obs-StreamFX/source/nvidia/vfx/nvidia-vfx-superresolution.cpp
lainon 6e1566386e project: Apply more C++ paradigms to the code
- Use auto in places where code clarity is improved or identical.
- Replace trivial constructors and destructors with default.
- Use true random for random generation.
- Use std::string_view where it is valid to do so.
- Apply const where it is valid to do so.
- Use references where it is valid to do so.
- Manually optimize memory usage with std::move and std::copy.
- Opt for memory efficient containers where the size is known ahead of time.

Signed-off-by: lainon <GermanAizek@yandex.ru>
2023-04-05 18:58:32 +02:00

428 lines
16 KiB
C++

// Copyright (c) 2020 Michael Fabian Dirks <info@xaymar.com>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include "nvidia-vfx-superresolution.hpp"
#include <cmath>
#include <utility>
#include <vector>
#include "obs/gs/gs-helper.hpp"
#include "util/util-logging.hpp"
#include "util/utility.hpp"
#ifdef _DEBUG
#define ST_PREFIX "<%s> "
#define D_LOG_ERROR(x, ...) P_LOG_ERROR(ST_PREFIX##x, __FUNCTION_SIG__, __VA_ARGS__)
#define D_LOG_WARNING(x, ...) P_LOG_WARN(ST_PREFIX##x, __FUNCTION_SIG__, __VA_ARGS__)
#define D_LOG_INFO(x, ...) P_LOG_INFO(ST_PREFIX##x, __FUNCTION_SIG__, __VA_ARGS__)
#define D_LOG_DEBUG(x, ...) P_LOG_DEBUG(ST_PREFIX##x, __FUNCTION_SIG__, __VA_ARGS__)
#else
#define ST_PREFIX "<nvidia::vfx::superresolution::superresolution> "
#define D_LOG_ERROR(...) P_LOG_ERROR(ST_PREFIX __VA_ARGS__)
#define D_LOG_WARNING(...) P_LOG_WARN(ST_PREFIX __VA_ARGS__)
#define D_LOG_INFO(...) P_LOG_INFO(ST_PREFIX __VA_ARGS__)
#define D_LOG_DEBUG(...) P_LOG_DEBUG(ST_PREFIX __VA_ARGS__)
#endif
static std::vector<float> supported_scale_factors{4. / 3., 1.5, 2., 3., 4.};
static float find_closest_scale_factor(float factor)
{
std::pair<float, float> minimal = {0.f, std::numeric_limits<float>::max()};
for (float delta : supported_scale_factors) {
float value = abs(delta - factor);
if (minimal.second > value) {
minimal.first = delta;
minimal.second = value;
}
}
return minimal.first;
}
static size_t find_closest_scale_factor_index(float factor)
{
std::pair<size_t, float> minimal = {0.f, std::numeric_limits<float>::max()};
for (size_t idx = 0; idx < supported_scale_factors.size(); idx++) {
float delta = supported_scale_factors[idx];
float value = abs(delta - factor);
if (minimal.second > value) {
minimal.first = idx;
minimal.second = value;
}
}
return minimal.first;
}
streamfx::nvidia::vfx::superresolution::~superresolution()
{
auto gctx = ::streamfx::obs::gs::context();
auto cctx = ::streamfx::nvidia::cuda::obs::get()->get_context()->enter();
// Clean up any CUDA resources in use.
_input.reset();
_convert_to_fp32.reset();
_source.reset();
_destination.reset();
_convert_to_u8.reset();
_output.reset();
_tmp.reset();
}
streamfx::nvidia::vfx::superresolution::superresolution()
: effect(EFFECT_SUPERRESOLUTION), _dirty(true), _input(), _convert_to_fp32(), _source(), _destination(),
_convert_to_u8(), _output(), _tmp(), _strength(1.), _scale(1.5), _cache_input_size(), _cache_output_size(),
_cache_scale()
{
// Enter Graphics and CUDA context.
auto gctx = ::streamfx::obs::gs::context();
auto cctx = ::streamfx::nvidia::cuda::obs::get()->get_context()->enter();
// Set the strength, scale and buffers.
set_strength(_strength);
set_scale(_scale);
resize(160, 90);
// Load the effect.
load();
}
void streamfx::nvidia::vfx::superresolution::set_strength(float strength)
{
strength = (strength >= .5f) ? 1.f : 0.f;
std::swap(_strength, strength);
// If anything was changed, flag the effect as dirty.
if (!::streamfx::util::math::is_close<float>(_strength, strength, 0.01f))
_dirty = true;
// Update Effect
uint32_t value = (_strength >= .5f) ? 1 : 0;
auto gctx = ::streamfx::obs::gs::context();
auto cctx = ::streamfx::nvidia::cuda::obs::get()->get_context()->enter();
if (auto res = set(::streamfx::nvidia::vfx::PARAMETER_STRENGTH, value);
res != ::streamfx::nvidia::cv::result::SUCCESS) {
D_LOG_ERROR("Failed to set '%s' to %lu.", ::streamfx::nvidia::vfx::PARAMETER_STRENGTH, value);
};
}
float streamfx::nvidia::vfx::superresolution::strength()
{
return _strength;
}
void streamfx::nvidia::vfx::superresolution::set_scale(float scale)
{
// Limit to acceptable range.
scale = std::clamp<float>(scale, 1., 4.);
// Match to nearest scale.
float factor = static_cast<float>(find_closest_scale_factor(scale));
// If anything was changed, flag the effect as dirty.
if (!::streamfx::util::math::is_close<float>(_scale, factor, 0.01f))
_dirty = true;
// Save new scale factor.
_scale = factor;
}
float streamfx::nvidia::vfx::superresolution::scale()
{
return _scale;
}
void streamfx::nvidia::vfx::superresolution::size(std::pair<uint32_t, uint32_t> const& size,
std::pair<uint32_t, uint32_t>& input_size,
std::pair<uint32_t, uint32_t>& output_size)
{
// Check if the size has actually changed at all.
if ((input_size.first == _cache_input_size.first) && (input_size.second == _cache_input_size.second)
&& (_scale == _cache_scale)) {
input_size = _cache_input_size;
output_size = _cache_output_size;
_scale = _cache_scale;
return;
}
// Define lower and upper boundaries for resolution.
constexpr uint32_t min_width = 160;
constexpr uint32_t min_height = 90;
uint32_t max_width = 0;
uint32_t max_height = 0;
if (_scale > 3.0) {
max_width = 960;
max_height = 540;
} else if (_scale > 2.0) {
max_width = 1280;
max_height = 720;
} else {
max_width = 1920;
max_height = 1080;
}
// Restore Input Size
input_size.first = size.first;
input_size.second = size.second;
// Calculate Input Size
if (input_size.first > input_size.second) {
// Dominant Width
double ar = static_cast<double>(input_size.second) / static_cast<double>(input_size.first);
input_size.first = std::clamp<uint32_t>(input_size.first, min_width, max_width);
input_size.second = std::clamp<uint32_t>(
static_cast<uint32_t>(std::lround(static_cast<double>(input_size.first) * ar)), min_height, max_height);
} else {
// Dominant Height
double ar = static_cast<double>(input_size.first) / static_cast<double>(input_size.second);
input_size.second = std::clamp<uint32_t>(input_size.second, min_height, max_height);
input_size.first = std::clamp<uint32_t>(
static_cast<uint32_t>(std::lround(static_cast<double>(input_size.second) * ar)), min_width, max_width);
}
// Calculate Output Size.
output_size.first = static_cast<uint32_t>(std::lround(input_size.first * _scale));
output_size.second = static_cast<uint32_t>(std::lround(input_size.second * _scale));
// Verify that this is a valid scale factor.
float width_mul = (static_cast<float>(output_size.first) / static_cast<float>(input_size.first));
float height_mul = (static_cast<float>(output_size.second) / static_cast<float>(input_size.second));
if (!::streamfx::util::math::is_close<float>(width_mul, _scale, 0.00001)
|| !::streamfx::util::math::is_close<float>(height_mul, _scale, 0.00001)) {
size_t scale_idx = find_closest_scale_factor_index(_scale);
if (scale_idx < supported_scale_factors.size()) {
_scale = supported_scale_factors[scale_idx + 1];
this->size(size, input_size, output_size);
}
}
// Update last stored values.
_cache_input_size = input_size;
_cache_output_size = output_size;
_cache_scale = _scale;
}
std::shared_ptr<::streamfx::obs::gs::texture>
streamfx::nvidia::vfx::superresolution::process(std::shared_ptr<::streamfx::obs::gs::texture> in)
{
// Enter Graphics and CUDA context.
auto gctx = ::streamfx::obs::gs::context();
auto cctx = _nvcuda->get_context()->enter();
#ifdef ENABLE_PROFILING
::streamfx::obs::gs::debug_marker profiler1{::streamfx::obs::gs::debug_color_magenta, "NvVFX Super-Resolution"};
#endif
// Resize if the size or scale was changed.
resize(in->get_width(), in->get_height());
// Reload effect if dirty.
if (_dirty) {
load();
}
{ // Copy parameter to input.
#ifdef ENABLE_PROFILING
::streamfx::obs::gs::debug_marker profiler1{::streamfx::obs::gs::debug_color_copy, "Copy In -> Input"};
#endif
gs_copy_texture(_input->get_texture()->get_object(), in->get_object());
}
{ // Convert Input to Source format
#ifdef ENABLE_PROFILING
::streamfx::obs::gs::debug_marker profiler1{::streamfx::obs::gs::debug_color_convert,
"Convert Input -> Source"};
#endif
if (auto res = _nvcvi->NvCVImage_Transfer(_input->get_image(), _convert_to_fp32->get_image(), 1.f,
_nvcuda->get_stream()->get(), _tmp->get_image());
res != ::streamfx::nvidia::cv::result::SUCCESS) {
D_LOG_ERROR("Failed to transfer processing result to output due to error: %s",
_nvcvi->NvCV_GetErrorStringFromCode(res));
throw std::runtime_error("Transfer failed.");
}
}
{ // Copy input to source.
#ifdef ENABLE_PROFILING
::streamfx::obs::gs::debug_marker profiler1{::streamfx::obs::gs::debug_color_copy, "Copy Input -> Source"};
#endif
if (auto res = _nvcvi->NvCVImage_Transfer(_convert_to_fp32->get_image(), _source->get_image(), 1.f,
_nvcuda->get_stream()->get(), _tmp->get_image());
res != ::streamfx::nvidia::cv::result::SUCCESS) {
D_LOG_ERROR("Failed to transfer input to processing source due to error: %s",
_nvcvi->NvCV_GetErrorStringFromCode(res));
throw std::runtime_error("Transfer failed.");
}
}
{ // Process source to destination.
#ifdef ENABLE_PROFILING
::streamfx::obs::gs::debug_marker profiler1{::streamfx::obs::gs::debug_color_cache, "Process"};
#endif
if (auto res = run(); res != ::streamfx::nvidia::cv::result::SUCCESS) {
D_LOG_ERROR("Failed to process due to error: %s", _nvcvi->NvCV_GetErrorStringFromCode(res));
throw std::runtime_error("Run failed.");
}
}
{ // Convert Destination to Output format
#ifdef ENABLE_PROFILING
::streamfx::obs::gs::debug_marker profiler1{::streamfx::obs::gs::debug_color_convert,
"Convert Destination -> Output"};
#endif
if (auto res = _nvcvi->NvCVImage_Transfer(_destination->get_image(), _convert_to_u8->get_image(), 1.f,
_nvcuda->get_stream()->get(), _tmp->get_image());
res != ::streamfx::nvidia::cv::result::SUCCESS) {
D_LOG_ERROR("Failed to transfer processing result to output due to error: %s",
_nvcvi->NvCV_GetErrorStringFromCode(res));
throw std::runtime_error("Transfer failed.");
}
}
{ // Copy destination to output.
#ifdef ENABLE_PROFILING
::streamfx::obs::gs::debug_marker profiler1{::streamfx::obs::gs::debug_color_copy,
"Copy Destination -> Output"};
#endif
if (auto res = _nvcvi->NvCVImage_Transfer(_convert_to_u8->get_image(), _output->get_image(), 1.,
_nvcuda->get_stream()->get(), _tmp->get_image());
res != ::streamfx::nvidia::cv::result::SUCCESS) {
D_LOG_ERROR("Failed to transfer processing result to output due to error: %s",
_nvcvi->NvCV_GetErrorStringFromCode(res));
throw std::runtime_error("Transfer failed.");
}
}
// Return output.
return _output->get_texture();
}
void streamfx::nvidia::vfx::superresolution::resize(uint32_t width, uint32_t height)
{
auto gctx = ::streamfx::obs::gs::context();
auto cctx = ::streamfx::nvidia::cuda::obs::get()->get_context()->enter();
_cache_input_size = {width, height};
this->size(_cache_input_size, _cache_input_size, _cache_output_size);
if (!_tmp) {
_tmp = std::make_shared<::streamfx::nvidia::cv::image>(
_cache_output_size.first, _cache_output_size.second, ::streamfx::nvidia::cv::pixel_format::RGBA,
::streamfx::nvidia::cv::component_type::UINT8, ::streamfx::nvidia::cv::component_layout::PLANAR,
::streamfx::nvidia::cv::memory_location::GPU, 1);
}
if (!_input || (_input->get_image()->width != _cache_input_size.first)
|| (_input->get_image()->height != _cache_input_size.second)) {
if (_input) {
_input->resize(_cache_input_size.first, _cache_input_size.second);
} else {
_input = std::make_shared<::streamfx::nvidia::cv::texture>(_cache_input_size.first,
_cache_input_size.second, GS_RGBA_UNORM);
}
}
if (!_convert_to_fp32 || (_convert_to_fp32->get_image()->width != _cache_input_size.first)
|| (_convert_to_fp32->get_image()->height != _cache_input_size.second)) {
if (_convert_to_fp32) {
_convert_to_fp32->resize(_cache_input_size.first, _cache_input_size.second);
} else {
_convert_to_fp32 = std::make_shared<::streamfx::nvidia::cv::image>(
_cache_input_size.first, _cache_input_size.second, ::streamfx::nvidia::cv::pixel_format::RGBA,
::streamfx::nvidia::cv::component_type::FP32, ::streamfx::nvidia::cv::component_layout::PLANAR,
::streamfx::nvidia::cv::memory_location::GPU, 1);
}
}
if (!_source || (_source->get_image()->width != _cache_input_size.first)
|| (_source->get_image()->height != _cache_input_size.second)) {
if (_source) {
_source->resize(_cache_input_size.first, _cache_input_size.second);
} else {
_source = std::make_shared<::streamfx::nvidia::cv::image>(
_cache_input_size.first, _cache_input_size.second, ::streamfx::nvidia::cv::pixel_format::BGR,
::streamfx::nvidia::cv::component_type::FP32, ::streamfx::nvidia::cv::component_layout::PLANAR,
::streamfx::nvidia::cv::memory_location::GPU, 1);
}
if (auto res = set(::streamfx::nvidia::vfx::PARAMETER_INPUT_IMAGE_0, _source);
res != ::streamfx::nvidia::cv::result::SUCCESS) {
D_LOG_ERROR("Failed to set input image due to error: %s", _nvcvi->NvCV_GetErrorStringFromCode(res));
throw std::runtime_error("SetImage failed.");
}
_dirty = true;
}
if (!_destination || (_destination->get_image()->width != _cache_output_size.first)
|| (_destination->get_image()->height != _cache_output_size.second)) {
if (_destination) {
_destination->resize(_cache_output_size.first, _cache_output_size.second);
} else {
_destination = std::make_shared<::streamfx::nvidia::cv::image>(
_cache_output_size.first, _cache_output_size.second, ::streamfx::nvidia::cv::pixel_format::BGR,
::streamfx::nvidia::cv::component_type::FP32, ::streamfx::nvidia::cv::component_layout::PLANAR,
::streamfx::nvidia::cv::memory_location::GPU, 1);
}
if (auto res = set(::streamfx::nvidia::vfx::PARAMETER_OUTPUT_IMAGE_0, _destination);
res != ::streamfx::nvidia::cv::result::SUCCESS) {
D_LOG_ERROR("Failed to set output image due to error: %s", _nvcvi->NvCV_GetErrorStringFromCode(res));
throw std::runtime_error("SetImage failed.");
}
_dirty = true;
}
if (!_convert_to_u8 || (_convert_to_u8->get_image()->width != _cache_output_size.first)
|| (_convert_to_u8->get_image()->height != _cache_output_size.second)) {
if (_convert_to_u8) {
_convert_to_u8->resize(_cache_output_size.first, _cache_output_size.second);
} else {
_convert_to_u8 = std::make_shared<::streamfx::nvidia::cv::image>(
_cache_output_size.first, _cache_output_size.second, ::streamfx::nvidia::cv::pixel_format::RGBA,
::streamfx::nvidia::cv::component_type::UINT8, ::streamfx::nvidia::cv::component_layout::INTERLEAVED,
::streamfx::nvidia::cv::memory_location::GPU, 1);
}
}
if (!_output || (_output->get_image()->width != _cache_output_size.first)
|| (_output->get_image()->height != _cache_output_size.second)) {
if (_output) {
_output->resize(_cache_output_size.first, _cache_output_size.second);
} else {
_output = std::make_shared<::streamfx::nvidia::cv::texture>(_cache_output_size.first,
_cache_output_size.second, GS_RGBA_UNORM);
}
}
}
void streamfx::nvidia::vfx::superresolution::load()
{
auto gctx = ::streamfx::obs::gs::context();
auto cctx = ::streamfx::nvidia::cuda::obs::get()->get_context()->enter();
if (auto res = effect::load(); res != ::streamfx::nvidia::cv::result::SUCCESS) {
D_LOG_ERROR("Failed to initialize effect due to error: %s", _nvcvi->NvCV_GetErrorStringFromCode(res));
throw std::runtime_error("Load failed.");
}
_dirty = false;
}