obs-StreamFX/data/effects/sdf/sdf-consumer.effect

292 lines
7.9 KiB
Plaintext

// AUTOGENERATED COPYRIGHT HEADER START
// Copyright (C) 2019-2023 Michael Fabian 'Xaymar' Dirks <info@xaymar.com>
// AUTOGENERATED COPYRIGHT HEADER END
// -------------------------------------------------------------------------------- //
// Defines
#define MAX_DISTANCE 65536.0
#define NEAR_INFINITE 18446744073709551616.0
#define FLT_SMALL 0.001
#define PI 3.1415926535897932384626433832795
#define HALFPI 1.5707963267948966192313216916398
// -------------------------------------------------------------------------------- //
// -------------------------------------------------------------------------------- //
// Samplers
sampler_state imageSampler {
Filter = Linear;
AddressU = Clamp;
AddressV = Clamp;
};
sampler_state sdfSampler {
Filter = Linear;
AddressU = Clamp;
AddressV = Clamp;
BorderColor = FFFFFFFF;
};
// -------------------------------------------------------------------------------- //
// -------------------------------------------------------------------------------- //
// Global Parameters
uniform float4x4 ViewProj;
uniform texture2d pSDFTexture;
uniform float pSDFThreshold;
uniform texture2d pImageTexture;
// -------------------------------------------------------------------------------- //
// -------------------------------------------------------------------------------- //
// Shared Functions
float4 PremultiplyTarget(float4 c, float4 t) {
return lerp(float4(t.r, t.g, t.b, c.a), c, c.a);
}
float LinearCurveFromValue(float v, float offset, float width,
float sharpness, float sharpnessInverse) {
}
float GradientFromValue(float v, float offset, float width) {
return ((v - offset) / width);
}
// We can use any of the following gradient functions: https://www.desmos.com/calculator/bmbrncaiem
float CurveEaseInOut(float v) {
return cos((v-1)*PI)*0.5+0.5;
}
float CurveEaseOut(float v) {
return sin(v * HALFPI);
}
float CurveEaseIn(float v) {
return 1 - cos(v * HALFPI);
}
// -------------------------------------------------------------------------------- //
// -------------------------------------------------------------------------------- //
// Default Vertex Shader
struct VertDataIn {
float4 pos : POSITION;
float2 uv : TEXCOORD0;
};
struct VertDataOut {
float4 pos : POSITION;
float2 uv : TEXCOORD0;
};
VertDataOut VSDefault(VertDataIn v_in)
{
VertDataOut vert_out;
vert_out.pos = mul(float4(v_in.pos.xyz, 1.0), ViewProj);
vert_out.uv = v_in.uv;
return vert_out;
}
// -------------------------------------------------------------------------------- //
// -------------------------------------------------------------------------------- //
// Shadow Effects (Inner, Outer)
uniform float4 pShadowColor;
uniform float pShadowMin;
uniform float pShadowMax;
uniform float2 pShadowOffset;
float4 PSShadowOuter(VertDataOut v_in) : TARGET
{
float2 dist_ex = pSDFTexture.Sample(sdfSampler, v_in.uv + pShadowOffset).rg * MAX_DISTANCE;
float dist = dist_ex.r - dist_ex.g;
bool mask = (pImageTexture.Sample(imageSampler, v_in.uv).a <= pSDFThreshold);
if (!mask) {
return float4(0.0, 0.0, 0.0, 0.0);
}
float v = clamp((dist - pShadowMin) / (pShadowMax - pShadowMin), 0., 1.);
return float4(pShadowColor.r, pShadowColor.g, pShadowColor.b, (1.0 - v) * pShadowColor.a);
}
technique ShadowOuter
{
pass
{
vertex_shader = VSDefault(v_in);
pixel_shader = PSShadowOuter(v_in);
}
}
float4 PSShadowInner(VertDataOut v_in) : TARGET
{
float2 dist_ex = pSDFTexture.Sample(sdfSampler, v_in.uv + pShadowOffset).rg * MAX_DISTANCE;
float dist = dist_ex.g - dist_ex.r;
bool mask = (pImageTexture.Sample(imageSampler, v_in.uv).a > pSDFThreshold);
if (!mask) {
return float4(0.0, 0.0, 0.0, 0.0);
}
float v = clamp((dist - pShadowMin) / (pShadowMax - pShadowMin), 0., 1.);
return float4(pShadowColor.r, pShadowColor.g, pShadowColor.b, (1.0 - v) * pShadowColor.a);
}
technique ShadowInner
{
pass
{
vertex_shader = VSDefault(v_in);
pixel_shader = PSShadowInner(v_in);
}
}
// -------------------------------------------------------------------------------- //
// -------------------------------------------------------------------------------- //
// Glow
uniform float4 pGlowColor <
string name = "Glow Color";
string group = "Glow";
>;
uniform float pGlowWidth <
string name = "Glow Width";
string group = "Glow";
float minimum = 0.01;
float maximum = 16.0;
float delta = 0.01;
float default = 1.0;
>;
uniform float pGlowSharpness <
string name = "Glow Sharpness";
string group = "Glow";
float minimum = 0.01;
float maximum = 100.0;
float delta = 0.01;
float default = 1.0;
string set_expr = "x / 100.0";
>;
uniform float pGlowSharpnessInverse <
string name = "Glow Sharpness Inverse";
string group = "Glow";
string value_expr = "1.0 / (1.0 - pGlowSharpness)";
bool visible = false;
bool enabled = false;
>;
float4 GlowShared(float dist) {
// Calculate correct gradient value and also take into account glow alpha to not delete information.
float v = clamp((GradientFromValue(dist, 0, pGlowWidth) - pGlowSharpness) * pGlowSharpnessInverse, 0.0, 1.0);
return float4(pGlowColor.r, pGlowColor.g, pGlowColor.b, pGlowColor.a * (1.0 - v));
}
float4 PSGlowOuter(VertDataOut v_in) : TARGET
{
float dist = pSDFTexture.Sample(sdfSampler, v_in.uv).r * MAX_DISTANCE;
bool mask = (pImageTexture.Sample(imageSampler, v_in.uv).a <= pSDFThreshold);
if (!mask) {
return float4(0.0, 0.0, 0.0, 0.0);
}
return GlowShared(dist);
}
technique GlowOuter
{
pass
{
vertex_shader = VSDefault(v_in);
pixel_shader = PSGlowOuter(v_in);
}
}
float4 PSGlowInner(VertDataOut v_in) : TARGET
{
float dist = pSDFTexture.Sample(sdfSampler, v_in.uv).g * MAX_DISTANCE;
bool mask = (pImageTexture.Sample(imageSampler, v_in.uv).a > pSDFThreshold);
if (!mask) {
return float4(0.0, 0.0, 0.0, 0.0);
}
return GlowShared(dist);
}
technique GlowInner
{
pass
{
vertex_shader = VSDefault(v_in);
pixel_shader = PSGlowInner(v_in);
}
}
// -------------------------------------------------------------------------------- //
// -------------------------------------------------------------------------------- //
// Outline
uniform float4 pOutlineColor <
string name = "Outline Color";
string group = "Outline";
>;
uniform float pOutlineWidth <
string name = "Outline Width";
string group = "Outline";
float minimum = 0.01;
float maximum = 16.0;
float delta = 0.01;
float default = 1.0;
>;
uniform float pOutlineOffset <
string name = "Outline Offset";
string group = "Outline";
float minimum = -16.0;
float maximum = 16.0;
float delta = 0.01;
float default = 0.0;
>;
uniform float pOutlineSharpness <
string name = "Outline Sharpness";
string group = "Outline";
float minimum = 0.01;
float maximum = 100.0;
float delta = 0.01;
float default = 1.0;
string set_expr = "x / 100.0";
>;
uniform float pOutlineSharpnessInverse <
string name = "Outline Sharpness Inverse";
string group = "Outline";
string value_expr = "1.0 / (1.0 - pOutlineSharpness)";
bool visible = false;
bool enabled = false;
>;
float4 PSOutline(VertDataOut v_in) : TARGET
{
float2 iodist = pSDFTexture.Sample(sdfSampler, v_in.uv).rg * MAX_DISTANCE;
float dist = iodist.r - iodist.g;
// Calculate where we are in the outline.
// We can use any of the following gradient functions: https://www.desmos.com/calculator/bmbrncaiem
/// Base Curve
float n = clamp(abs(dist - pOutlineOffset) / pOutlineWidth, 0.0, 1.0);
/// Sharpness Curve
float y1 = clamp((n - pOutlineSharpness) * pOutlineSharpnessInverse, 0.0, 1.0);
float y2 = cos((y1 - 1) * PI) * 0.5 + 0.5;
float y3 = sin(y1 * (PI / 2));
float y4 = sin((y1 - 1) * (PI / 2)) + 1.0;
// Blend by Color.a so that our outline doesn't delete information.
float l = 1.0 - ((1.0 - y1) * pOutlineColor.a);
return float4(pOutlineColor.r, pOutlineColor.g, pOutlineColor.b, pOutlineColor.a * (1.0 - y1));
}
technique Outline
{
pass
{
vertex_shader = VSDefault(v_in);
pixel_shader = PSOutline(v_in);
}
}
// -------------------------------------------------------------------------------- //