obs-StreamFX/source/obs/gs/gs-vertexbuffer.cpp
Michael Fabian 'Xaymar' Dirks d332007ae0 project: Code cleanup and reapply formatting
Changes applied:

* Moved utility files to /util/.
* Removed unused #includes.
* Removed unused ::ffmpeg::tools function.
* Removed unused variables.
* Fixed missing parentheses in the version macro.
* Fixed missing override on virtual function overrides and removed unnecessary virtual keyword from them.
* Disabled additional warning for ATL headers on MSVC only.
* Replaced direct printf parameters with their macro equivalent.
* Replaced C-style casts with C++-style casts.
* Applied clang-format again after an earlier change to the CMake file broke the integration for it.
2020-07-29 05:17:42 +02:00

316 lines
9.1 KiB
C++

/*
* Modern effects for a modern Streamer
* Copyright (C) 2017 Michael Fabian Dirks
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "gs-vertexbuffer.hpp"
#include <stdexcept>
#include "obs/gs/gs-helper.hpp"
void gs::vertex_buffer::initialize(uint32_t capacity, uint8_t layers)
{
finalize();
if (capacity > MAXIMUM_VERTICES) {
throw std::out_of_range("capacity");
}
if (layers > MAXIMUM_UVW_LAYERS) {
throw std::out_of_range("layers");
}
// Allocate memory for data.
_data = std::make_shared<decltype(_data)::element_type>();
_data->num = _capacity;
_data->num_tex = _layers;
_data->points = _positions = static_cast<vec3*>(util::malloc_aligned(16, sizeof(vec3) * _capacity));
_data->normals = _normals = static_cast<vec3*>(util::malloc_aligned(16, sizeof(vec3) * _capacity));
_data->tangents = _tangents = static_cast<vec3*>(util::malloc_aligned(16, sizeof(vec3) * _capacity));
_data->colors = _colors = static_cast<uint32_t*>(util::malloc_aligned(16, sizeof(uint32_t) * _capacity));
// Clear the allocated memory of any data.
memset(_positions, 0, sizeof(vec3) * _capacity);
memset(_normals, 0, sizeof(vec3) * _capacity);
memset(_tangents, 0, sizeof(vec3) * _capacity);
memset(_colors, 0, sizeof(uint32_t) * _capacity);
if (_layers == 0) {
_data->tvarray = nullptr;
} else {
_data->tvarray = _uv_layers =
static_cast<gs_tvertarray*>(util::malloc_aligned(16, sizeof(gs_tvertarray) * _layers));
for (uint8_t n = 0; n < _layers; n++) {
_uv_layers[n].array = _uvs[n] = static_cast<vec4*>(util::malloc_aligned(16, sizeof(vec4) * _capacity));
_uv_layers[n].width = 4;
memset(_uvs[n], 0, sizeof(vec4) * _capacity);
}
}
// Allocate actual GPU vertex buffer.
{
auto gctx = gs::context();
_buffer = decltype(_buffer)(gs_vertexbuffer_create(_data.get(), GS_DYNAMIC | GS_DUP_BUFFER),
[this](gs_vertbuffer_t* v) {
try {
auto gctx = gs::context();
gs_vertexbuffer_destroy(v);
} catch (...) {
if (obs_get_version() < MAKE_SEMANTIC_VERSION(26, 0, 0)) {
// Fixes a memory leak with OBS Studio versions older than 26.x.
gs_vbdata_destroy(_obs_data);
}
}
});
_obs_data = gs_vertexbuffer_get_data(_buffer.get());
}
if (!_buffer) {
throw std::runtime_error("Failed to create vertex buffer.");
}
}
void gs::vertex_buffer::finalize()
{
// Free data
util::free_aligned(_positions);
util::free_aligned(_normals);
util::free_aligned(_tangents);
util::free_aligned(_colors);
util::free_aligned(_uv_layers);
for (std::size_t n = 0; n < _layers; n++) {
util::free_aligned(_uvs[n]);
}
_buffer.reset();
_data.reset();
}
gs::vertex_buffer::~vertex_buffer()
{
finalize();
}
gs::vertex_buffer::vertex_buffer(uint32_t size, uint8_t layers)
: _capacity(size), _size(size), _layers(layers),
_buffer(nullptr), _data(nullptr),
_positions(nullptr), _normals(nullptr), _tangents(nullptr), _colors(nullptr), _uv_layers(nullptr), _uvs(),
_obs_data(nullptr)
{
initialize(_size, _layers);
}
gs::vertex_buffer::vertex_buffer(gs_vertbuffer_t* vb)
: _capacity(0), _size(0), _layers(0),
_buffer(nullptr), _data(nullptr),
_positions(nullptr), _normals(nullptr), _tangents(nullptr), _colors(nullptr), _uv_layers(nullptr), _uvs(),
_obs_data(nullptr)
{
auto gctx = gs::context();
gs_vb_data* vbd = gs_vertexbuffer_get_data(vb);
if (!vbd)
throw std::runtime_error("vertex buffer with no data");
initialize(static_cast<uint32_t>(vbd->num), static_cast<uint8_t>(vbd->num_tex));
if (_positions && vbd->points)
memcpy(_positions, vbd->points, vbd->num * sizeof(vec3));
if (_normals && vbd->normals)
memcpy(_normals, vbd->normals, vbd->num * sizeof(vec3));
if (_tangents && vbd->tangents)
memcpy(_tangents, vbd->tangents, vbd->num * sizeof(vec3));
if (_colors && vbd->colors)
memcpy(_colors, vbd->colors, vbd->num * sizeof(uint32_t));
if (vbd->tvarray != nullptr) {
for (std::size_t n = 0; n < vbd->num_tex; n++) {
if (vbd->tvarray[n].array != nullptr && vbd->tvarray[n].width <= 4 && vbd->tvarray[n].width > 0) {
if (vbd->tvarray[n].width == 4) {
memcpy(_uvs[n], vbd->tvarray[n].array, vbd->num * sizeof(vec4));
} else if (vbd->tvarray[n].width < 4) {
for (std::size_t idx = 0; idx < _capacity; idx++) {
float* mem = reinterpret_cast<float*>(vbd->tvarray[n].array) + (idx * vbd->tvarray[n].width);
memset(&_uvs[n][idx], 0, sizeof(vec4));
memcpy(&_uvs[n][idx], mem, vbd->tvarray[n].width);
}
}
}
}
}
}
gs::vertex_buffer::vertex_buffer(vertex_buffer const& other) : vertex_buffer(other._capacity, other._layers)
{ // Copy Constructor
memcpy(_positions, other._positions, _capacity * sizeof(vec3));
memcpy(_normals, other._normals, _capacity * sizeof(vec3));
memcpy(_tangents, other._tangents, _capacity * sizeof(vec3));
memcpy(_colors, other._colors, _capacity * sizeof(vec3));
for (std::size_t n = 0; n < other._layers; n++) {
memcpy(_uvs[n], other._uvs[n], _capacity * sizeof(vec4));
}
}
void gs::vertex_buffer::operator=(vertex_buffer const& other)
{ // Copy operator
initialize(other._capacity, other._layers);
_size = other._size;
// Copy actual data over.
memcpy(_positions, other._positions, other._capacity * sizeof(vec3));
memcpy(_normals, other._normals, other._capacity * sizeof(vec3));
memcpy(_tangents, other._tangents, other._capacity * sizeof(vec3));
memcpy(_colors, other._colors, other._capacity * sizeof(uint32_t));
memcpy(_uv_layers, other._uv_layers, sizeof(gs_tvertarray));
for (std::size_t n = 0; n < other._layers; n++) {
memcpy(_uvs[n], other._uvs[n], _capacity * sizeof(vec4));
}
}
gs::vertex_buffer::vertex_buffer(vertex_buffer const&& other) noexcept
{ // Move Constructor
_capacity = other._capacity;
_size = other._size;
_layers = other._layers;
_buffer = other._buffer;
_data = other._data;
_positions = other._positions;
_normals = other._normals;
_tangents = other._tangents;
_colors = other._colors;
_uv_layers = other._uv_layers;
for (std::size_t n = 0; n < MAXIMUM_UVW_LAYERS; n++) {
_uvs[n] = other._uvs[n];
}
_obs_data = other._obs_data;
}
void gs::vertex_buffer::operator=(vertex_buffer const&& other)
{ // Move Assignment
finalize();
_capacity = other._capacity;
_size = other._size;
_layers = other._layers;
_buffer = other._buffer;
_data = other._data;
_positions = other._positions;
_normals = other._normals;
_tangents = other._tangents;
_colors = other._colors;
_uv_layers = other._uv_layers;
for (std::size_t n = 0; n < MAXIMUM_UVW_LAYERS; n++) {
_uvs[n] = other._uvs[n];
}
_obs_data = other._obs_data;
}
void gs::vertex_buffer::resize(uint32_t size)
{
if (size > _capacity) {
throw std::out_of_range("size larger than capacity");
}
_size = size;
}
uint32_t gs::vertex_buffer::size()
{
return _size;
}
uint32_t gs::vertex_buffer::capacity()
{
return _capacity;
}
bool gs::vertex_buffer::empty()
{
return _size == 0;
}
const gs::vertex gs::vertex_buffer::at(uint32_t idx)
{
if (idx >= _size) {
throw std::out_of_range("idx out of range");
}
gs::vertex vtx(&_positions[idx], &_normals[idx], &_tangents[idx], &_colors[idx], nullptr);
for (std::size_t n = 0; n < _layers; n++) {
vtx.uv[n] = &_uvs[n][idx];
}
return vtx;
}
const gs::vertex gs::vertex_buffer::operator[](uint32_t const pos)
{
return at(pos);
}
void gs::vertex_buffer::set_uv_layers(uint8_t layers)
{
_layers = layers;
}
uint8_t gs::vertex_buffer::get_uv_layers()
{
return _layers;
}
vec3* gs::vertex_buffer::get_positions()
{
return _positions;
}
vec3* gs::vertex_buffer::get_normals()
{
return _normals;
}
vec3* gs::vertex_buffer::get_tangents()
{
return _tangents;
}
uint32_t* gs::vertex_buffer::get_colors()
{
return _colors;
}
vec4* gs::vertex_buffer::get_uv_layer(uint8_t idx)
{
if (idx >= _layers) {
throw std::out_of_range("idx out of range");
}
return _uvs[idx];
}
gs_vertbuffer_t* gs::vertex_buffer::update(bool refreshGPU)
{
if (refreshGPU) {
auto gctx = gs::context();
gs_vertexbuffer_flush_direct(_buffer.get(), _data.get());
_obs_data = gs_vertexbuffer_get_data(_buffer.get());
}
return _buffer.get();
}
gs_vertbuffer_t* gs::vertex_buffer::update()
{
return update(true);
}