_cuda, pitch * _size.second);
_ar_library->image_init(&_ar_image, static_cast<unsigned int>(_size.first),
static_cast<unsigned int>(_size.second), static_cast<int>(pitch),
reinterpret_cast<void*>(_ar_texture_cuda_mem->get()), NVCV_RGBA, NVCV_U8,
NVCV_INTERLEAVED, NVCV_CUDA);
// Reallocate transposed buffer.
_ar_library->image_dealloc(&_ar_image_bgr);
_ar_library->image_alloc(&_ar_image_bgr, static_cast<unsigned int>(_size.first),
static_cast<unsigned int>(_size.second), NVCV_BGR, NVCV_U8, NVCV_INTERLEAVED,
NVCV_CUDA, 0);
_ar_library->image_dealloc(&_ar_image_temp);
// Finally set the input object.
if (NvCV_Status res = _ar_library->set_object(_ar_feature.get(), NvAR_Parameter_Input(Image),
&_ar_image_bgr, sizeof(NvCVImage));
res != NVCV_SUCCESS) {
LOG_ERROR("<%s> Failed to update input image for tracking.", obs_source_get_name(_self));
return;
}
// And mark the new texture as fresh.
_ar_texture_cuda_fresh = true;
}
{ // Copy from CUDA array to CUDA device memory.
#ifdef _DEBUG
auto prof = _profile_ar_copy->track();
#endif
gs::context gctx;
::nvidia::cuda::cu_memcpy2d_t mc;
mc.src_x_in_bytes = 0;
mc.src_y = 0;
mc.src_memory_type = ::nvidia::cuda::cu_memory_type::ARRAY;
mc.src_host = nullptr;
mc.src_device = 0;
mc.src_array = _ar_texture_cuda->map(_cuda_stream);
mc.src_pitch = static_cast<size_t>(_ar_image.pitch);
mc.dst_x_in_bytes = 0;
mc.dst_y = 0;
mc.dst_memory_type = ::nvidia::cuda::cu_memory_type::DEVICE;
mc.dst_host = 0;
mc.dst_device = reinterpret_cast<::nvidia::cuda::cu_device_ptr_t>(_ar_image.pixels);
mc.dst_array = 0;
mc.dst_pitch = static_cast<size_t>(_ar_image.pitch);
mc.width_in_bytes = static_cast<size_t>(_ar_image.pitch);
mc.height = _ar_image.height;
if (::nvidia::cuda::cu_result res = _cuda->cuMemcpy2D(&mc); res != ::nvidia::cuda::cu_result::SUCCESS) {
LOG_ERROR("<%s> Failed to prepare buffers for tracking.", obs_source_get_name(_self));
return;
}
}
{ // Convert from RGBA 32-bit to BGR 24-bit.
#ifdef _DEBUG
auto prof = _profile_ar_transfer->track();
#endif
gs::context gctx;
if (NvCV_Status res =
_ar_library->image_transfer(&_ar_image, &_ar_image_bgr, 1.0,
reinterpret_cast<CUstream_st*>(_cuda_stream->get()), &_ar_image_temp);
res != NVCV_SUCCESS) {
LOG_ERROR("<%s> Failed to convert from RGBX 32-bit to BGR 24-bit.", obs_source_get_name(_self));
return;
}
}
{ // Track any faces.
#ifdef _DEBUG
auto prof = _profile_ar_run->track();
#endif
gs::context gctx;
if (NvCV_Status res = _ar_library->run(_ar_feature.get()); res != NVCV_SUCCESS) {
LOG_ERROR("<%s> Failed to run tracking.", obs_source_get_name(_self));
return;
}
}
if ((_ar_bboxes.num_boxes == 0) || (_ar_bboxes_confidence.at(0) < 0.5)) {
// Not confident enough or not tracking anything, return to full frame after a bit.
} else {
#ifdef _DEBUG
auto prof = _profile_ar_calc->track();
#endif
double_t aspect = double_t(_size.first) / double_t(_size.second);
// Store values and center.
double_t bbox_w = _ar_bboxes.boxes[0].width;
double_t bbox_h = _ar_bboxes.boxes[0].height;
double_t bbox_cx = _ar_bboxes.boxes[0].x + bbox_w / 2.0;
double_t bbox_cy = _ar_bboxes.boxes[0].y + bbox_h / 2.0;
// Zoom, Aspect Ratio, Offset
bbox_h = util::math::lerp<double_t>(_size.second, bbox_h, _cfg_roi_zoom);
bbox_h = std::clamp(bbox_h, 10 * aspect, static_cast<double_t>(_size.second));
bbox_w = bbox_h * aspect;
bbox_cx += _ar_bboxes.boxes[0].width * _cfg_roi_offset.first;
bbox_cy += _ar_bboxes.boxes[0].height * _cfg_roi_offset.second;
// Fit back into the frame
// - Above code guarantees that height is never bigger than the height of the frame.
// - Which also guarantees that width is never bigger than the width of the frame.
// Only cx and cy need to be adjusted now to always be in the frame.
bbox_cx = std::clamp(bbox_cx, (bbox_w / 2.), static_cast<double_t>(_size.first) - (bbox_w / 2.));
bbox_cy = std::clamp(bbox_cy, (bbox_h / 2.), static_cast<double_t>(_size.second) - (bbox_h / 2.));
// Filter values
auto size_w = _roi_filters[2].filter(bbox_w);
auto size_h = _roi_filters[3].filter(bbox_h);
auto center_x = _roi_filters[0].filter(bbox_cx);
auto center_y = _roi_filters[1].filter(bbox_cy);
// Fix NaN/Infinity
if (std::isfinite(size_w) && std::isfinite(size_h) && std::isfinite(center_x) && std::isfinite(center_y)) {
std::unique_lock<std::mutex> lock(_roi_lock);
_roi_center.first = center_x;
_roi_center.second = center_y;
_roi_size.first = size_w;
_roi_size.second = size_h;
} else {
std::unique_lock<std::mutex> lock(_roi_lock);
roi_refresh();
}
}
_ar_tracked = true;
}
}
void filter::nvidia::face_tracking_instance::roi_refresh()
{
double_t kalman_q = util::math::lerp<double_t>(1.0, 1e-6, _cfg_roi_stability);
double_t kalman_r = util::math::lerp<double_t>(std::numeric_limits<double_t>::epsilon(), 1e+2, _cfg_roi_stability);
_roi_filters[0] = util::math::kalman1D<double_t>{kalman_q, kalman_r, 1.0, _roi_center.first};
_roi_filters[1] = util::math::kalman1D<double_t>{kalman_q, kalman_r, 1.0, _roi_center.second};
_roi_filters[2] = util::math::kalman1D<double_t>{kalman_q, kalman_r, 1.0, _roi_size.first};
_roi_filters[3] = util::math::kalman1D<double_t>{kalman_q, kalman_r, 1.0, _roi_size.second};
}
void filter::nvidia::face_tracking_instance::roi_reset()
{
_roi_center.first = static_cast<double_t>(_size.first / 2);
_roi_center.second = static_cast<double_t>(_size.second / 2);
_roi_size.first = static_cast<double_t>(_size.first);
_roi_size.second = static_cast<double_t>(_size.second);
roi_refresh();
}
void filter::nvidia::face_tracking_instance::load(obs_data_t* data)
{
update(data);
}
void filter::nvidia::face_tracking_instance::migrate(obs_data_t* data, std::uint64_t version) {}
void filter::nvidia::face_tracking_instance::update(obs_data_t* data)
{
_cfg_roi_zoom = obs_data_get_double(data, SK_ROI_ZOOM) / 100.0;
_cfg_roi_offset.first = obs_data_get_double(data, SK_ROI_OFFSET_X) / 100.0;
_cfg_roi_offset.second = obs_data_get_double(data, SK_ROI_OFFSET_Y) / 100.0;
_cfg_roi_stability = obs_data_get_double(data, SK_ROI_STABILITY) / 100.0;
// Refresh the Region Of Interest
std::unique_lock<std::mutex> lock(_roi_lock);
roi_refresh();
}
void filter::nvidia::face_tracking_instance::video_tick(float_t seconds)
{
// If we aren't yet ready to do work, abort for now.
if (!_ar_loaded) {
return;
}
if (obs_source_t* target = obs_filter_get_target(_self); target != nullptr) {
_size.first = obs_source_get_width(target);
_size.second = obs_source_get_height(target);
}
_rt_is_fresh = false;
}
void filter::nvidia::face_tracking_instance::video_render(gs_effect_t* effect)
{
gs::debug_marker gdm_main{gs::debug_color_source, "%s", obs_source_get_name(_self)};
obs_source_t* filter_parent = obs_filter_get_parent(_self);
obs_source_t* filter_target = obs_filter_get_target(_self);
gs_effect_t* default_effect = obs_get_base_effect(OBS_EFFECT_DEFAULT);
if (!filter_parent || !filter_target || !_size.first || !_size.second || !_ar_loaded) {
obs_source_skip_video_filter(_self);
return;
}
if (!_rt_is_fresh) { // Capture the filter stack "below" us.
#ifdef _DEBUG
auto prof = _profile_capture->track();
#endif
gs::debug_marker marker{gs::debug_color_capture, "Capture"};
if (obs_source_process_filter_begin(_self, _rt->get_color_format(), OBS_ALLOW_DIRECT_RENDERING)) {
auto op = _rt->render(_size.first, _size.second);
vec4 clr = {0., 0., 0., 0.};
gs_ortho(0., static_cast<float_t>(_size.first), 0., static_cast<float_t>(_size.second), 0., 1.);
gs_clear(GS_CLEAR_COLOR, &clr, 0., 0.);
obs_source_process_filter_tech_end(_self, default_effect, _size.first, _size.second, "Draw");
} else {
obs_source_skip_video_filter(_self);
return;
}
if (_ar_tracked) {
async_track(nullptr);
refresh_geometry();
}
_rt_is_fresh = true;
}
// Draw Texture
gs::debug_marker marker{gs::debug_color_render, "Render"};
gs_effect_set_texture(gs_effect_get_param_by_name(effect ? effect : default_effect, "image"),
_rt->get_texture()->get_object());
gs_load_vertexbuffer(_roi_geom->update());
while (gs_effect_loop(effect ? effect : default_effect, "Draw")) {
gs_draw(gs_draw_mode::GS_TRISTRIP, 0, _roi_geom->size());
}
gs_load_vertexbuffer(nullptr);
}
#ifdef _DEBUG
bool filter::nvidia::face_tracking_instance::button_profile(obs_properties_t* props, obs_property_t* property)
{
LOG_INFO("%-22s: %-10s %-10s %-10s %-10s %-10s", "Task", "Total", "Count", "Average", "99.9%ile", "95.0%ile");
std::pair<std::string, std::shared_ptr<util::profiler>> profilers[]{
{"Capture", _profile_capture}, {"Reallocate", _profile_capture_realloc},
{"Copy", _profile_capture_copy}, {"AR Reallocate", _profile_ar_realloc},
{"AR Copy", _profile_ar_copy}, {"AR Convert", _profile_ar_transfer},
{"AR Run", _profile_ar_run}, {"AR Calculate", _profile_ar_calc},
};
for (auto& kv : profilers) {
LOG_INFO(" %-20s: %8lldµs %10lld %8lldµs %8lldµs %8lldµs", kv.first.c_str(),
std::chrono::duration_cast<std::chrono::microseconds>(kv.second->total_duration()).count(),
kv.second->count(), static_cast<std::int64_t>(kv.second->average_duration() / 1000.0),
std::chrono::duration_cast<std::chrono::microseconds>(kv.second->percentile(0.999)).count(),
std::chrono::duration_cast<std::chrono::microseconds>(kv.second->percentile(0.95)).count());
}
return false;
}
#endif
std::shared_ptr<filter::nvidia::face_tracking_factory> filter::nvidia::face_tracking_factory::factory_instance =
nullptr;
filter::nvidia::face_tracking_factory::face_tracking_factory()
{
// Try and load CUDA.
_cuda = std::make_shared<::nvidia::cuda::cuda>();
// Try and load AR.
_ar = std::make_shared<::nvidia::ar::ar>();
// Initialize CUDA
{
auto gctx = gs::context{};
#ifdef WIN32
if (gs_get_device_type() == GS_DEVICE_DIRECT3D_11) {
_cuda_ctx =
std::make_shared<::nvidia::cuda::context>(_cuda, reinterpret_cast<ID3D11Device*>(gs_get_device_obj()));
}
#endif
if (gs_get_device_type() == GS_DEVICE_OPENGL) {
throw std::runtime_error("OpenGL not supported.");
}
}
// Info
_info.id = "streamfx-nvidia-face-tracking";
_info.type = OBS_SOURCE_TYPE_FILTER;
_info.output_flags = OBS_SOURCE_VIDEO;
set_resolution_enabled(false);
finish_setup();
}
filter::nvidia::face_tracking_factory::~face_tracking_factory() {}
const char* filter::nvidia::face_tracking_factory::get_name()
{
return D_TRANSLATE(ST);
}
void filter::nvidia::face_tracking_factory::get_defaults2(obs_data_t* data)
{
obs_data_set_default_double(data, SK_ROI_ZOOM, 50.0);
obs_data_set_default_double(data, SK_ROI_OFFSET_X, 0.0);
obs_data_set_default_double(data, SK_ROI_OFFSET_Y, -15.0);
obs_data_set_default_double(data, SK_ROI_STABILITY, 50.0);
}
obs_properties_t* filter::nvidia::face_tracking_factory::get_properties2(filter::nvidia::face_tracking_instance* data)
{
obs_properties_t* pr = obs_properties_create();
{
auto grp = obs_properties_create();
obs_properties_add_group(pr, ST_ROI, D_TRANSLATE(ST_ROI), OBS_GROUP_NORMAL, grp);
{
auto p =
obs_properties_add_float_slider(grp, SK_ROI_STABILITY, D_TRANSLATE(ST_ROI_STABILITY), 0, 100.0, 0.01);
obs_property_set_long_description(p, D_TRANSLATE(D_DESC(ST_ROI_STABILITY)));
obs_property_float_set_suffix(p, " %");
}
{
auto p = obs_properties_add_float_slider(grp, SK_ROI_ZOOM, D_TRANSLATE(ST_ROI_ZOOM), 0, 200.0, 0.01);
obs_property_set_long_description(p, D_TRANSLATE(D_DESC(ST_ROI_ZOOM)));
obs_property_float_set_suffix(p, " %");
}
{
auto grp2 = obs_properties_create();
obs_properties_add_group(grp, ST_ROI_OFFSET, D_TRANSLATE(ST_ROI_OFFSET), OBS_GROUP_NORMAL, grp2);
{
auto p = obs_properties_add_float_slider(grp2, SK_ROI_OFFSET_X, D_TRANSLATE(ST_ROI_OFFSET_X), -50.0,
50.0, 0.01);
obs_property_set_long_description(p, D_TRANSLATE(D_DESC(ST_ROI_OFFSET_X)));
obs_property_float_set_suffix(p, " %");
}
{
auto p = obs_properties_add_float_slider(grp2, SK_ROI_OFFSET_Y, D_TRANSLATE(ST_ROI_OFFSET_Y), -50.0,
50.0, 0.01);
obs_property_set_long_description(p, D_TRANSLATE(D_DESC(ST_ROI_OFFSET_Y)));
obs_property_float_set_suffix(p, " %");
}
}
}
#ifdef _DEBUG
{
obs_properties_add_button2(
pr, "Profile", "Profile",
[](obs_properties_t* props, obs_property_t* property, void* data) {
return reinterpret_cast<filter::nvidia::face_tracking_instance*>(data)->button_profile(props, property);
},
data);
}
#endif
return pr;
}
std::shared_ptr<::nvidia::cuda::cuda> filter::nvidia::face_tracking_factory::get_cuda()
{
return _cuda;
}
std::shared_ptr<::nvidia::cuda::context> filter::nvidia::face_tracking_factory::get_cuda_context()
{
return _cuda_ctx;
}
std::shared_ptr<::nvidia::ar::ar> filter::nvidia::face_tracking_factory::get_ar()
{
return _ar;
}