obs-StreamFX/source/gfx/blur/gfx-blur-gaussian-linear.cpp
2020-04-09 00:17:25 +02:00

432 lines
12 KiB
C++

// Modern effects for a modern Streamer
// Copyright (C) 2019 Michael Fabian Dirks
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
#include "gfx-blur-gaussian-linear.hpp"
#include <stdexcept>
#include "obs/gs/gs-helper.hpp"
#include "util-math.hpp"
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4201)
#endif
#include <obs.h>
#include <obs-module.h>
#ifdef _MSC_VER
#pragma warning(pop)
#endif
// FIXME: This breaks when MAX_KERNEL_SIZE is changed, due to the way the Gaussian
// function first goes up at the point, and then once we pass the critical point
// will go down again and it is not handled well. This is a pretty basic
// approximation anyway at the moment.
#define MAX_KERNEL_SIZE 128
#define MAX_BLUR_SIZE (MAX_KERNEL_SIZE - 1)
#define SEARCH_DENSITY double_t(1. / 500.)
#define SEARCH_THRESHOLD double_t(1. / (MAX_KERNEL_SIZE * 5))
#define SEARCH_EXTENSION 1
#define SEARCH_RANGE MAX_KERNEL_SIZE * 2
gfx::blur::gaussian_linear_data::gaussian_linear_data()
{
auto gctx = gs::context();
{
char* file = obs_module_file("effects/blur/gaussian-linear.effect");
_effect = gs::effect::create(file);
bfree(file);
}
// Precalculate Kernels
for (std::size_t kernel_size = 1; kernel_size <= MAX_BLUR_SIZE; kernel_size++) {
std::vector<double_t> kernel_math(MAX_KERNEL_SIZE);
std::vector<float_t> kernel_data(MAX_KERNEL_SIZE);
double_t actual_width = 1.;
// Find actual kernel width.
for (double_t h = SEARCH_DENSITY; h < SEARCH_RANGE; h += SEARCH_DENSITY) {
if (util::math::gaussian<double_t>(double_t(kernel_size + SEARCH_EXTENSION), h) > SEARCH_THRESHOLD) {
actual_width = h;
break;
}
}
// Calculate and normalize
double_t sum = 0;
for (std::size_t p = 0; p <= kernel_size; p++) {
kernel_math[p] = util::math::gaussian<double_t>(double_t(p), actual_width);
sum += kernel_math[p] * (p > 0 ? 2 : 1);
}
// Normalize to fill the entire 0..1 range over the width.
double_t inverse_sum = 1.0 / sum;
for (std::size_t p = 0; p <= kernel_size; p++) {
kernel_data.at(p) = float_t(kernel_math[p] * inverse_sum);
}
_kernels.push_back(std::move(kernel_data));
}
}
gfx::blur::gaussian_linear_data::~gaussian_linear_data()
{
_effect.reset();
}
gs::effect gfx::blur::gaussian_linear_data::get_effect()
{
return _effect;
}
std::vector<float_t> const& gfx::blur::gaussian_linear_data::get_kernel(std::size_t width)
{
if (width < 1)
width = 1;
if (width > MAX_BLUR_SIZE)
width = MAX_BLUR_SIZE;
width -= 1;
return _kernels[width];
}
gfx::blur::gaussian_linear_factory::gaussian_linear_factory() {}
gfx::blur::gaussian_linear_factory::~gaussian_linear_factory() {}
bool gfx::blur::gaussian_linear_factory::is_type_supported(::gfx::blur::type v)
{
switch (v) {
case ::gfx::blur::type::Area:
return true;
case ::gfx::blur::type::Directional:
return true;
default:
return false;
}
}
std::shared_ptr<::gfx::blur::base> gfx::blur::gaussian_linear_factory::create(::gfx::blur::type v)
{
switch (v) {
case ::gfx::blur::type::Area:
return std::make_shared<::gfx::blur::gaussian_linear>();
case ::gfx::blur::type::Directional:
return std::static_pointer_cast<::gfx::blur::gaussian_linear>(
std::make_shared<::gfx::blur::gaussian_linear_directional>());
default:
throw std::runtime_error("Invalid type.");
}
}
double_t gfx::blur::gaussian_linear_factory::get_min_size(::gfx::blur::type)
{
return double_t(1.0);
}
double_t gfx::blur::gaussian_linear_factory::get_step_size(::gfx::blur::type)
{
return double_t(1.0);
}
double_t gfx::blur::gaussian_linear_factory::get_max_size(::gfx::blur::type)
{
return double_t(MAX_BLUR_SIZE);
}
double_t gfx::blur::gaussian_linear_factory::get_min_angle(::gfx::blur::type v)
{
switch (v) {
case ::gfx::blur::type::Directional:
case ::gfx::blur::type::Rotational:
return -180.0;
default:
return 0;
}
}
double_t gfx::blur::gaussian_linear_factory::get_step_angle(::gfx::blur::type)
{
return double_t(0.01);
}
double_t gfx::blur::gaussian_linear_factory::get_max_angle(::gfx::blur::type v)
{
switch (v) {
case ::gfx::blur::type::Directional:
case ::gfx::blur::type::Rotational:
return 180.0;
default:
return 0;
}
}
bool gfx::blur::gaussian_linear_factory::is_step_scale_supported(::gfx::blur::type v)
{
switch (v) {
case ::gfx::blur::type::Area:
case ::gfx::blur::type::Zoom:
case ::gfx::blur::type::Directional:
return true;
default:
return false;
}
}
double_t gfx::blur::gaussian_linear_factory::get_min_step_scale_x(::gfx::blur::type)
{
return double_t(0.01);
}
double_t gfx::blur::gaussian_linear_factory::get_step_step_scale_x(::gfx::blur::type)
{
return double_t(0.01);
}
double_t gfx::blur::gaussian_linear_factory::get_max_step_scale_x(::gfx::blur::type)
{
return double_t(1000.0);
}
double_t gfx::blur::gaussian_linear_factory::get_min_step_scale_y(::gfx::blur::type)
{
return double_t(0.01);
}
double_t gfx::blur::gaussian_linear_factory::get_step_step_scale_y(::gfx::blur::type)
{
return double_t(0.01);
}
double_t gfx::blur::gaussian_linear_factory::get_max_step_scale_y(::gfx::blur::type)
{
return double_t(1000.0);
}
std::shared_ptr<::gfx::blur::gaussian_linear_data> gfx::blur::gaussian_linear_factory::data()
{
std::unique_lock<std::mutex> ulock(_data_lock);
std::shared_ptr<::gfx::blur::gaussian_linear_data> data = _data.lock();
if (!data) {
data = std::make_shared<::gfx::blur::gaussian_linear_data>();
_data = data;
}
return data;
}
::gfx::blur::gaussian_linear_factory& gfx::blur::gaussian_linear_factory::get()
{
static ::gfx::blur::gaussian_linear_factory instance;
return instance;
}
gfx::blur::gaussian_linear::gaussian_linear()
: _data(::gfx::blur::gaussian_linear_factory::get().data()), _size(1.), _step_scale({1., 1.})
{
auto gctx = gs::context();
_rendertarget = std::make_shared<gs::rendertarget>(GS_RGBA, GS_ZS_NONE);
_rendertarget2 = std::make_shared<gs::rendertarget>(GS_RGBA, GS_ZS_NONE);
}
gfx::blur::gaussian_linear::~gaussian_linear() {}
void gfx::blur::gaussian_linear::set_input(std::shared_ptr<::gs::texture> texture)
{
_input_texture = texture;
}
::gfx::blur::type gfx::blur::gaussian_linear::get_type()
{
return ::gfx::blur::type::Area;
}
double_t gfx::blur::gaussian_linear::get_size()
{
return _size;
}
void gfx::blur::gaussian_linear::set_size(double_t width)
{
if (width < 1.)
width = 1.;
if (width > MAX_BLUR_SIZE)
width = MAX_BLUR_SIZE;
_size = width;
}
void gfx::blur::gaussian_linear::set_step_scale(double_t x, double_t y)
{
_step_scale.first = x;
_step_scale.second = y;
}
void gfx::blur::gaussian_linear::get_step_scale(double_t& x, double_t& y)
{
x = _step_scale.first;
y = _step_scale.second;
}
double_t gfx::blur::gaussian_linear::get_step_scale_x()
{
return _step_scale.first;
}
double_t gfx::blur::gaussian_linear::get_step_scale_y()
{
return _step_scale.second;
}
std::shared_ptr<::gs::texture> gfx::blur::gaussian_linear::render()
{
auto gctx = gs::context();
gs::effect effect = _data->get_effect();
auto kernel = _data->get_kernel(size_t(_size));
if (!effect || ((_step_scale.first + _step_scale.second) < std::numeric_limits<double_t>::epsilon())) {
return _input_texture;
}
float_t width = float_t(_input_texture->get_width());
float_t height = float_t(_input_texture->get_height());
// Setup
gs_set_cull_mode(GS_NEITHER);
gs_enable_color(true, true, true, true);
gs_enable_depth_test(false);
gs_depth_function(GS_ALWAYS);
gs_blend_state_push();
gs_reset_blend_state();
gs_enable_blending(false);
gs_blend_function(GS_BLEND_ONE, GS_BLEND_ZERO);
gs_enable_stencil_test(false);
gs_enable_stencil_write(false);
gs_stencil_function(GS_STENCIL_BOTH, GS_ALWAYS);
gs_stencil_op(GS_STENCIL_BOTH, GS_ZERO, GS_ZERO, GS_ZERO);
effect.get_parameter("pImage").set_texture(_input_texture);
effect.get_parameter("pStepScale").set_float2(float_t(_step_scale.first), float_t(_step_scale.second));
effect.get_parameter("pSize").set_float(float_t(_size));
effect.get_parameter("pKernel").set_value(kernel.data(), MAX_KERNEL_SIZE);
// First Pass
if (_step_scale.first > std::numeric_limits<double_t>::epsilon()) {
effect.get_parameter("pImageTexel").set_float2(float_t(1.f / width), 0.f);
{
auto op = _rendertarget2->render(uint32_t(width), uint32_t(height));
gs_ortho(0, 1., 0, 1., 0, 1.);
while (gs_effect_loop(effect.get_object(), "Draw")) {
gs_draw_sprite(nullptr, 0, 1, 1);
}
}
std::swap(_rendertarget, _rendertarget2);
effect.get_parameter("pImage").set_texture(_rendertarget->get_texture());
}
// Second Pass
if (_step_scale.second > std::numeric_limits<double_t>::epsilon()) {
effect.get_parameter("pImageTexel").set_float2(0.f, float_t(1.f / height));
{
auto op = _rendertarget2->render(uint32_t(width), uint32_t(height));
gs_ortho(0, 1., 0, 1., 0, 1.);
while (gs_effect_loop(effect.get_object(), "Draw")) {
gs_draw_sprite(nullptr, 0, 1, 1);
}
}
std::swap(_rendertarget, _rendertarget2);
}
gs_blend_state_pop();
return this->get();
}
std::shared_ptr<::gs::texture> gfx::blur::gaussian_linear::get()
{
return _rendertarget->get_texture();
}
gfx::blur::gaussian_linear_directional::gaussian_linear_directional() : _angle(0.) {}
gfx::blur::gaussian_linear_directional::~gaussian_linear_directional() {}
::gfx::blur::type gfx::blur::gaussian_linear_directional::get_type()
{
return ::gfx::blur::type::Directional;
}
double_t gfx::blur::gaussian_linear_directional::get_angle()
{
return D_RAD_TO_DEG(_angle);
}
void gfx::blur::gaussian_linear_directional::set_angle(double_t angle)
{
_angle = D_DEG_TO_RAD(angle);
}
std::shared_ptr<::gs::texture> gfx::blur::gaussian_linear_directional::render()
{
auto gctx = gs::context();
gs::effect effect = _data->get_effect();
auto kernel = _data->get_kernel(size_t(_size));
if (!effect || ((_step_scale.first + _step_scale.second) < std::numeric_limits<double_t>::epsilon())) {
return _input_texture;
}
float_t width = float_t(_input_texture->get_width());
float_t height = float_t(_input_texture->get_height());
// Setup
gs_set_cull_mode(GS_NEITHER);
gs_enable_color(true, true, true, true);
gs_enable_depth_test(false);
gs_depth_function(GS_ALWAYS);
gs_blend_state_push();
gs_reset_blend_state();
gs_enable_blending(false);
gs_blend_function(GS_BLEND_ONE, GS_BLEND_ZERO);
gs_enable_stencil_test(false);
gs_enable_stencil_write(false);
gs_stencil_function(GS_STENCIL_BOTH, GS_ALWAYS);
gs_stencil_op(GS_STENCIL_BOTH, GS_ZERO, GS_ZERO, GS_ZERO);
effect.get_parameter("pImage").set_texture(_input_texture);
effect.get_parameter("pImageTexel")
.set_float2(float_t(1.f / width * cos(_angle)), float_t(1.f / height * sin(_angle)));
effect.get_parameter("pStepScale").set_float2(float_t(_step_scale.first), float_t(_step_scale.second));
effect.get_parameter("pSize").set_float(float_t(_size));
effect.get_parameter("pKernel").set_value(kernel.data(), MAX_KERNEL_SIZE);
// First Pass
{
auto op = _rendertarget->render(uint32_t(width), uint32_t(height));
gs_ortho(0, 1., 0, 1., 0, 1.);
while (gs_effect_loop(effect.get_object(), "Draw")) {
gs_draw_sprite(nullptr, 0, 1, 1);
}
}
gs_blend_state_pop();
return this->get();
}