obs-StreamFX/data/examples/shaders/filter/blur-gaussian.effect

199 lines
6.6 KiB
Plaintext

// AUTOGENERATED COPYRIGHT HEADER START
// Copyright (C) 2021-2023 Michael Fabian 'Xaymar' Dirks <info@xaymar.com>
// AUTOGENERATED COPYRIGHT HEADER END
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// 3. Neither the name of the copyright holder nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
// This shader is provided as a learning resource, a far more optimized version
// is already part of StreamFX as the Blur filter.
//------------------------------------------------------------------------------
// Defines
//------------------------------------------------------------------------------
#define SAMPLE_RANGE 128
#define BLUR_RANGE 32
#define TO_RAD(x) (x * 0.017453292)
#define TO_DEG(x) (x * 57.295779513)
//------------------------------------------------------------------------------
// Uniforms
//------------------------------------------------------------------------------
uniform float4x4 ViewProj<
bool automatic = true;
>;
uniform float4 ViewSize<
bool automatic = true;
>;
uniform texture2d InputA<
bool automatic = true;
>;
uniform int samples<
string name = "Samples";
string field_type = "slider";
int minimum = 0;
int maximum = SAMPLE_RANGE;
int step = 1;
> = 8;
uniform float size<
string name = "Size";
string field_type = "slider";
float minimum = 0.;
float maximum = BLUR_RANGE;
float step = .01;
float scale = 1.;
> = 1.;
uniform float direction<
string name = "Direction";
string field_type = "slider";
float minimum = -180.;
float maximum = 180.;
float step = .01;
float scale = 1.;
> = 0.;
//------------------------------------------------------------------------------
// Structures
//------------------------------------------------------------------------------
struct VertexInformation {
float4 position : POSITION;
float4 texcoord0 : TEXCOORD0;
};
//------------------------------------------------------------------------------
// Samplers
//------------------------------------------------------------------------------
sampler_state LinearClampSampler {
Filter = Point;
AddressU = Clamp;
AddressV = Clamp;
};
//------------------------------------------------------------------------------
// Functions
//------------------------------------------------------------------------------
VertexInformation DefaultVertexShader(VertexInformation vtx) {
vtx.position = mul(float4(vtx.position.xyz, 1.0), ViewProj);
return vtx;
};
bool is_equal(float a, float b) {
return (abs(a - b) <= .0001);
}
float gaussian(float x, float o /*, float u = 0*/)
{
// u/µ can be simulated by subtracting that value from x.
float two_pi_sqroot = 2.506628274631000502415765284811;
if (is_equal(0., o)) {
return 1.0e24;
}
// g(x) = (1 / o√(2Π)) * e(-(1/2) * ((x-u)/o)²)
float left_e = 1. / (o * two_pi_sqroot);
float mid_right_e = ((x /* - u*/) / o);
float right_e = -0.5 * mid_right_e * mid_right_e;
float final = left_e * exp(right_e);
return final;
}
//------------------------------------------------------------------------------
// Technique: NxN
//------------------------------------------------------------------------------
float4 PSNxNtap(VertexInformation vtx) : TARGET {
vtx.texcoord0.xy += ViewSize.zw / 2.;
// Calculate the actual step to take.
float2 uv_step = ViewSize.zw;
float4 final = InputA.Sample(LinearClampSampler, vtx.texcoord0.xy) * gaussian(0., size);
float totals = gaussian(0., size);
for (uint xstep = 1; (xstep < samples) && (xstep < SAMPLE_RANGE); xstep++) {
float xkernel = gaussian(float(xstep), size);
for (uint ystep = 1; (ystep < samples) && (ystep < SAMPLE_RANGE); ystep++) {
float ykernel = gaussian(float(ystep), size);
float kernel = xkernel * ykernel;
totals += kernel * 4.;
float4 temp = float4(0, 0, 0, 0);
temp += InputA.Sample(LinearClampSampler, vtx.texcoord0.xy + float2(uv_step.x * xstep, uv_step.y * ystep));
temp += InputA.Sample(LinearClampSampler, vtx.texcoord0.xy + float2(uv_step.x * xstep, -uv_step.y * ystep));
temp += InputA.Sample(LinearClampSampler, vtx.texcoord0.xy + float2(-uv_step.x * xstep, uv_step.y * ystep));
temp += InputA.Sample(LinearClampSampler, vtx.texcoord0.xy + float2(-uv_step.x * xstep, -uv_step.y * ystep));
final += temp * kernel;
}
}
final /= totals;
return final;
}
technique NxNtap
{
pass
{
vertex_shader = DefaultVertexShader(vtx);
pixel_shader = PSNxNtap(vtx);
}
}
//------------------------------------------------------------------------------
// Technique: Separable Directional
//------------------------------------------------------------------------------
float4 PSNtap(VertexInformation vtx) : TARGET {
// Calculate the actual step to take.
float2 uv_step = float2(cos(TO_RAD(direction)), sin(TO_RAD(direction))) * ViewSize.zw;
float kernel = gaussian(0., size);
float4 final = InputA.Sample(LinearClampSampler, vtx.texcoord0.xy) * kernel;
float weights = kernel;
for (uint step = 1; (step < samples) && (step < SAMPLE_RANGE); step++) {
kernel = gaussian(float(step), size);
final += InputA.Sample(LinearClampSampler, vtx.texcoord0.xy + uv_step * step) * kernel;
final += InputA.Sample(LinearClampSampler, vtx.texcoord0.xy - uv_step * step) * kernel;
weights += kernel * 2.;
}
final /= weights;
return final;
}
technique Ntap
{
pass
{
vertex_shader = DefaultVertexShader(vtx);
pixel_shader = PSNtap(vtx);
}
}