mirror of
https://github.com/Xaymar/obs-StreamFX
synced 2024-12-29 11:01:23 +00:00
5a3954ae0e
Fixes several files incorrectly stated a different license from the actual project, as well as the copyright headers included in all files. This change has no effect on the licensing terms, it should clear up a bit of confusion by contributors. Plus the files get a bit smaller, and we have less duplicated information across the entire project. Overall the project is GPLv2 if not built with Qt, and GPLv3 if it is built with Qt. There are no parts licensed under a different license, all have been adapted from other compatible licenses into GPLv2 or GPLv3.
156 lines
4.2 KiB
C++
156 lines
4.2 KiB
C++
// AUTOGENERATED COPYRIGHT HEADER START
|
|
// Copyright (C) 2020-2023 Michael Fabian 'Xaymar' Dirks <info@xaymar.com>
|
|
// AUTOGENERATED COPYRIGHT HEADER END
|
|
|
|
#include "util-profiler.hpp"
|
|
|
|
#include "warning-disable.hpp"
|
|
#include <iterator>
|
|
#include "warning-enable.hpp"
|
|
|
|
streamfx::util::profiler::profiler() {}
|
|
|
|
streamfx::util::profiler::~profiler() {}
|
|
|
|
std::shared_ptr<streamfx::util::profiler::instance> streamfx::util::profiler::track()
|
|
{
|
|
return std::make_shared<streamfx::util::profiler::instance>(shared_from_this());
|
|
}
|
|
|
|
void streamfx::util::profiler::track(std::chrono::nanoseconds duration)
|
|
{
|
|
std::unique_lock<std::mutex> ul(_timings_lock);
|
|
auto itr = _timings.find(duration);
|
|
if (itr == _timings.end()) {
|
|
_timings.emplace(duration, 1u);
|
|
} else {
|
|
itr->second++;
|
|
}
|
|
}
|
|
|
|
uint64_t streamfx::util::profiler::count()
|
|
{
|
|
uint64_t count = 0;
|
|
|
|
std::map<std::chrono::nanoseconds, size_t> copy_timings;
|
|
{
|
|
std::unique_lock<std::mutex> ul(_timings_lock);
|
|
copy(_timings.begin(), _timings.end(), std::inserter(copy_timings, copy_timings.end()));
|
|
}
|
|
|
|
for (auto kv : copy_timings) {
|
|
count += kv.second;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
std::chrono::nanoseconds streamfx::util::profiler::total_duration()
|
|
{
|
|
std::chrono::nanoseconds duration{0};
|
|
|
|
std::map<std::chrono::nanoseconds, size_t> copy_timings;
|
|
{
|
|
std::unique_lock<std::mutex> ul(_timings_lock);
|
|
copy(_timings.begin(), _timings.end(), std::inserter(copy_timings, copy_timings.end()));
|
|
}
|
|
|
|
for (auto kv : copy_timings) {
|
|
duration += kv.first * kv.second;
|
|
}
|
|
|
|
return duration;
|
|
}
|
|
|
|
double_t streamfx::util::profiler::average_duration()
|
|
{
|
|
std::chrono::nanoseconds duration{0};
|
|
uint64_t count = 0;
|
|
|
|
std::map<std::chrono::nanoseconds, size_t> copy_timings;
|
|
{
|
|
std::unique_lock<std::mutex> ul(_timings_lock);
|
|
copy(_timings.begin(), _timings.end(), std::inserter(copy_timings, copy_timings.end()));
|
|
}
|
|
|
|
for (auto kv : copy_timings) {
|
|
duration += kv.first * kv.second;
|
|
count += kv.second;
|
|
}
|
|
|
|
return double_t(duration.count()) / double_t(count);
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool is_equal(T a, T b, T c)
|
|
{
|
|
return (a == b) || ((a >= (b - c)) && (a <= (b + c)));
|
|
}
|
|
|
|
std::chrono::nanoseconds streamfx::util::profiler::percentile(double_t percentile, bool by_time)
|
|
{
|
|
constexpr double_t edge = 0.00005;
|
|
uint64_t calls = count();
|
|
|
|
std::map<std::chrono::nanoseconds, size_t> copy_timings;
|
|
{
|
|
std::unique_lock<std::mutex> ul(_timings_lock);
|
|
copy(_timings.begin(), _timings.end(), inserter(copy_timings, copy_timings.end()));
|
|
}
|
|
if (by_time) { // Return by time percentile.
|
|
// Find largest and smallest time.
|
|
std::chrono::nanoseconds smallest = copy_timings.begin()->first;
|
|
std::chrono::nanoseconds largest = copy_timings.rbegin()->first;
|
|
std::chrono::nanoseconds variance = largest - smallest;
|
|
|
|
for (auto kv : copy_timings) {
|
|
double_t kv_pct = double_t((kv.first - smallest).count()) / double_t(variance.count());
|
|
if (is_equal<double_t>(kv_pct, percentile, edge) || (kv_pct > percentile)) {
|
|
return std::chrono::nanoseconds(kv.first);
|
|
}
|
|
}
|
|
} else { // Return by call percentile.
|
|
if (percentile == 0.0) {
|
|
return copy_timings.begin()->first;
|
|
}
|
|
|
|
uint64_t accu_calls_now = 0;
|
|
for (auto kv : copy_timings) {
|
|
uint64_t accu_calls_last = accu_calls_now;
|
|
accu_calls_now += kv.second;
|
|
|
|
double_t percentile_last = double_t(accu_calls_last) / double_t(calls);
|
|
double_t percentile_now = double_t(accu_calls_now) / double_t(calls);
|
|
|
|
if (is_equal<double_t>(percentile, percentile_now, edge)
|
|
|| ((percentile_last < percentile) && (percentile_now > percentile))) {
|
|
return std::chrono::nanoseconds(kv.first);
|
|
}
|
|
}
|
|
}
|
|
|
|
return std::chrono::nanoseconds(-1);
|
|
}
|
|
|
|
streamfx::util::profiler::instance::instance(std::shared_ptr<streamfx::util::profiler> parent)
|
|
: _parent(parent), _start(std::chrono::high_resolution_clock::now())
|
|
{}
|
|
|
|
streamfx::util::profiler::instance::~instance()
|
|
{
|
|
auto end = std::chrono::high_resolution_clock::now();
|
|
auto dur = end - _start;
|
|
if (_parent) {
|
|
_parent->track(dur);
|
|
}
|
|
}
|
|
|
|
void streamfx::util::profiler::instance::cancel()
|
|
{
|
|
_parent.reset();
|
|
}
|
|
|
|
void streamfx::util::profiler::instance::reparent(std::shared_ptr<streamfx::util::profiler> parent)
|
|
{
|
|
_parent = parent;
|
|
}
|